
MO theory of π-electrons in conjugated and aromatic molecules: Hückel theory

Hückel model: uses hybridization and the localized VB model to describe the σ-bonded

skeleton (the rigid framework which determines the shape of the molecule) and MO theory

to describe the delocalized π-electrons.

For the π-electrons, Hückel theory makes the following simplifying assumptions:

◦ all C atoms are identical → α is the same for each AO

◦ all overlap integrals are zero, s = 0

◦ all resonance integrals between neighboring carbons are equal, call this β

◦ all other resonance integrals are zero

This gives a simple structure to the determinant:

1) all diagonal elements are α− E

2) all off-diagonal elements between neighboring atoms are β

3) all other elements are 0

example: butadiene. We have 4 π-electrons

(insert picture here, label carbons 1,2,3,4)

The Hückel energies are

det


α− E β 0 0

β α− E β 0

0 β α− E β

0 0 β α− E

 = 0 (1)

The solution is E = α ± 1.62β and E = α ± 0.62β. Since β < 0 the π-electrons in

butadiene have total energy Eπ = 2(α+ 1.62β) + 2(α+ 0.62β) = 4α+ 4.48β. What should

we compare this to? In ethene we have Eπ = 2(α+ β) so that two individual π-bonds have

energy 4α + 4β. Thus we can say the delocalization energy in butadiene is 0.48β, which is

approximately 110 kJ/mol. This is the extra stabilization energy due to conjugation.

example: cyclobutadiene.

(insert picture here, label carbons 1,2,3,4)

The Hückel energies are
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det


α− E β 0 β

β α− E β 0

0 β α− E β

β 0 β α− E

 = 0 (2)

The solution is E = α±2β and E = α (doubly degenerate). Hence Eπ = 2(α+2β)+2α =

4α + 4β. In this case there is no extra stabilizing energy!

Hückel model for monocyclic polyenes

The matrix method works but the π-electron MO energies can also be obtained using a

graphical method. To use the graphical method, we must inscribe a regular polygon with

the shape of the polyene in a circle of radius 2β with one vertex pointing downwards. Each

point for which the polygon touches the circle corresponds to an orbital. The orbital energies

are obtained by assigning the center of the circle an energy of α.

example: cyclobutadiene

(insert figure here)

example: benzene

(insert figure here)

With these tools we can predict that C3H
+
3 is more stable than C3H3 or C3H

−
3 ; cyclobu-

tadiene is a diradical and thus is very reactive; (CH)−5 is more stable than (CH)5 or (CH)+
5 .

These predictions have been verified by experiment and demonstrate that the Hückel model

has predictive power.

One weakness of the Hückel model is that it only treats the π-electrons. The σ-framework

strain energy of cyclobutadiene (arising from 90◦ instead of 120◦ bond angles) is not taken

into account. This is fixed in the extended Hückel method developed by Roald Hoffmann

(Nobel Prize 1981).

Bonding in Solids – metals, conductors, semiconductors, insulators

We can explain the difference between conductors, semiconductors, and insulators from

simple LCAO-MO considerations. Up until now, we have been building the MOs assuming

a particular internuclear separation. The s ≈ 0 approximation gave us the bonding and

antibonding energies of E = α± β where α is the energy of an electron in an atomic orbital

in the molecular environment. Since α = (Ebonding + Eantibonding)/2, this is, for different
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internuclear separations, the average of the bonding and antibonding energies. Why does it

change value?

(figure here)

Now for solids: n AOs combine to give n MOs. Thing about sodium with a single valence

electron 3s1. As we bring more and more atoms together with a fixed lattice spacing, the MO

energies only spread out a finite amount; hence we get a band. To think about this, consider

the lattice spacing to be very large. Then the width (the difference between bonding and

antibonding energies) is essentially zero even though there are many, many MOs. To a first

approximation we can just “fill in” the region between the highest and lowest MO energies

with a continuum of levels (called a band).

Na (sodium, 3s1): the 3s band is only half filled. The empty orbitals permit the movement

of electrons by promoting electrons to the open levels at almost no energy cost. Therefore

we have conductivity.

Mg (magnesium, 3s2): the 3s band is filled, so it would seem there is no conduction?

However, the 3p band overlaps the 3s band.

(figures for Na and Mg here)
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