
Chem 3322 homework #6 solutions

Problem 1 – angular momentum

Angular momentum in classical mechanics measures the ‘amount of rotation’. It is anal-

ogous to linear momentum, which measures the ‘amount of motion’. In classical mechanics,

angular momentum is conserved. The definition of angular momentum for a point particle

is given by

L = r × p (1)

namely by the cross product of the position vector with the (linear) momentum vector.

a) From this definition, show that, in quantum mechanics, the z-component of the angular

momentum operator is given by

L̂z = −iℏ
(
x
∂

∂y
− y

∂

∂x

)
(2)

Solution:

From the definition of the cross product,

Lz = xpy − ypx (3)

where r = (x, y, z) and p = (px, py, pz). To convert to a quantum mechanical operator,

x→ x̂ = x (4)

y → ŷ = y (5)

px → p̂x = −iℏ ∂
∂x

(6)

py → p̂y = −iℏ ∂
∂y

(7)

which yields the desired result.

b) Let us assume that our particle motion is restricted to the x-y plane. In this case, we

can transform to plane polar coordinates. The transformations and reverse transformations

are

x = r cos θ r =
√
x2 + y2

y = r sin θ θ = arctan(y/x) (8)
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Show that, in plane polar coordinates,

L̂z = −iℏ ∂
∂θ

(9)

Hint: you must use the chain rule

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
and

∂

∂y
=
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ
(10)

and you will need the derivative of arctan:

∂ arctan(x)

∂x
=

1

1 + x2
(11)

Solution:

First we can work out the four derivatives we need:

∂r

∂x
=

∂

∂x

√
x2 + y2 =

(
1

2

)(
1

r

)
(2x) =

x

r
=
r cos θ

r
= cos θ (12)

∂r

∂y
=

∂

∂y

√
x2 + y2 =

(
1

2

)(
1

r

)
(2y) =

y

r
=
r sin θ

r
= sin θ (13)

∂θ

∂x
=

∂

∂x
arctan(y/x) =

1

1 + (y/x)2
∂

∂x

(y
x

)
=

1

1 + (y/x)2

(
− y

x2

)

=
(
− y

x2

)(
x2

x2 + y2

)
= −r sin θ

r2
= −sin θ

r
(14)

∂θ

∂y
=

∂

∂y
arctan(y/x) =

1

1 + (y/x)2
∂

∂y

(y
x

)
=

1

1 + (y/x)2

(
1

x

)

=

(
1

x

)(
x2

x2 + y2

)
=
r cos θ

r2
=

cos θ

r
(15)

Then we can assemble the operator:

L̂z = −iℏ
(
x
∂

∂y
− y

∂

∂x

)

= −iℏ
[
r cos θ

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
− r sin θ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)]
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−iℏ
[
cos2 θ

∂

∂θ
+ sin2 θ

∂

∂θ

]
= −iℏ ∂

∂θ
(16)

c) For the doubly degenerate excited states of the particle-on-a-ring model, we can write

the stationary states in real form (as we did in class) as ψsin = A sin(nθ) and ψcos = A cos(nθ)

or in complex form as ψ+ = Aeinθ and ψ− = Ae−inθ.

Using ψ+ determine the value of the normalization constant A. (It is the same value for

all 4 wavefunctions.)

Solution:

1 =

∫ 2π

0

ψ∗
+ψ+dθ =

∫ 2π

0

Ae−inθAeinθdθ = A2

∫ 2π

0

dθ = 2πA2 (17)

Thus A = 1/
√
2π

d) If we think of the ring as lying in the x-y plane, our transformations from part (b)

can be used. Using the transformed L̂z operator, find the expectation value of the angular

momentum for each of the 4 wavefunctions ψsin, ψcos, ψ+, and ψ−

Solution:

For ψsin,

⟨L⟩ =
∫ 2π

0

ψ∗
sinL̂ψsindθ = − iℏ

2π

∫ 2π

0

sin(nθ)
∂

∂θ
sin(nθ)dθ (18)

= −iℏn
2π

∫ 2π

0

sin(nθ) cos(nθ)dθ = 0

For ψcos,

⟨L⟩ =
∫ 2π

0

ψ∗
cosL̂ψcosdθ = − iℏ

2π

∫ 2π

0

cos(nθ)
∂

∂θ
cos(nθ)dθ (19)

=
iℏn
2π

∫ 2π

0

cos(nθ) sin(nθ)dθ = 0

For ψ+,

⟨L⟩ =
∫ 2π

0

ψ∗
+L̂ψ+dθ = − iℏ

2π

∫ 2π

0

e−inθ ∂

∂θ
einθdθ (20)

= −i
2ℏn
2π

∫ 2π

0

e−inθeinθdθ =
ℏn
2π

∫ 2π

0

dθ = ℏn
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For ψ−,

⟨L⟩ =
∫ 2π

0

ψ∗
−L̂ψ−dθ = − iℏ

2π

∫ 2π

0

einθ
∂

∂θ
e−inθdθ (21)

=
i2ℏn
2π

∫ 2π

0

einθe−inθdθ = −ℏn
2π

∫ 2π

0

dθ = −ℏn

e) Find the standard deviation of the angular momentum for each of the 4 wavefunctions.

