Chem 3322 homework #4, due February 16, 2024

<u>Problem 1</u> – particle in a box

Consider a particle in a one-dimensional box of length L in its lowest energy (ground) stationary state. Calculate the probability that the particle is

a) in the left half of the box

b) in the middle third of the box.

c) Draw a picture of the wavefunction and associated probability for each of parts a) andb) and justify that your answers make sense in terms of these pictures.

<u>Problem 2</u> - particle in a box

Consider a particle in a one-dimensional box of length L in its first excited stationary state. Calculate the probability that the particle is

a) in the left half of the box

b) in the middle third of the box.

c) Draw a picture of the wavefunction and associated probability for each of parts a) andb) and justify that your answers make sense in terms of these pictures.

<u>Problem 3</u> - particle in a 1d box

Do problem 3-6 from your textbook (page 97)

<u>Problem 4</u> - particle in a box

a) Calculate the energy levels of the π -network in octatetraene, C_8H_{10} , using the particle in the box model. To calculate the box length, assume that the molecule is linear and use the values of 135 pm and 154 pm for C=C and C-C bonds, respectively. Note: you should add 77 pm to both ends of the box length to be consistent with problem 3-6 from your textbook.

b) What is the wavelength of light required to induce a transition from the ground state to the first excited state? (Hint: make sure you use the aufbau principle to obtain the ground state electron configuration)