
Chem 3322 homework #8 solutions

Problem 1 – reduced mass

Please read the following as background for this question

https://web1.eng.famu.fsu.edu/~dommelen/quantum/style_a/nt_mred.html

a)

Consider two particles of masses m1 and m2 in one dimension, interacting through a

potential that depends only upon their relative separation. Given that the force acting

upon the jth particle is fj = −(∂V/∂xj), show that f1 = −f2. To show this, you must

change variables using equations (4 and (5). What law is this?

solution: Define x = x1 − x2. Then we can write

f1 = − ∂V

∂x1
= −∂V

∂x

∂x

∂x1
= −∂V

∂x
(1)

and

f2 = − ∂V

∂x2
= −∂V

∂x

∂x

∂x2
=
∂V

∂x
(2)

since (∂(x1 − x2)/∂x1) = 1 and (∂(x1 − x2)/∂x2) = −1.

This is Newton’s third law: For every action, there is an equal and opposite reaction.

b)

Newton’s equations for the two particles are

m1
d2x1
dt2

= − ∂V

∂x1
and m2

d2x2
dt2

= − ∂V

∂x2
(3)

Now introduce center of mass and relative coordinates by

X ≡ m1x1 +m2x2
M

(4)

x ≡ x1 − x2 (5)

where M = m1 +m2, and solve for x1 and x2 to obtain

x1 = X +
m2

M
x and x2 = X − m1

M
x (6)

Show that Newton’s equations in these coordinates are

m1
d2X

dt2
+
m1m2

M

d2x

dt2
= −∂V

∂x
(7)

1



and

m2
d2X

dt2
− m1m2

M

d2x

dt2
= +

∂V

∂x
(8)

solution: To solve for x1 and x2, we multiply Eq. (4) by M and Eq. (5) by m2 and add

them to get x1, and then we multiply Eq. (4) by M and Eq. (5) by m1 and substract them

to get x2. The only tricky thing here is to show that

∂V

∂x
=
∂V

∂x1
(9)

and

∂V

∂x
= − ∂V

∂x2
(10)

but we actually did this in Eqs. (1) and (2).

c)

Now add these two equations to find

M
d2X

dt2
= 0 (11)

Interpret this result.

solution: This result says that the center of mass experiences zero force. Hence the

center of mass moves at constant velocity, which we can remove from the problem by taking

our origin as the center of mass. Strictly speaking, we have proved that the center of

mass reference frame is an inertial reference frame, which allows us to use it without any

complications.

d)

Now divide the first equation by m1 and the second by m2 and subtract to obtain

d2x

dt2
= −

(
1

m1

+
1

m2

)
∂V

∂x
(12)

or

µ
d2x

dt2
= −∂V

∂x
(13)

where µ = m1m2/(m1 +m2) is the reduced mass. Interpret this result, and discuss how

the original two-body problem has been reduced to two one-body problems.
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solution: We have arrived at Eq.(11) which allows us to take the origin of the coordinate

system to be the center of mass. Then, Eq. (13) only depends on x, the relative separation,

so if we take the center of mass as the origin, we are down to a one-body problem, which

was the goal. So we have actually reduced the problem down to one variable x, assuming we

don’t care where the center of mass is (ie. we are sitting on it, moving with it so we don’t

notice it is moving).

e)

Extend the result of (a-d) to three dimensions. Note that in three dimensions the relative

separation is given by

r12 =
[
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
]1/2

(14)

solution: The solution here is almost identical to (a-d). We can treat each of x, y, and z

separately, and we eventually get

µ
d2x

dt2
= −∂V

∂x
, µ

d2y

dt2
= −∂V

∂y
, µ

d2z

dt2
= −∂V

∂z
(15)

or

µ
d2r

dt2
−∇V (16)

where r = (x, y, z).