Solution:

For ψsin,

⟨L2⟩ =
∫ 2π

0

ψ∗
sinL̂

2ψsindθ = −ℏ2
∫ 2π

0

sin(nθ)
∂2

∂θ2
sin(nθ)dθ (22)

Now, since ψsin = A sin(nθ), ∂2

∂θ2
ψsin = −n2A sin(nθ) = −n2ψsin. Thus

⟨L2⟩ = (−ℏ2)(−n2)

∫ 2π

0

ψ∗
sinψsindθ = ℏ2n2 (23)

since ψsin is a normalized wavefunction. Thus σ =
√
ℏ2n2 − 0 = ℏn.

For ψcos, the derivation is similar to ψsin and we get σ = ℏn.

For ψ+,

⟨L2⟩ =
∫ 2π

0

ψ∗
+L̂

2ψ+dθ =

∫ 2π

0

ψ∗
+L̂(L̂ψ+)dθ (24)

Now, L̂ψ+ = −iℏ(in)Aeinθ = ℏnψ+. So

⟨L2⟩ = ℏn
∫ 2π

0

ψ∗
+L̂ψ+dθ = ℏ2n2

∫ 2π

0

ψ∗
+ψ+dθ = ℏ2n2 (25)

Thus σ =
√

ℏ2n2 − (ℏn)2 = 0.

For ψ−, the derivation is similar to ψ+ and we get σ = 0.

f) Which of the 4 wavefunctions are eigenfunctions of the L̂z operator? For those that

are, give the corresponding eigenvalue. In light of this result, comment on your answers

from parts (d) and (e).

Solution: clearly ψcos and ψsin are not eigenfunctions of the L̂ operator. Also, in the

solution to part (e) we actually showed that L̂ψ+ = −iℏ(in)Aeinθ = ℏnψ+ so this is an

eigenfunction with eigenvalue ℏn. Likewise, L̂ψ− is an eigenfunction with eigenvalue −ℏn.

We can now understand why the standard deviation was zero in part (e) for L̂ψ+ and L̂ψ−.
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It is because they are eigenfunctions of L̂ and so they have a definite value for their angular

momentum.

g) Explain the results (give a physical interpretation) of parts (d), (e), and (f). Remember

that the real forms (ψsin, ψcos) and the complex forms (ψ+, ψ−) are linear combinations of

each other through the Euler relation eiξ = cos ξ + i sin ξ.

Solution:

From Euler’s relation, ψ+ = ψcos + iψsin and ψ− = ψcos − iψsin. Also, ψcos =
1
2
(ψ+ + ψ−)

and ψsin = i
2
(ψ− − ψ+).

Now, ψ+ is an eigenvector of L̂ with eigenvalue ℏn. Here the particle is rotating in the

forwards direction around the ring. Also, ψ− is an eigenvector of L̂ with eigenvalue −ℏn.

Here the particle is rotating in the backwards direction around the ring.

If we add these together, 1
2
(ψ+ + ψ−) = ψcos, we have a particle behavior that includes

equal forwards and backwards motions, so on average we have zero angular momentum.

ψsin is also an equal weight linear combination of ψ+ and ψ− so on average we would

expect zero angular momentum.

Problem 2 – expectation values

For a particle in a 1d box, use the normalized wavefunctions derived in class to compute

a) ⟨x⟩ b) ⟨x2⟩ c) ⟨px⟩ d) ⟨p2x⟩ (26)

for the ground state. Interpret the results of parts a) and c) physically.

Solution:

⟨x⟩ =
2

L

∫ L

0

x sin2(
πx

L
) (27)

=
2

L

[
x2

4
− x sin(2πx/L)

4π/L
− cos(2πx/L)

8π2/L2

]L
0

(28)

=
2

L

[
L2

4
− L2

8π2
+

L2

8π2

]
=
L

2
(29)

Physically, this makes sense, because the potential energy is symmetric about the middle

of the box, so we would not expect to find the particle, on average, in the right hand half

of the box: we would expect to find it in the middle, which is another way of saying that
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we would expect to find the particle as often in the left hand side of the box as in the right

hand side of the box.

