Chem 3322 homework \#9, due April 12, 2024

Problem 1

Calculate the percentage difference in the fundamental vibrational wavenumber of
(a) ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ and ${ }^{2} \mathrm{H}^{35} \mathrm{Cl}$ using the assumption that their force constants are the same.
(b) ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ and ${ }^{1} \mathrm{H}^{37} \mathrm{Cl}$ using the assumption that their force constants are the same.

Problem 2

The spacing between vibrational energy levels is substantially larger than the spacing between (low-lying) rotational energy levels, which itself is substantially larger than the spacing between translational energy levels. Consider N_{2}, for which $\hbar \omega=2360 \mathrm{~cm}^{-1}$ (note: you need to convert this wavenumber value to an energy) and the bond length is 109.76 picometers.
a) For a given vibrational state, how many rotational states have energy less than the energy gap to the next vibrational state? That is, find ℓ such that the energy of the state (n, ℓ) is greater than or equal to the energy of the state $(n+1,0)$. Note that since the vibrational energy level spacing is constant (from the harmonic oscillator approximation), this will be the same for any vibrational level n. Include a sketch to illustrate your answer.
b) After what rotational level does the rotational spacing become larger than the vibrational spacing? Include a sketch to illustrate your answer.
c) Calculate the translational energy level spacing assuming a particle in a three dimensional box model with a box size of $L=10 \mathrm{~cm}$. You can assume the transition is from the lowest energy state to the next lowest energy state. What part of the electromagnetic spectrum does this frequency belong to?

Problem 3

The fundamental vibrational frequencies for ${ }^{1} \mathrm{H}^{19} \mathrm{~F}$ and ${ }^{2} \mathrm{H}^{19} \mathrm{~F}$ are $4138.52 \mathrm{~cm}^{-1}$ and $2998.25 \mathrm{~cm}^{-1}$, respectively. $D_{e}=5.86 \mathrm{eV}$ for both molecules (Morse model). Work out the difference in bond energy for these two molecules in $\mathrm{kJ} / \mathrm{mol}$.

Problem 4

FIG. 1: Rotationally resolved vibrational spectrum of HCl .

FIG. 2: Detail from Fig. 1. The peak marked (a) is at $2842.63 \mathrm{~cm}^{-1}$, (b) is at $2863.81 \mathrm{~cm}^{-1}$, (c) is at $2906.19 \mathrm{~cm}^{-1}$, and (d) is at $2927.37 \mathrm{~cm}^{-1}$.

For this problem, use ${ }^{1} \mathrm{H}=1.0078 \mathrm{amu}$ and ${ }^{35} \mathrm{Cl}=34.969 \mathrm{amu}$.
a) From Figures 1 and 2 estimate the equilibrium bond length of ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$.
b) From Figures 1 and 2 estimate the force constant of the ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ bond.
c) For each of the peaks marked in Figure 2, which are for the ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ molecule, predict the corresponding peak locations for the ${ }^{2} \mathrm{H}^{37} \mathrm{Cl}$ molecule. Use ${ }^{2} \mathrm{H}=2.0141 \mathrm{amu}$ and ${ }^{37} \mathrm{Cl}=$ 36.9659 amu . Assume the force constant is unchanged upon isotopic substitution. Assume the equilibrium bond length is unchanged upon isotopic substitution.

