Chem 3322 homework #9, due April 12, 2024

Problem 1

Calculate the percentage difference in the fundamental vibrational wavenumber of

- (a) ¹H³⁵Cl and ²H³⁵Cl using the assumption that their force constants are the same.
- (b) ¹H³⁵Cl and ¹H³⁷Cl using the assumption that their force constants are the same.

Problem 2

The spacing between vibrational energy levels is substantially larger than the spacing between (low-lying) rotational energy levels, which itself is substantially larger than the spacing between translational energy levels. Consider N₂, for which $\hbar\omega = 2360 \text{ cm}^{-1}$ (note: you need to convert this wavenumber value to an energy) and the bond length is 109.76 picometers.

a) For a given vibrational state, how many rotational states have energy less than the energy gap to the next vibrational state? That is, find ℓ such that the energy of the state (n, ℓ) is greater than or equal to the energy of the state (n + 1, 0). Note that since the vibrational energy level spacing is constant (from the harmonic oscillator approximation), this will be the same for any vibrational level n. Include a sketch to illustrate your answer.

b) After what rotational level does the rotational spacing become larger than the vibrational spacing? Include a sketch to illustrate your answer.

c) Calculate the translational energy level spacing assuming a particle in a three dimensional box model with a box size of L = 10 cm. You can assume the transition is from the lowest energy state to the next lowest energy state. What part of the electromagnetic spectrum does this frequency belong to?

Problem 3

The fundamental vibrational frequencies for ${}^{1}\mathrm{H}^{19}\mathrm{F}$ and ${}^{2}\mathrm{H}^{19}\mathrm{F}$ are 4138.52 cm⁻¹ and 2998.25 cm⁻¹, respectively. $D_{e} = 5.86$ eV for both molecules (Morse model). Work out the difference in bond energy for these two molecules in kJ/mol.

Problem 4

FIG. 1: Rotationally resolved vibrational spectrum of HCl.

FIG. 2: Detail from Fig. 1. The peak marked (a) is at 2842.63 cm⁻¹, (b) is at 2863.81 cm⁻¹, (c) is at 2906.19 cm⁻¹, and (d) is at 2927.37 cm⁻¹.

For this problem, use ${}^{1}H = 1.0078$ amu and ${}^{35}Cl = 34.969$ amu.

- a) From Figures 1 and 2 estimate the equilibrium bond length of ${}^{1}\mathrm{H}^{35}\mathrm{Cl}$.
- b) From Figures 1 and 2 estimate the force constant of the ¹H³⁵Cl bond.

c) For each of the peaks marked in Figure 2, which are for the ${}^{1}\mathrm{H}{}^{35}\mathrm{Cl}$ molecule, predict the corresponding peak locations for the ${}^{2}\mathrm{H}{}^{37}\mathrm{Cl}$ molecule. Use ${}^{2}\mathrm{H} = 2.0141$ amu and ${}^{37}\mathrm{Cl} = 36.9659$ amu. Assume the force constant is unchanged upon isotopic substitution. Assume the equilibrium bond length is unchanged upon isotopic substitution.