⟨x2⟩ =
2

L

∫ L

0

x2 sin2(πx/L) (30)

=
2

L

[
x3

6
−

(
x2

4π/L
− 1

8π3/L3

)
sin(2πx/L)− x cos(2πx/L)

4π2/L2

]L
0

(31)

=
2

L

[
L3

6
− L3

4π2

]
(32)

= L2

(
1

3
− 1

2π2

)
= 0.2827L2 (33)

⟨px⟩ =
2

L
(−iℏ)π

L

∫ L

0

sin(πx/L) cos(πx/L) (34)

= −iℏ2π
L2

[
L

2π
sin2(πx/L)

]L
0

= 0 (35)

Physically, this again makes sense because of the symmetry in the potential. On average, we

expect to find the particle traveling to the right as often as to the left, making the average

velocity zero. Don’t forget that velocity is a vector quantity, which in one dimension means

that it carries sign information with it.

⟨p2x⟩ =
2

L
(−ℏ2)

∫ L

0

sin(πx/L)
d2

dx2
sin(πx/L) (36)

=
2

L
ℏ2
π2

L2

∫ L

0

sin2(πx/L) (37)

=
2π2ℏ2

L3

[
x

2
− 1

4π/L
sin(2πx/L)

]L
0

=
π2ℏ2

L2
(38)

Problem 3 – uncertainty

a) Using the results of Problem 2), determine the standard deviations ∆x and ∆px.

Solution:

∆x =
√

⟨x2⟩ − ⟨x⟩2 = 0.181L (39)

∆px =
√
⟨p2x⟩ − ⟨px⟩2 =

πℏ
L

(40)
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b) Find the value of the product ∆x ∆px. This kind of product of standard deviations

is called an uncertainty product. It can be proved that, for any normalized ψ,

∆x ∆px ≥ ℏ
2

(41)

known as the Heisenberg Uncertainty Principle. Your result should, of course, be consistent

with this inequality. Verify this.

Solution:

∆x∆px = 0.569ℏ (42)

which is greater than ℏ/2.

Problem 4 – particle in a box energies

For the particle in a one dimensional box with quantum number n, work out a) the

expected value of the potential energy, b) the expected value of the kinetic energy, and c)

compare the sum of these two expected values to the energy value En which we calculated

in class.

Solution:

a) < V >= 0

b)

< K >= − ℏ2

2m

∫ L

0

ψn
d2

dx2
ψn (43)

= − ℏ2

2m

∫ L

0

ψ2
n

(
−nπ
L

)2

(44)

=
(nπ
L

)2 ℏ2

2m
(45)

since the probability density integrates to one over the box.

c)

< V > + < K >=
n2π2ℏ2

2mL2
= En (46)
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Problem 5 – harmonic oscillator energies

Recall the harmonic oscillator model has potential energy V (x) = mω2x2/2. For the

ground state,

ψ0(x) =

(
2α

π

)1/4

e−αx2

(47)

where α = mω/2ℏ. First, prove (by integrating) that ψ0(x) is normalized. Next, work out

a) the expected value of the potential energy, b) the expected value of the kinetic energy,

and c) compare the sum of these two expected values to the energy E0 which we calculated

in class. For the integrals in this question you will need to use integral tables or online

resources to help you, for example https://www.wolframalpha.com/

Solution:

First we need to show that ψ0(x) is normalized.(
2α

π

)1/2 ∫ ∞

−∞
e−2αx2

(48)

=

(
2α

π

)1/2 ( π

2α

)1/2

= 1 (49)

a)

< V >=< mω2x2/2 >=
1

2
mω2

(
2α

π

)1/2 ∫ ∞

−∞
x2e−2αx2

dx (50)

=
1

2
mω22

1/2α1/2

π1/2

π1/2

2(2α)3/2
=

1

4
ℏω (51)

b)

< K >=< p2/2m >=
1

2m

(
2α

π

)1/2 ∫ ∞

−∞
e−αx2

(−iℏ d
dx

)2e−αx2

dx (52)

= − ℏ2

2m

(
2α

π

)1/2 ∫ ∞

−∞
(4α2x2 − 2α)e−2αx2

dx (53)

= − ℏ2

2m

(
2α

π

)1/2 [
4α2 π1/2

2(2α)3/2
− 2α

π1/2

(2α)1/2

]
=

1

4
ℏω (54)

c)

< V > + < K >=
1

4
ℏω +

1

4
ℏω =

1

2
ℏω = E0 (55)
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