
Bonding

There are two main ways of thinking about how the electrons of a molecule are involved

in bonding.

1. Valence Bond (VB) Theory: regards all bonds as localized interactions involving

two electrons shared between two atoms. In polyatomic molecules this leads to the use of

orbital hybridization as a mathematical and pictorial procedure of manipulating the atomic

orbitals to permit the bonding to be described in terms of a collection of simple two-center,

two-electron bonds.

Molecular Orbital (MO) Theory: assigns electrons to molecular orbitals, which are

in general delocalized over the entire molecule.

Which approach is better? Both are approximations. VB theory fails to explain bonding

in aromatic compounds. It also fails to predict that O2 is paramagnetic. MO theory is

generally more consistent with the results of spectroscopic measurements.

Why do we need approximate methods? Two reasons:

1. exact solutions are not possible even for H2.

2. approximate methods can give insight and physical understanding into chemical bond-

ing.

MO Theory

MO theory consistents of 3 approximations: the Born-Oppenheimer approximation, the

independent electron approximation, and the linear combination of atomic orbitals (LCAO)

approximation.

Born-Oppenheimer Approximation

In the BO approximation we treat the nuclear and eletronic motions independently.

◦ clamp the nuclei; find the electronic energies and wavefunctions

◦ repeat for different nuclear positions to construct a potential energy function U(R)

which is a function of the nuclear coordinates

The total energy of the “unfrozen” molecule is then

Etotal = Ee + Evrt (1)

where Ee is the electronic energy which includes the total energy of the electrons in their

molecular environment and the internuclear repulsion, and where Evrt represents the vibra-

tional, rotational, and translational energy of the nuclei.
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In the electronic part of the problem, there are electron-electron repulsion terms like

V12 =
e2

rπε0r12

(2)

where r12 = |r1 − r2| depends simultaneously on the coordinates of two different electrons.

We cannot solve the Schroedinger equation with these terms present, and so we make the

Independent Electron Approximation, also called the Orbital Approximation

In this approximation we consider each electron to move in some sort of “average po-

tential” which incorporates the interactions with the nucliei and an “averaged interaction”

with the other electrons.

The electronic Hamiltonian can then be separated into one-electron contributions

Ĥe = Ĥ1 + Ĥ2 + · · · (3)

where Ĥ1 depends only on electron #1 and on R. This is a major step forward because we

can now look for solutions of the form

ψe(r1, r2, . . .) = ψa(r1)ψb(r2) · · · (4)

where ψa(r1) stands for molecular orbital “a” containing electron #1 and where Ĥ1ψa =

Eaψa with Ea the energy of orbital “a”. The total electronic energy (at fixed nuclear

coordinates R) is Ee = Ea + Eb + · · · , namely the sum of the energies of the individual

occupied molecular orbitals.

So now all we need to do is to solve the one-electron Schroedinger equation Ĥ1ψa = Eaψa

where Ĥ1 is an effective one-electron Hamiltonian and ψa is a one-electron wavefunction

called a molecular orbital (MO). The solutions are the MO wavefunctions ψa and the MO

energies Ea. To actually do this we make one final approximation:

Linear combination of atomic orbitals (LCAO) approximation

where we construct MOs from linear combinations of atomic orbitals on individual atoms

ψ =
∑
i

ciφi (5)

with ψ a molecular orbital, ci a mixing coefficient, and φi an atomic orbital. In general,

mixing n atomic orbitals together gives n molecular orbitals (bonding, antibonding, etc.)

Variational Principle
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The LCAO approximation can be made as accurate as possible by using the variational

principle:

ELCAO ≥ Eexact (6)

Hence the best approximate solution is obtained by finding the LCAO which minimizes the

energy.

Proof for the ground state

The one-electron Schroedinger equation we are trying to solve is Ĥ1ψa = Eaψa with

ground state energy Ea,0 and wavefunction ψa,0. We are approximating ψa,0 by
∑

i ciφi with

φi atomic orbitals. Recall that the set of eigenfunctions {psia,n}n=∞
n=0 form an orthonormal

basis. A consequence of this is that any wavefunction, say φi, can be expressed as a linear

combination of these eigenfunctions: φi =
∑

j djψa,j. This is not useful in practice because

we do not know the ψa,j (or else we would not need to approximate them) but it is useful

for the proof. We can thus write the approximate wavefunction as

ψ =
∑
i

ci(
∑
j

djψa,j) =
∑
k

ekψa,k (7)

by defining the ek appropriately. Then, assuming ψ is normalized,

ELCAO =

∫
ψ∗Ĥ1ψ =

∫
(
∑
j

ejψa,j)
∗Ĥ1(

∑
i

eiψa,i) (8)

=
∑
i,j

e∗jei

∫
ψ∗a,jĤ1ψa,i =

∑
i,j

e∗jei

∫
ψ∗a,jEa,iψa,i (9)

=
∑
i,j

e∗jeiEa,i

∫
ψ∗a,jψa,i =

∑
i,j

e∗jeiEa,iδij (10)

=
∑
i

e∗i eiEa,i =
∑
i

|ei|2Ea,i (11)

Now substract Ea,0 = Eexact from both sides:

ELCAO − Eexact =
∑
i

|ei|2(Ea,i − Ea,0) ≥ 0 (12)

3



which completes the proof. Note: we used the resolution of the identity as follows:

1 = 〈1〉 =

∫
ψ∗1ψ =

∫
(
∑
j

ejψa,j)
∗(

∑
i

eiψa,i) =
∑
i,j

e∗jei

∫
ψ∗a,jψa,i =

∑
i

|ei|2 = 1 (13)

How do we make use of this principle?

