Chem 3322 homework \#9 solutions

Problem 1

Calculate the percentage difference in the fundamental vibrational wavenumber of
(a) ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ and ${ }^{2} \mathrm{H}^{35} \mathrm{Cl}$ using the assumption that their force constants are the same.
(b) ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ and ${ }^{1} \mathrm{H}^{37} \mathrm{Cl}$ using the assumption that their force constants are the same.

Solution:
The wavenumber times the speed of light is the frequency ν, (and for percentage different multiplying by a constant (speed of light) doesn't change anything) and $2 \pi \nu=\sqrt{k / \mu}$, so

$$
\begin{equation*}
\frac{\nu_{1}}{\nu_{2}}=\sqrt{\frac{\mu_{2}}{\mu_{1}}} \tag{1}
\end{equation*}
$$

If we define the percentage difference to be the difference divided by the average of the two frequencies, we get

For part (a) 33% and for part (b) 0.075%

Problem 2

The spacing between vibrational energy levels is substantially larger than the spacing between (low-lying) rotational energy levels, which itself is substantially larger than the spacing between translational energy levels. Consider N_{2}, for which $\hbar \omega=2360 \mathrm{~cm}^{-1}$ (note: you need to convert this wavenumber value to an energy) and the bond length is 109.76 picometers.
a) For a given vibrational state, how many rotational states have energy less than the energy gap to the next vibrational state? That is, find ℓ such that the energy of the state (n, ℓ) is greater than or equal to the energy of the state $(n+1,0)$. Note that since the vibrational energy level spacing is constant (from the harmonic oscillator approximation), this will be the same for any vibrational level n. Include a sketch to illustrate your answer.

Solution:
Here you will need to convert the cm^{-1} (given for $\hbar \omega$) into an actual energy to do the problem (this conversion involves the speed of light). $E_{n \ell}=\hbar \omega(n+1 / 2)+\hbar^{2} \ell(\ell+1) /\left(2 \mu r_{0}^{2}\right)$ and $E_{n+1, \ell=0}=\hbar \omega(n+3 / 2)$. We are asked to find ℓ such that $E_{n \ell}>E_{n+1, \ell=0}$, or, equivalently, $E_{n \ell}-E_{n+1, \ell=0}>0$. Let us solve the equation $E_{n \ell}-E_{n+1, \ell=0}=0$, and then we should take ℓ bigger than this value:

$$
\begin{equation*}
E_{n \ell}-E_{n+1, \ell=0}=0 \Rightarrow E_{n \ell}=E_{n+1, \ell=0} \Rightarrow-\hbar \omega+\hbar^{2} \ell(\ell+1) /\left(2 \mu r_{0}^{2}\right)=0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow \omega=\hbar \ell(\ell+1) /\left(2 \mu r_{0}^{2}\right) \tag{3}
\end{equation*}
$$

Manipulating a bit, we can use the quadratic equation, which gives solutions for ℓ of

$$
\begin{equation*}
\ell=\frac{-1 \pm \sqrt{1+8 \mu \omega r_{0}^{2} / \hbar}}{2} \tag{4}
\end{equation*}
$$

This equation gives $\ell=33.887$, implying that $\ell=34$ will make $E_{n \ell}-E_{n+1, \ell=0}>0$.
b) After what rotational level does the rotational spacing become larger than the vibrational spacing? Include a sketch to illustrate your answer.

Solution: $E_{n+1, \ell}-E_{n, \ell}=\hbar \omega$ and $E_{n, \ell+1}-E_{n, \ell}=(\ell+1) \hbar^{2} /\left(\mu r_{0}^{2}\right)$. So we should find ℓ such that

$$
\begin{equation*}
\ell>\frac{\mu r_{0}^{2} \hbar \omega}{\hbar^{2}}-1 \tag{5}
\end{equation*}
$$

This gives $\ell>590.12$, so we should take $\ell=591$.
c) Calculate the translational energy level spacing assuming a particle in a three dimensional box model with a box size of $L=10 \mathrm{~cm}$. You can assume the transition is from the lowest energy state to the next lowest energy state. What part of the electromagnetic spectrum does this frequency belong to?

Solution:
The three dimensional particle in a box energy levels are

$$
\begin{equation*}
E_{n_{x}, n_{y}, n_{z}}=\frac{\pi^{2} \hbar^{2}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)}{2 m L^{2}} \tag{6}
\end{equation*}
$$

The lowest transition is from $n_{x}=1, n_{y}=1, n_{z}=1$ to $n_{x}=2, n_{y}=1, n_{z}=1$. The mass is the total mass of the molecule (not the reduced mass). This works out to $\Delta E=$ $3.54 \times 10^{-40} \mathrm{~J}$. This is a wavelength of $5.61 \times 10^{14} \mathrm{~m}$ and a frequency of $5.34 \times 10^{-7} \mathrm{~Hz}$. This is below the radio wave frequencies.

