
Chem 3322 homework #1 solutions

Problem 1, 16 marks – classical wave equation

a) Show that u(x, t) = sin(kx−ωt) satisfies the classical wave equation by directly using

the function sin(kx− ωt) in the wave equation.

Solution:

For this problem we need the chain rule, which states, in general, that

d

dx
f(g(x)) = f ′(g(x))g′(x) (1)

On the left hand side of Eq. (6) we have

∂2

∂x2
sin(kx− ωt) =

∂

∂x
[cos(kx− ωt)

∂(kx− ωt)

∂x
] =

∂

∂x
[k cos(kx− ωt)] (2)

Taking one more partial gives

= −k2 sin(kx− ωt) = −k2u(x, t) (3)

On the right hand side of Eq. (6) we have

1

v2
∂2

∂t2
sin(kx− ωt) =

1

v2
∂

∂t
[cos(kx− ωt)

∂(kx− ωt)

∂t
] =

1

v2
∂

∂t
[−ω cos(kx− ωt)] (4)

Taking one more partial gives

= − 1

v2
ω2 sin(kx− ωt) = − 1

v2
ω2u(x, t) (5)

Then, using that v = ω/k, we can see that the left hand side and the right hand side are

equal, and thus we have shown that this u(x, t) satisfies the wave equation.

b) Show that u(x, t) = sin(kx − ωt) satisfies the classical wave equation by using the

trigonometric identity sin(A−B) = sinA cosB − cosA sinB.

Solution:

The wave equation is

∂2u

∂x2
=

1

v2
∂2u

∂t2
(6)

On the left hand side, for the given u(x, t), we have

∂2u

∂x2
=

∂2[sin(kx) cos(ωt)− cos(kx) sin(ωt)]

∂x2
=

∂

∂x
[k cos(kx) cos(ωt) + k sin(kx) sin(ωt)] (7)
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= −k2 sin(kx) cos(ωt) + k2 cos(kx) sin(ωt) = −k2u(x, t) (8)

On the right hand side, we have

1

v2
∂2[sin(kx) cos(ωt)− cos(kx) sin(ωt)]

∂t2
=

1

v2
∂

∂t
[−ω sin(kx) sin(ωt)− ω cos(kx) cos(ωt)] (9)

=
1

v2
[−ω2 sin(kx) cos(ωt) + ω2 cos(kx) sin(ωt)] = − 1

v2
ω2u(x, t) (10)

Then, using that v = ω/k, we can see that the left hand side and the right hand side are

equal, and thus we have shown that this u(x, t) satisfies the wave equation.

c) Show that u(x, t) = ei(kx−ωt) satisfies the classical wave equation by using the Euler

identity eiθ = cos θ + i sin θ.

Solution:

On the left hand side we have

∂2u

∂x2
=

∂2

∂x2
[cos(kx− ωt) + i sin(kx− ωt)] (11)

=
∂

∂x
[−k sin(kx− ωt) + ik cos(kx− ωt)] = −k2 cos(kx− ωt)− ik2 sin(kx− ωt)

On the right hand side we have, taking one time derivative already,

1

v2
∂

∂t
[ω sin(kx− ωt)− iω cos(kx− ωt)] =

1

v2
[
−ω2 cos(kx− ωt)− iω2 sin(kx− ωt)

]
(12)

Then, using that v = ω/k, we can see that the left hand side and the right hand side are

equal, and thus we have shown that this u(x, t) satisfies the wave equation.

d) Show that u(x, t) = ei(kx−ωt) satisfies the classical wave equation by directly differen-

tiating the function ei(kx−ωt).

Solution:

Here again we need the chain rule. On the left hand side of Eq. (6) we have

∂2

∂x2
ei(kx−ωt) =

∂

∂x
[ei(kx−ωt)∂(i(kx− ωt))

∂x
] =

∂

∂x
[ikei(kx−ωt)] = −k2ei(kx−ωt) (13)

On the right hand side of Eq. (6) we have

1

v2
∂2

∂t2
ei(kx−ωt) =

1

v2
∂

∂t
[−iωei(kx−ωt)] = − 1

v2
ω2ei(kx−ωt) (14)

Then, using that v = ω/k, we can see that the left hand side and the right hand side are

equal, and thus we have shown that this u(x, t) satisfies the wave equation.
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Problem 2, 10 marks – different wavelength components

a) Show that u(x, t) = sin(k1x) cos(ω1t) − cos(k2x) sin(ω2t) is not a classical wave if

k2 = 2k1 and ω1 = ω2.

