Chem 3322 homework \#5, due March 1, 2024

Problem 1 - tunneling

We found that, for a finite depth particle-in-a-box, the wavefunction amplitude decays in the barrier (classically forbidden region) according to $\psi(x)=A \exp \left[-\sqrt{2 m\left(V_{0}-E\right) / \hbar^{2}} x\right]$. This result will be used to calculate the sensitivity of the scanning tunneling microscope. Assume that the tunneling current through a barrier of width a is proportional to $I=$ $|A|^{2} \exp \left[-2 \sqrt{2 m\left(V_{0}-E\right) / \hbar^{2}} a\right]$.
a) If $\left(V_{0}-E\right)$ is 4.50 eV , how much larger would the current be for a barrier width of 0.20 nm than for 0.30 nm ?
b) Somebody claims that a proton tunneling microscope would be equally effective. For a 0.20 nm barrier width, by what factor is the tunneling current changed if protons are used instead of electrons?

Problem 2-particle in a 3d box

Solve the particle in a 3d box problem in your own words. You may use section 3-9 of the textbook and the 3 d box section in my lecture notes as a guide. As part of your solution, you should obtain the stationary state wavefunctions and energy levels. For a cubic box, there are degeneracies as shown in Fig. 3.6 of the textbook. Please attempt to draw the $(2,1,1),(1,2,1)$, and ($1,1,2$) probability densities for the case of a cubic box. The goal of your drawing is to convince me that these 3 orbitals are different from one another (unlike the $n=1$ and $n=-1$ cases for the particle in a 1 d box). One way to do this is to sketch the nodal planes.

Problem 3-particle in a 2d box

Do problem 3-27 from your textbook (page 99). Note that there is an error in the book: there are 26π electrons in this molecule, not 18 .

Problem 4 - particle in a 2d box

Consider a particle in a two-dimensional box of side lengths a and b, where $b=2 a$. Write down (in order of energy) the quantum numbers corresponding to the first 5 energy levels of this system. Note any degeneracies.

Problem 5 - particle on a ring

The π electrons in benzene can be approximated as particles on a ring. Calculate the diameter of this "electron ring" if it is assumed that a transition occurring at 250.0 nm corresponds to an electron going from the highest occupied orbital (HOMO) to the lowest unoccupied orbital (LUMO). Compare this diameter to the diameter of a benzene molecule, if you approximate the carbon hexagon with a circle (you will have to look up the carboncarbon bond length in benzene).

Problem 6 - particle in a box correspondence principle

Show that the probability associated with the state ψ_{n} for a particle in a one-dimensional box of length a obeys the following relationships:
(a)

$$
\operatorname{Prob}(0 \leq x \leq a / 4)=\operatorname{Prob}(3 a / 4 \leq x \leq a)= \begin{cases}\frac{1}{4} & \text { if } n \text { is even } \tag{1}\\ \frac{1}{4}-\frac{(-1)^{n / 2-1 / 2}}{2 n \pi} & \text { if } n \text { is odd }\end{cases}
$$

and
(b)

$$
\operatorname{Prob}(a / 4 \leq x \leq a / 2)=\operatorname{Prob}(a / 2 \leq x \leq 3 a / 4)= \begin{cases}\frac{1}{4} & \text { if } n \text { is even } \tag{2}\\ \frac{1}{4}+\frac{(-1)^{n / 2-1 / 2}}{2 n \pi} & \text { if } n \text { is odd }\end{cases}
$$

Explain the motivation behind this question by paraphrasing page 85/86 of McQuarrie/Simon.