1. Choose which atomic orbitals φi to include, giving ψ =
∑

i ciφi where the ci are

undetermined.

2. Write an expression for ELCAO. If we do not want to worry about ψ being normalized,

which would put restrictions on the ci’s that are inconvenient, we can write

E = 〈H〉 =

∫
ψ∗Ĥψ∫
ψ∗ψ

(14)

where the denominator compensates for ψ not being normalized.

3. determine the values c1, c2, . . . which minimize E. Then the LCAO wavefunction is

ψ =
∑

i ciφi and the orbital energy is Emin.

Overlap of two atomic orbitals

Consider just two orbitals on two different atoms: the MO is then ψ = c1φ1 + c2φ2

E =

∫
ψ∗Ĥψ∫
ψ∗ψ

=

∫
(c1φ1 + c2φ2)Ĥ(c1φ1 + c2φ2)∫

(c1φ1 + c2φ2)2
(15)

where we will assume ψ is real from now on.

Numerator:

c21

∫
φ1Ĥφ1︸ ︷︷ ︸
α1

+c1c2

∫
φ1Ĥφ2︸ ︷︷ ︸
β12

+c1c2

∫
φ2Ĥφ1︸ ︷︷ ︸
β21

+c22

∫
φ2Ĥφ2︸ ︷︷ ︸
α2

(16)

where α1 is the energy of an electron in atomic orbital 1 (in the molecular environment)

and β12 = β21 is a measure of the strength of the bonding interaction between φ1 and φ2.

Denominator:

c21

∫
φ2

1︸ ︷︷ ︸
1

+2c1c2

∫
φ1φ2︸ ︷︷ ︸
s

+c22

∫
φ2

2︸ ︷︷ ︸
1

(17)

where s is the overlap integral and where we will assume that the atomic orbitals are nor-

malized.
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Illustration of the overlap s for two 1s orbitals: s =
∫
φ1φ2 Recall that the 1s radial

wavefunction looks like R(r) ∼ r0 as r → 0 and R(r) ∼ e−αr as r →∞. (figure here)

Summarizing:

α: Coulomb integral. The energy of an electron in an AO (< 0)

β: resonance integral. The strength of the bonding interaction between AO’s (< 0)

s: overlap integral. Measures the AO overlap (> 0 but � 1)

E =
c21α1 + 2c1c2β + c22α2

c21 + c22 + 2c1c2s
(18)

Our task is to minimize E by varying c1, c2.

We have

E(c21 + c22 + 2c1c2s) = c21α1 + 2c1c2β + c22α2 (19)

To find the extrema, set

∂E

∂c1
=
∂E

∂c2
= 0 (20)

We will implicitly differentiate by taking ∂
∂c1

on both sides, and then by setting ∂E
∂c1

we obtain

2Ec1 + 2Ec2s = 2c1α1 + 2c2β (21)

Similarly for ∂
∂c2

we obtain

2Ec2 + 2Ec1s = 2c2α2 + 2c1β (22)

We can rearrange to obtain the pair of equations

c1(E − α1) + c2(Es− β) = 0

c1(Es− β) + c2(E − α2) = 0 (23)

or in matrix form E − α1 Es− β

Es− β E − α2

 =

c1
c2

 =

0

0

 (24)

For non-trivial solutions we need

det

 E − α1 Es− β

Es− β E − α2

 = 0 (25)
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where

det

 a b

c d

 = ad− cb (26)

Case 1: overlap of two identical orbitals

In this case α1 = α2 = α since φ1 and φ2 are the same. The determinant condition is

det

 E − α Es− β

Es− β E − α

 = 0 (27)

If we neglect the overlap integral s ≈ 0 we get

det

 E − α −β

−β E − α

 = 0⇒ (α− E)2 = β2 ⇒ E = α± β (28)

Since β < 0, E+ = α+ β is the energy of the bonding orbital, and E− = α− β is the energy

of the antibonding orbital.

(orbital energy diagram here)

If we do not neglect s (more realistic) we have

(E − α)2 = (Es− β)2 (29)

from the determinant condition, whose solution is

E+ =
α + β

1 + s
and E− =

α− β
1− s

(30)

Analyzing these expressions, we find that the bonding and antibonding orbital energies aer

now not symmetric: the antibonding orbital is higher in energy than the stabilizing energy

decrease of the bonding orbital

(orbital energy diagram here)

One consequence of this asymmetry is that He2 is not a stable molecule.
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