Problem 3

The fundamental vibrational frequencies for ${ }^{1} \mathrm{H}^{19} \mathrm{~F}$ and ${ }^{2} \mathrm{H}^{19} \mathrm{~F}$ are $4138.52 \mathrm{~cm}^{-1}$ and $2998.25 \mathrm{~cm}^{-1}$, respectively. $D_{e}=5.86 \mathrm{eV}$ for both molecules (Morse model). Work out the difference in bond energy for these two molecules in $\mathrm{kJ} / \mathrm{mol}$.

Solution:

$$
\begin{gather*}
D_{0}^{D F}-D_{0}^{H F}=\left(\left(D_{e}-\frac{1}{2} 2998.25 \mathrm{~cm}^{-1}\right)-\left(D_{e}-\frac{1}{2} 4138.52 \mathrm{~cm}^{-1}\right)\right) h c \tag{7}\\
=1.14 \times 10^{-20} \mathrm{~J}=6.86 \mathrm{~kJ} / \mathrm{mol} \tag{8}
\end{gather*}
$$

Problem 4

FIG. 1: Rotationally resolved vibrational spectrum of HCl .

FIG. 2: Detail from Fig. 1. The peak marked (a) is at $2842.63 \mathrm{~cm}^{-1}$, (b) is at $2863.81 \mathrm{~cm}^{-1}$, (c) is at $2906.19 \mathrm{~cm}^{-1}$, and (d) is at $2927.37 \mathrm{~cm}^{-1}$.

For this problem, use ${ }^{1} \mathrm{H}=1.0078 \mathrm{amu}$ and ${ }^{35} \mathrm{Cl}=34.969 \mathrm{amu}$.
a) From Figures 1 and 2 estimate the equilibrium bond length of ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$.

Solution:
The peak (c) to peak (d) spacing is $21.18 \mathrm{~cm}^{-1}$ which is the pure rotational peak spacing since both peaks include $n: 0 \rightarrow 1$ so when subtracted the vibrational transition is absent. From question 6 on homework 7, this gives us

$$
\begin{equation*}
21.18 \mathrm{~cm}^{-1}=\frac{\hbar^{2}}{\mu r^{2}} \tag{9}
\end{equation*}
$$

which yields $r=1.27 \AA$.
b) From Figures 1 and 2 estimate the force constant of the ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ bond.

Solution:
Averaging peaks (b) and (c) gives the pure vibrational transition at $2885 \mathrm{~cm}^{-1}$ which gives

$$
\begin{equation*}
2885 \mathrm{~cm}^{-1}=\hbar \omega=\hbar \sqrt{k / \mu} \tag{10}
\end{equation*}
$$

which yields $k=480.9 \mathrm{~N} / \mathrm{m}=480.9 \mathrm{~J} / \mathrm{m}^{2}$.
c) For each of the peaks marked in Figure 2, which are for the ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ molecule, predict the corresponding peak locations for the ${ }^{2} \mathrm{H}^{37} \mathrm{Cl}$ molecule. Use ${ }^{2} \mathrm{H}=2.0141$ amu and ${ }^{37} \mathrm{Cl}=$
36.9659 amu . Assume the force constant is unchanged upon isotopic substitution. Assume the equilibrium bond length is unchanged upon isotopic substitution.

Solution:
For ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ the reduced mass is $\mu=0.979569 \mathrm{amu}$ and for ${ }^{2} \mathrm{H}^{37} \mathrm{Cl}$ reduced mass is $\mu=$ 1.910031 amu . This gives the ratio of reduced masses as 1.9499 and the square root of the ratio as 1.3964 .

Thus the pure vibrational transition $\Delta n=1$ is at $2885 / 1.3964=2066.06 \mathrm{~cm}^{-1}$ and the pure rotational spacing is $21.18 / 1.9499=10.862 \mathrm{~cm}^{-1}$.

Thus the peaks are at:
(a) $2066.06-2(10.862)=2044.34 \mathrm{~cm}^{-1}$.
(b) 2066.06-1 $(10.862)=2055.20 \mathrm{~cm}^{-1}$.
(c) $2066.06+1(10.862)=2076.92 \mathrm{~cm}^{-1}$.
(d) $2066.06+2(10.862)=2087.78 \mathrm{~cm}^{-1}$.

