Chem 3322 homework \#8, due April 5, 2024

Problem 1 - reduced mass

Please read the following as background for this question
https://web1.eng.famu.fsu.edu/~dommelen/quantum/style_a/nt_mred.html
a) Consider two particles of masses m_{1} and m_{2} in one dimension, interacting through a potential that depends only upon their relative separation. Given that the force acting upon the j th particle is $f_{j}=-\left(\partial V / \partial x_{j}\right)$, show that $f_{1}=-f_{2}$. To show this, you must change variables using equation (2). What law is this?
b) Newton's equations for the two particles are

$$
\begin{equation*}
m_{1} \frac{d^{2} x_{1}}{d t^{2}}=-\frac{\partial V}{\partial x_{1}} \quad \text { and } \quad m_{2} \frac{d^{2} x_{2}}{d t^{2}}=-\frac{\partial V}{\partial x_{2}} \tag{1}
\end{equation*}
$$

Now introduce center of mass and relative coordinates by

$$
\begin{equation*}
X \equiv \frac{m_{1} x_{1}+m_{2} x_{2}}{M} \quad x \equiv x_{1}-x_{2} \tag{2}
\end{equation*}
$$

where $M=m_{1}+m_{2}$, and solve for x_{1} and x_{2} to obtain

$$
\begin{equation*}
x_{1}=X+\frac{m_{2}}{M} x \quad \text { and } \quad x_{2}=X-\frac{m_{1}}{M} x \tag{3}
\end{equation*}
$$

Show that Newton's equations in these coordinates are

$$
\begin{equation*}
m_{1} \frac{d^{2} X}{d t^{2}}+\frac{m_{1} m_{2}}{M} \frac{d^{2} x}{d t^{2}}=-\frac{\partial V}{\partial x} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{2} \frac{d^{2} X}{d t^{2}}-\frac{m_{1} m_{2}}{M} \frac{d^{2} x}{d t^{2}}=+\frac{\partial V}{\partial x} \tag{5}
\end{equation*}
$$

c) Now add these two equations to find

$$
\begin{equation*}
M \frac{d^{2} X}{d t^{2}}=0 \tag{6}
\end{equation*}
$$

Interpret this result.
d)

Now divide the first equation by m_{1} and the second by m_{2} and subtract to obtain

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=-\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \frac{\partial V}{\partial x} \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\mu \frac{d^{2} x}{d t^{2}}=-\frac{\partial V}{\partial x} \tag{8}
\end{equation*}
$$

where $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ is the reduced mass. Interpret this result, and discuss how the original two-body problem has been reduced to two one-body problems.
e)

Extend the result of (a-d) to three dimensions. Note that in three dimensions the relative separation is given by

$$
\begin{equation*}
r_{12}=\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}\right]^{1 / 2} \tag{9}
\end{equation*}
$$

Problem 2-rigid rotor energy term

The TISE for the harmonic oscillator is

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+\frac{1}{2} \mu \omega^{2} x^{2} \psi(x)=E \psi(x) \tag{10}
\end{equation*}
$$

a) Show that the ground state solution to this equation is

$$
\begin{equation*}
\psi(x)=e^{-\alpha x^{2}} \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
\alpha=\frac{\mu \omega}{2 \hbar} \tag{12}
\end{equation*}
$$

and find the energy $E=E_{0}$ as part of your solution. How do you know this is the ground state?
b) Now we will modify the TISE to read

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+c \psi(x)+\frac{1}{2} \mu \omega^{2} x^{2} \psi(x)=E \psi(x) \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
c=\frac{\hbar^{2} \ell(\ell+1)}{2 \mu r_{e q}^{2}} \tag{14}
\end{equation*}
$$

Show that your solution to (a), $\psi(x)=e^{-\alpha x^{2}}$, also solves this modified equation and find the energy corresponding to this solution.

Problem 3

The force constants of some diatomics are: $\mathrm{HBr}: 410 \mathrm{~N} / \mathrm{m} ; \mathrm{Br}_{2}: 240 \mathrm{~N} / \mathrm{m}$; CO: 1860 N / m; NO: $1530 \mathrm{~N} / \mathrm{m}$ Calculate the fundamental vibrational frequency in hertz and the zero-point energy in joules of these molecules.

Problem 4

Given that the spacing of lines in the pure rotational spectrum of ${ }^{27} \mathrm{Al}^{1} \mathrm{H}$ is constant at $12.604 \mathrm{~cm}^{-1}$, calculate the bond length of this molecule. Hint: each line in the spectra corresponds to a transition between energy levels in the molecule.

