’ Central Force Problem \

x = rsinfcoso (1)
y = rsinfsing¢ (2)
2z = rcosf (3)
Rangle of variables is
0 <r<oo (4)
0<fO<m ()
0 < ¢<2nm (6)
Volume element for integration is
dx dy dz = r*sin @ dr df d¢ (7)
Jacobian
The Laplacian becomes
1[0 o 1 0 (. oY 1 0%
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V=5 {87“ (r 8r>+sin9 9<Sm 39)+sm208¢2 ®)
’the [0) equation‘
d*Q 9

This is just the “particle on a ring” problem again in a slightly different form. Thus we
know the solutions are sin me¢ or cos me, or e with boundary conditions Q(0) = Q(27)
and '(0) = Q'(27). The unnormalized solutions in real form are Qo(¢) = 1 for m = 0 and
Qm(0) = sinmo, Q,(¢) = cosme for m > 0 (doubly degenerate).

‘ the 6 equation ‘

1 d dP m?
= Y sme” ) - p=_p 1
sin 6 do (Sm d&) sin® 0 (10)

This equation is called the Associated Legendre Equation. A solution of the form P(f) =

stn'™0 cos™ € might work: m is the obvious choice of power for the sin function because the



second term %P will then cancel out some of the derivative operations in the first term.

Plug this guess in to obtain (after using some trig. identities)
—(m+a)(m+a+1)sin™fcos®d + aa — 1)sin™ O cos® 20 = —Asin” Hcos*  (11)

This works if « = 0 or @ = 1 and A = (m + a)(m + a + 1). For any other «, the term
a(a — 1)sin™ 6 cos® 2 0 is uncompensated for. However, we can compensate for this term

by adding lower order corrections to P as follows
P =sin™ 6 [cos® 0 + Acos® ?60 + Bcos® "0 + -] (12)

As long as o € Z > 0, the chain of leftover terms thus generated will terminate because of

the a(a — 1) prefactor. We therefore conclude that, for a given m,
A=(m+a)(m+a+1) where a€Z >0 (13)

This can be rephrased by defining £ = m + «, in terms of which we can say A = ((¢ + 1),
¢ €7 >0 and also m < ¢ sincem =/¢— «, o € Z > 0. Finally, the solutions look like

Py (0) = sin™ 6 [cos™ ™ 0 + Acos" ™20 + Beos" ™10+ -] (14)

Notice that each solution has two labels (quantum numbers) ¢ and m.

the radial equation ‘

W1 [d [ ,dR

RS [% (7’ %> _ AR} 4 V(R = BER (15)

Note: any two-particle problem in which the potential energy depends only on the dis-
tance between the particles (i.e. HCl) can be reduced to an effective one-particle central
force problem for the relative motion. In this case, r is the relative separation between

particles and m is the reduced mass

=< = 16
" my + Mo H (16)
Use A = £(¢ + 1) and rearrange
n*1d [ ,dR R? 00+ 1)
—— | % — R=ER 17
2mr? dr (T dr> v+ 2m 72 (17)
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centrifugal potential



We cannot solve this equation exactly without knowing the exact form of the function
V(r), but we can examine the behavior of the solutions in the limits » — 0 and r — oo.

r — 0

Of the last three terms the centrifugal potential dominates because it blows up like 1/r?
whereas V(1) goes at most like 1/r (Coulomb potential). Therefore the differential equation

becomes

ii <T2d_R) _ g(f—i_l)R’ r — 0 limit (18)

r2dr dr 72

It is easy to show that R(r) = r* solves this.

T — 00

Of the last three terms, the energy £ dominates because V(1) and the centrifugal potential
go to zero. Therefore the differential equation becomes

1d [ ,dR 2mE -
e (r %> = —FR , 1 — oo limit (19)

It is easy to show that R(r) = e " where a = \/—2mE/h? is a solution as r — oo (must
take the limit after plugging in; E is negative for bound states). Another possibility is e®”
but this blows up at large r which makes it unacceptable. For any V(r) which goes to zero
at infinity (always true in chemistry) and diverges more weakly than 1/7? at r — 0 (always

true in chemistry), we have deduced that

R(r) ~ ot near r = 0 (20)

R(r) ~ e asr — oo (21)

We can use this information to sketch the general appearance of any atomic orbital.

s orbitals £ = 0]

Near the nucleus, R(r) ~ r¥ = finite value at nucleus.

‘p orbitals ¢ = 1‘

Near the nucleus, R(r) ~ r* = 0 value at the nucleus, but has a finite slope.

’d orbitals ¢ = 2‘

Near the nucleus, R(r) ~ r? = 0 value at the nucleus, zero slope at the nucleus.

General Observations

The tails (i.e. 7 — 00) decay exponentially



The probability of being close to the nucleus has the trend s > p > d > --- because of
the short ranged R ~ r‘ behavior, i.e. r% > 7! > 72 > ... near r = 0.

The lowest energy radial function for a given ¢ value has zero nodes.

One node is added for each successive higher energy state: this is required by orthogo-
nality.

In general, the energy depends on the “principle” quantum number n (labeling which
state of a given ¢ we are talking about), n =¢+ 1,/ + 2,/ + 3,..., and also on ¢. However,
the energy does not depend on the m quantum number because the radial equation does
not contain it. Hence the correct labeling for solutions of the radial equation is R,¢(r) with
the energy labeled as E,¢.Each E, is (20 + 1)-fold degenerate due to the 2¢ 4 1 different m
values corresponding to each /.

The total wavefunction has the form ¥, (7,0, @) = Rue(r)Vem(0, ¢).

Hydrogenic Atoms ‘

For a single electron attracted to a nucleus of charge Ze,

2
V(r)=— Ze S.I. units (22)

TTEQT

We can apply methods similar to those for the harmonic oscillator and the #-equation to

find that

Z’meet 1 ,
En = —mﬁ S.I. units (23)
where n =0+ 1,0+ 2,... or equivalently / <n — 1, n € Z > 0. Only for hydrogenic atoms

does the energy E depend only on n and not on ¢. This is essentially accidental.



