Chem 3322 homework \#7 solutions

Problem 1 - harmonic oscillator wavefunctions

In class, we found that the stationary states of the 1 d harmonic oscillator have the form

$$
\begin{equation*}
\psi_{n}=A_{n} \times \mathrm{n}^{\text {th }} \text { order polynomial } \times e^{-\alpha x^{2}} \tag{1}
\end{equation*}
$$

where A_{n} is a normalization constant, and where

$$
\begin{equation*}
\alpha=\frac{m \omega}{2 \hbar} \tag{2}
\end{equation*}
$$

We did not derive a general formula for the polynomials, although we noted that each polynomial contains only even, or only odd, powers of x. These could, although its not very practical, be determined by orthogonality. For all of this question, express all your answers and do all your work in terms of the parameter α only. (You will need to use integral tables)
a) In particular, the second excited state ψ_{2} has the form

$$
\begin{equation*}
\psi_{2}=A_{2}\left(x^{2}+c\right) e^{-\alpha x^{2}} \tag{3}
\end{equation*}
$$

Find the constant c by requiring that ψ_{2} be orthogonal to the ground state ψ_{0}.
Solution:

$$
\begin{equation*}
0=\int \psi_{2} \psi_{0}^{*}=A_{0} A_{2} \int_{-\infty}^{\infty}\left(x^{2}+c\right) e^{-2 \alpha x^{2}} \tag{4}
\end{equation*}
$$

which means that

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{2} e^{-2 \alpha x^{2}}=-c \int_{-\infty}^{\infty} e^{-2 \alpha x^{2}} \tag{5}
\end{equation*}
$$

Evaluating the integrals gives

$$
\begin{equation*}
c=-\frac{1}{4 \alpha} \tag{6}
\end{equation*}
$$

b) ψ_{2} is also orthogonal to the first excited state ψ_{1}. Why? (hint: symmetry)

Solution:
The orthogonality integral is

$$
\begin{equation*}
\int_{-\infty}^{\infty} \psi_{1}^{*} \psi_{2}=A_{1} A_{2} \int_{-\infty}^{\infty} x\left(x^{2}+c\right) e^{-2 \alpha x^{2}} \tag{7}
\end{equation*}
$$

which is zero because the integrand is an odd function of x and the domain of integration is even (and because the integral from 0 to ∞ converges).
c) Determine the normalization constant A_{0} for the ground state.

Solution:
We require that

$$
\begin{equation*}
1=\int_{-\infty}^{\infty} A_{0}^{2} e^{-2 \alpha x^{2}} \tag{8}
\end{equation*}
$$

Evaluating the integral, we find that

$$
\begin{equation*}
A_{0}=\left(\frac{2 \alpha}{\pi}\right)^{1 / 4} \tag{9}
\end{equation*}
$$

Problem 2 - atomic orbitals

Do problem 6-21 from your textbook. Use Table 6.5 and the Jacobian (equation D.3).
Solution:
See the "solutions to Chapter 6 practice problems" link at the bottom of the course web page

Problem 3 - atomic orbitals

Do problem 6-30 from your textbook.
Solution:
See the "solutions to Chapter 6 practice problems" link at the bottom of the course web page

