
Central Force Problem

x = r sin θ cosφ (1)

y = r sin θ sinφ (2)

z = r cos θ (3)

Rangle of variables is

0 ≤ r <∞ (4)

0 ≤ θ ≤ π (5)

0 ≤ φ < 2π (6)

Volume element for integration is

dx dy dz = r2 sin θ︸ ︷︷ ︸
Jacobian

dr dθ dφ (7)

The Laplacian becomes

∇2ψ =
1

r2

[
∂

∂r

(
r2∂ψ

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2

]
(8)

the φ equation

d2Q

dφ2
= −m2Q , 0 ≤ φ < 2π (9)

This is just the “particle on a ring” problem again in a slightly different form. Thus we

know the solutions are sinmφ or cosmφ, or e±imφ with boundary conditions Q(0) = Q(2π)

and Q′(0) = Q′(2π). The unnormalized solutions in real form are Q0(φ) = 1 for m = 0 and

Qm(φ) = sinmφ, Qm(φ) = cosmφ for m > 0 (doubly degenerate).

the θ equation

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
− m2

sin2 θ
P = −λP (10)

This equation is called the Associated Legendre Equation. A solution of the form P (θ) =

sinmθ cosα θ might work: m is the obvious choice of power for the sin function because the
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second term m2

sin2 θ
P will then cancel out some of the derivative operations in the first term.

Plug this guess in to obtain (after using some trig. identities)

−(m+ α)(m+ α + 1) sinm θ cosα θ + α(α− 1) sinm θ cosα−2 θ = −λ sinm θ cosα θ (11)

This works if α = 0 or α = 1 and λ = (m + α)(m + α + 1). For any other α, the term

α(α − 1) sinm θ cosα−2 θ is uncompensated for. However, we can compensate for this term

by adding lower order corrections to P as follows

P = sinm θ
[
cosα θ + A cosα−2 θ +B cosα−4 θ + · · ·

]
(12)

As long as α ∈ Z > 0, the chain of leftover terms thus generated will terminate because of

the α(α− 1) prefactor. We therefore conclude that, for a given m,

λ = (m+ α)(m+ α + 1) where α ∈ Z ≥ 0 (13)

This can be rephrased by defining ` = m + α, in terms of which we can say λ = `(` + 1),

` ∈ Z ≥ 0 and also m ≤ ` since m = `− α, α ∈ Z ≥ 0. Finally, the solutions look like

P`m(θ) = sinm θ
[
cos`−m θ + A cos`−m−2 θ +B cos`−m−4 θ + · · ·

]
(14)

Notice that each solution has two labels (quantum numbers) ` and m.

the radial equation

− ~2

2m

1

r2

[
d

dr

(
r2dR

dr

)
− λR

]
+ V (r)R = ER (15)

Note: any two-particle problem in which the potential energy depends only on the dis-

tance between the particles (i.e. HCl) can be reduced to an effective one-particle central

force problem for the relative motion. In this case, r is the relative separation between

particles and m is the reduced mass

m =
m1m2

m1 +m2

= µ (16)

Use λ = `(`+ 1) and rearrange

− ~2

2m

1

r2

d

dr

(
r2dR

dr

)
+

V (r) +
~2

2m

`(`+ 1)

r2︸ ︷︷ ︸
centrifugal potential

R = ER (17)

2



We cannot solve this equation exactly without knowing the exact form of the function

V (r), but we can examine the behavior of the solutions in the limits r → 0 and r →∞.

r → 0

Of the last three terms the centrifugal potential dominates because it blows up like 1/r2

whereas V (r) goes at most like 1/r (Coulomb potential). Therefore the differential equation

becomes

1

r2

d

dr

(
r2dR

dr

)
=
`(`+ 1)

r2
R , r → 0 limit (18)

It is easy to show that R(r) = r` solves this.

r →∞

Of the last three terms, the energy E dominates because V (r) and the centrifugal potential

go to zero. Therefore the differential equation becomes

1

r2

d

dr

(
r2dR

dr

)
= −2mE

~2
R , r →∞ limit (19)

It is easy to show that R(r) = e−αr where α =
√
−2mE/~2 is a solution as r → ∞ (must

take the limit after plugging in; E is negative for bound states). Another possibility is eαr

but this blows up at large r which makes it unacceptable. For any V (r) which goes to zero

at infinity (always true in chemistry) and diverges more weakly than 1/r2 at r → 0 (always

true in chemistry), we have deduced that

R(r) ∼ r` near r = 0 (20)

R(r) ∼ e−αr as r →∞ (21)

We can use this information to sketch the general appearance of any atomic orbital.

s orbitals ` = 0

Near the nucleus, R(r) ∼ r0 ⇒ finite value at nucleus.

p orbitals ` = 1

Near the nucleus, R(r) ∼ r1 ⇒ 0 value at the nucleus, but has a finite slope.

d orbitals ` = 2

Near the nucleus, R(r) ∼ r2 ⇒ 0 value at the nucleus, zero slope at the nucleus.

General Observations

The tails (i.e. r →∞) decay exponentially
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The probability of being close to the nucleus has the trend s > p > d > · · · because of

the short ranged R ∼ r` behavior, i.e. r0 > r1 > r2 > · · · near r = 0.

The lowest energy radial function for a given ` value has zero nodes.

One node is added for each successive higher energy state: this is required by orthogo-

nality.

In general, the energy depends on the “principle” quantum number n (labeling which

state of a given ` we are talking about), n = `+ 1, `+ 2, `+ 3, . . ., and also on `. However,

the energy does not depend on the m quantum number because the radial equation does

not contain it. Hence the correct labeling for solutions of the radial equation is Rn`(r) with

the energy labeled as En`.Each En` is (2`+ 1)-fold degenerate due to the 2`+ 1 different m

values corresponding to each `.

The total wavefunction has the form ψn`m(r, θ, φ) = Rn`(r)Y`m(θ, φ).

Hydrogenic Atoms

For a single electron attracted to a nucleus of charge Ze,

V (r) = − Ze2

rπε0r
S.I. units (22)

We can apply methods similar to those for the harmonic oscillator and the θ-equation to

find that

En = − Z2mee
4

32π2~2ε20

1

n2
S.I. units (23)

where n = `+ 1, `+ 2, . . . or equivalently ` ≤ n− 1, n ∈ Z > 0. Only for hydrogenic atoms

does the energy E depend only on n and not on `. This is essentially accidental.
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