Solution:

On the left hand side of Eq. (6) we have

∂2

∂x2
[sin(k1x) cos(ω1t)− cos(k2x) sin(ω2t)] (15)

= −k2
1 sin(k1x) cos(ω1t) + k2

2 cos(k2x) sin(ω2t) (16)

Using k2 = 2k1 and ω1 = ω2 gives

= k2
1[− sin(k1x) cos(ω1t) + 4 cos(k2x) sin(ω2t)] (17)

On the right hand side of Eq. (6) we have

1

v2
∂2

∂t2
[sin(k1x) cos(ω1t)− cos(k2x) sin(ω2t)] (18)

=
1

v2
[−ω2

1 sin(k1x) cos(ω1t) + ω2
2 cos(k2x) sin(ω2t)] (19)

Using k2 = 2k1 and ω1 = ω2 gives

=
ω2
1

v2
[− sin(k1x) cos(ω1t) + cos(k2x) sin(ω2t)] (20)

By comparing the expressions in Equations (17) and (20) you should see that the extra

factor of 4 in Eq. (17) prevents us from making them the same, and we have to conclude

that this function does not represent a wave.

b) Show that u(x, t) = sin(k1x) cos(ω1t)− cos(k2x) sin(ω2t) is a classical wave if k2 = 2k1

and ω2 = 2ω1. What is the propagation speed of this wave?

Solution:

Now the change is that Equation (20) becomes

=
ω2
1

v2
[− sin(k1x) cos(ω1t) + 4 cos(k2x) sin(ω2t)] (21)

so that the left hand side and right hand side are equal provided that we take the propagation

speed to be v = ω1/k1.
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Problem 3, 10 marks – Taylor series

For (a), (b), and (c) you can look up the answers using any resource.

a) Write down, up to (and including) 7th powers of x, the Taylor series for sinx.

Solution:

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · · (22)

b) Write down, up to 7th powers of x, the Taylor series for cosx.

Solution:

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · (23)

c) Write down, up to 7th powers of x, the Taylor series for ex.

Solution:

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
+ · · · (24)

d) Write down, up to 7th powers of x, the Taylor series for eix by using your answer (c).

Solution:

eix = 1 + ix+
i2x2

2!
+

i3x3

3!
+

i4x4

4!
+

i5x5

5!
+

i6x6

6!
+

i7x7

7!
+ · · · (25)

Now, we have the relations i2 = −1, i3 = −i, i4 = 1, i5 = i, i6 = −1, and i7 = −i, giving

eix = 1 + ix− x2

2!
− i

x3

3!
+

x4

4!
+ i

x5

5!
− x6

6!
− i

x7

7!
+ · · · (26)

or, rearranging,

eix =

(
1− x2

2!
+

x4

4!
− x6

6!

)
+ i

(
x− x3

3!
+

x5

5!
− x7

7!

)
(27)

e) By comparing your answer (d) to the Euler formula eiθ = cos θ+ i sin θ show how you

could identify the sinx and cos x Taylor series (assuming you didn’t know them).

Solution: By looking at Equation (27) and using the Euler formula eiθ = cos θ + i sin θ,

we can immediately identify the Taylor series for sinx and cos x in Equations (22) and (23).
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Problem 4, 10 marks – operators

a) We usually denote an operator by a capital letter with a carat over it, e.g., Â. Thus,

we write

Âf(x) = g(x) (28)

to indicate that the operator Â operates on f(x) to give a new function g(x).

Evaluate (see page 75) Âf(x) where f(x) = 2x2 and where

Â =
d2

dx2
+ 2

d

dx
+ 3 (29)

Solution:

Following pages 75 and 76, we have

Âf(x) = 4 + 8x+ 6x2 (30)

b) Consider the operator (see page 79)

Ĉ = ÂB̂ − B̂Â (31)

Specifically, take Â = x and B̂ = d/dx. What does this operator Ĉ do to a function f(x)?

Based on your answer, express this operator in a simpler form.

Solution:

Following page 79, we have

Ĉf(x) = Â
(
B̂f(x)

)
− B̂

(
Âf(x)

)
(32)

= x
df(x)

dx
− d

dx
(xf(x)) (33)

= x
df(x)

dx
− x

df(x)

dx
− f(x) (34)

from the product rule

= −f(x) (35)

Therefore the operator is just multiplication by minus one.
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