Problem 2 – rigid rotor energy term

The TISE for the harmonic oscillator is

− ℏ2

2µ

∂2ψ(x)

∂x2
+

1

2
µω2x2ψ(x) = Eψ(x) (17)

a) Show that the ground state solution to this equation is

ψ(x) = e−αx2

(18)

with

α =
µω

2ℏ
(19)

and find the energy E = E0 as part of your solution. How do you know this is the ground

state?
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Solution:

we know this is the ground state because it has zero nodes, and it solves the TISE. To

show it solves the TISE, let us first evaluate

∂2ψ(x)

∂x2
=

d

dx

(
−2αxe−αx2

)
= (4α2x2 − 2α)ψ(x) (20)

Putting this in Eq. (17) gives

− ℏ2

2µ
(4α2x2 − 2α)ψ(x) +

1

2
µω2x2ψ(x) = Eψ(x) (21)

Canceling ψ(x) on both sides gives

x2
(
−2α2ℏ2

µ
+
µω2

2

)
+

ℏ2α
µ

= E (22)

This can only work if

2α2ℏ2

µ
=
µω2

2
(23)

and if

ℏ2α
µ

= E (24)

The first condition yields

α =
µω

2ℏ
(25)

which we already, in fact, know from Eq. (19). The second condition yields

E =
ℏ2α
µ

=
1

2
ℏω = E0 (26)

b) Now we will modify the TISE to read

− ℏ2

2µ

∂2ψ(x)

∂x2
+ c ψ(x) +

1

2
µω2x2ψ(x) = Eψ(x) (27)

with

c =
ℏ2ℓ(ℓ+ 1)

2µr2eq
(28)

Show that your solution to (a), ψ(x) = e−αx2
, also solves this modified equation and find

the energy corresponding to this solution.
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Solution: picking up from Eq. (21) but with the new TISE, and canceling ψ(x) on both

sides gives

− ℏ2

2µ
(4α2x2 − 2α)ψ(x) + c+

1

2
µω2x2ψ(x) = Eψ(x) (29)

As before, the x2 terms cancel, leaving

ℏ2α
µ

+ c = E (30)

Putting in α = µω/2ℏ yields

E =
1

2
ℏω + c =

1

2
ℏω +

ℏ2ℓ(ℓ+ 1)

2µr2eq
(31)

Problem 3

The force constants of some diatomics are: HBr: 410 N/m; Br2: 240 N/m; CO: 1860

N/m; NO: 1530 N/m Calculate the fundamental vibrational frequency in hertz and the

zero-point energy in joules of these molecules.

Solution:

The fundamental vibrational frequency is given by ω = (k/µ)1/2 where ω = 2πν. The

zero-point energy is ℏω/2 = hν/2. You need to compute the reduced masses (some of you

used 79 for Br, and some people used 79.9, so the answers vary a bit), and then you obtain:

HBr: ν = 7.96× 1013s−1 and E0 = 2.63× 10−20J

Br2: ν = 9.57× 1012s−1 and E0 = 3.17× 10−21J

CO: ν = 6.43× 1013s−1 and E0 = 2.13× 10−20J

NO: ν = 5.59× 1013s−1 and E0 = 1.85× 10−20J

In general, heavier atoms give lower zero point energies.

Problem 4

Given that the spacing of lines in the pure rotational spectrum of 27Al1H is constant at

12.604 cm−1, calculate the bond length of this molecule. Hint: each line in the spectra

corresponds to a transition between energy levels in the molecule.

Solution:

The spacing between lines corresponds to the difference in the change of energy between

sequential transitions, since each line individually represents a transition between two energy

levels in the molecule. Let us work it out in general:
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∆E1 = Eℓ+1 − Eℓ =
(ℓ+ 1)(ℓ+ 2)ℏ2

2µr20
− ℓ(ℓ+ 1)ℏ2

2µr20
=

(2ℓ+ 2)ℏ2

2µr20
(32)

∆E2 = Eℓ+2 − Eℓ+1 =
(ℓ+ 2)(ℓ+ 3)ℏ2

2µr20
− (ℓ+ 1)(ℓ+ 2)ℏ2

2µr20
=

(2ℓ+ 4)ℏ2

2µr20
(33)

The spacing between lines is then

∆E2 −∆E1 =
2ℏ2

2µr20
=

ℏ2

µr20
(34)

This yields a bond length of 1.665 Å.

6


