
Chem 3322 homework #5 solutions

Problem 1 – tunneling

We found that, for a finite depth particle-in-a-box, the wavefunction amplitude decays in

the barrier (classically forbidden region) according to ψ(x) = A exp[−
√

2m(V0 − E)/ℏ2 x].

This result will be used to calculate the sensitivity of the scanning tunneling microscope.

Assume that the tunneling current through a barrier of width a is proportional to I =

|A|2 exp[−2
√

2m(V0 − E)/ℏ2 a].

a) If (V0 − E) is 4.50 eV, how much larger would the current be for a barrier width of

0.20 nm than for 0.30 nm?

Solution:

We will compare by using a ratio.

I(a = 2× 10−10m)

I(a = 3× 10−10m)
= exp

[
−2

√
2m(V0 − E)

ℏ2
(2× 10−10m− 3× 10−10m)

]
(1)

Putting in the numbers and converting units so that we get a dimensionless exponent results

in an answer of 8.78. Therefore even a small distance change results in a substantial change

in the tunneling current.

b) Somebody claims that a proton tunneling microscope would be equally effective. For

a 0.20 nm barrier width, by what factor is the tunneling current changed if protons are used

instead of electrons?

Solution:

Again, we can set it up as a ratio:

I(proton)

I(electron)
=

exp

[
−2

√
2mproton(V0−E)

ℏ2 a

]
exp

[
−2

√
2melectron(V0−E)

ℏ2 a

] =

exp

[
−2

√
2(V0 − E)

ℏ2
(√

mproton −
√
melectron

)
a

]
(2)

Putting in the numbers and converting units gives an answer of 1.2× 10−79. Therefore a

proton tunneling microscope does not look promising.
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Problem 2 – particle in a 3d box

Solve the particle in a 3d box problem in your own words. You may use section 3-9 of the

textbook and the 3d box section in my lecture notes as a guide. As part of your solution,

you should obtain the stationary state wavefunctions and energy levels. For a cubic box,

there are degeneracies as shown in Fig. 3.6 of the textbook. Please attempt to draw the

(2,1,1), (1,2,1), and (1,1,2) probability densities for the case of a cubic box. The goal of

your drawing is to convince me that these 3 orbitals are different from one another (unlike

the n = 1 and n = −1 cases for the particle in a 1d box). One way to do this is to sketch

the nodal planes.

Solution:

See the sketch. Since the nodal planes (shaded in the sketch) are in different directions,

the probability densities corresponding to these three wavefunctions are distinct, which is

why these represent different physical states (orbitals).

FIG. 1: sketch of the (2,1,1), (1,2,1), and (1,1,2) orbitals
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Problem 3 – particle in a 2d box

Do problem 3-27 from your textbook (page 99). Note that there is an error in the book:

there are 26 π electrons in this molecule, not 18.

Solution:

First we need to figure out the energy level diagram. The energy is proportional to

(n2
x + n2

y). The first few levels (in order of increasing energy) are

nx ny n
2
x + n2

y

1 1 2

2 1 5

1 2 5

2 2 8

1 3 10

3 1 10

3 2 13

2 3 13

1 4 17

4 1 17

3 3 18

4 2 20

2 4 20

4 3 25

3 4 25

The pattern of degeneracies is hard to predict; you just have to work them out. With

26 π electrons the HOMO to LUMO gap corresponds to n2
x + n2

y = 20 to n2
x + n2

y = 25. In

terms of wavenumbers, this is

(6.626× 10−34Js)(25− 20)

(8)(9.11× 10−31kg)(1.0× 10−9m)2(3.0× 1010 cm s−1)
= 15000 cm−1 (3)
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Problem 4 – particle in a 2d box

Consider a particle in a two-dimensional box of side lengths a and b, where b = 2a. Write

down (in order of energy) the quantum numbers corresponding to the first 5 energy levels

of this system. Note any degeneracies.

Solution:

The energy of the stationary states, as a function of the two quantum numbers nx and

ny, is proportional to n
2
x + n2

y/4, or 4n
2
x + n2

y. The first 5 energy levels are proportional to,

using the first relation,

nx ny E ∝ n2
x + n2

y/4

1 1 1.25 1st

1 2 2.00 2nd

1 3 3.25 3rd

2 1 4.25 4th

1 4 5.00 5th

2 2 5.00 5th

Therefore the 5th level is doubly degenerate and the first 4 levels are non-degenerate (also

called singly degenerate)

Problem 5 – particle on a ring

The π electrons in benzene can be approximated as particles on a ring. Calculate the

diameter of this “electron ring” if it is assumed that a transition occurring at 250.0 nm

corresponds to an electron going from the highest occupied orbital (HOMO) to the lowest

unoccupied orbital (LUMO). Compare this diameter to the diameter of a benzene molecule,

if you approximate the carbon hexagon with a circle (you will have to look up the carbon-

carbon bond length in benzene).

Solution:

The transition is from n = 1 to n = 2 because the n = 0 level is singly degenerate (non-

degenerate) and the n = 1 level is doubly degenerate, so that the six π electrons fill the n =

0 and n = 1 levels, giving the HOMO to LUMO transition as n = 1 to n = 2. Then, using

E = hν and c = λν, the photon of wavelength 250 nm gives an energy to the molecule of E

= 7.95 × 10−19 J. The energy promotes the n = 1 to n = 2 transition,

E =
22ℏ2

2mR2
− 12ℏ2

2mR2
(4)
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Using the mass of an electron, since this is what is undergoing the transition, we get R =

1.52 Å.

The carbon-carbon bond length in benzene is 1.39 Å. Assuming that the circumference

of the π-electron “ring” in benzene is six times this distance, we get a radius of 1.33 Å.

Therefore our estimate is too high.

Problem 6 – particle in a box correspondence principle

Show that the probability associated with the state ψn for a particle in a one-dimensional

box of length a obeys the following relationships:

(a)

Prob(0 ≤ x ≤ a/4) = Prob(3a/4 ≤ x ≤ a) =

 1
4

if n is even

1
4
− (−1)n/2−1/2

2nπ
if n is odd

(5)

and

(b)

Prob(a/4 ≤ x ≤ a/2) = Prob(a/2 ≤ x ≤ 3a/4) =

 1
4

if n is even

1
4
+ (−1)n/2−1/2

2nπ
if n is odd

(6)

Explain the motivation behind this question by paraphrasing page 85/86 of McQuar-

rie/Simon.

Solution:

We can develop a general formula as follows:

Prob(a ≤ x ≤ b) =

∫ b

a

2

L
sin2(

nπx

L
)dx (7)

=
2

L

[
x

2
− sin(2nπx/L)

4(nπ/L)

]x=b

x=a

(8)

=
b− a

L
− 1

2nπ
[sin(2nπb/L)− sin(2nπa/L)] (9)

Now, in this question we have b − a = L/4. The answers to (a) and (b) then follow by

considering whether the sin function is 0, 1, or -1 at the values of a and b given in each part

(which depends on n).

Motivation:

These probabilites oscillate as they converge to the uniform distribution limit (of 1/4),

which is the classical probability density. This is an instance of the correspondence principle.
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