Chem 3322 homework \#7, due March 22, 2024

Problem 1 - harmonic oscillator wavefunctions

In class, we found that the stationary states of the 1 d harmonic oscillator have the form

$$
\begin{equation*}
\psi_{n}=A_{n} \times \mathrm{n}^{\mathrm{th}} \text { order polynomial } \times e^{-\alpha x^{2}} \tag{1}
\end{equation*}
$$

where A_{n} is a normalization constant, and where

$$
\begin{equation*}
\alpha=\frac{m \omega}{2 \hbar} \tag{2}
\end{equation*}
$$

We did not derive a general formula for the polynomials, although we noted that each polynomial contains only even, or only odd, powers of x. These could, although its not very practical, be determined by orthogonality. For all of this question, express all your answers and do all your work in terms of the parameter α only. (You will need to use integral tables)
a) In particular, the second excited state ψ_{2} has the form

$$
\begin{equation*}
\psi_{2}=A_{2}\left(x^{2}+c\right) e^{-\alpha x^{2}} \tag{3}
\end{equation*}
$$

Find the constant c by requiring that ψ_{2} be orthogonal to the ground state ψ_{0}.
b) ψ_{2} is also orthogonal to the first excited state ψ_{1}. Why? (hint: symmetry)
c) Determine the normalization constant A_{0} for the ground state.

Problem 2 - atomic orbitals

Do problem 6-21 from your textbook. Use Table 6.5 and the Jacobian (equation D.3).

Problem 3 - atomic orbitals

Do problem 6-30 from your textbook.

