metaphysics handout

We learned that a "down" silver atom is in a superposition of being "left" and "right". Let us express this using a mathematical formalism in which we express the wavefunctions as column vectors in a 2 d spin space.

Define the left/right operator:

$$
\hat{L R}=\left[\begin{array}{cc}
1 & 0 \tag{1}\\
0 & -1
\end{array}\right]
$$

This operator has 2 eigenvalues/eigenvectors.
Eigenvalue 1 ("left"), eigenvector $\phi_{L}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
Eigenvalue -1 ("right"), eigenvector $\phi_{R}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
Define the up/down operator:

$$
\hat{U D}=\left[\begin{array}{ll}
0 & 1 \tag{2}\\
1 & 0
\end{array}\right]
$$

Eigenvalue 1 ("up"), eigenvector $\phi_{U}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$
Eigenvalue -1 ("down"), eigenvector $\phi_{D}=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$
Superposition is expressed as:

$$
\begin{align*}
& \phi_{U}=\frac{1}{\sqrt{2}} \phi_{L}+\frac{1}{\sqrt{2}} \phi_{R} \tag{3}\\
& \phi_{D}=\frac{1}{\sqrt{2}} \phi_{L}-\frac{1}{\sqrt{2}} \phi_{R} \tag{4}\\
& \phi_{L}=\frac{1}{\sqrt{2}} \phi_{U}+\frac{1}{\sqrt{2}} \phi_{D} \tag{5}\\
& \phi_{R}=\frac{1}{\sqrt{2}} \phi_{U}-\frac{1}{\sqrt{2}} \phi_{D} \tag{6}
\end{align*}
$$

Let us examine the state of the initially "down" atom which enters the apparatus. At time t_{1},

$$
\begin{align*}
\psi_{t_{1}} & =\phi_{D} ; X \rightarrow x_{1} ; Y \rightarrow y_{1} \tag{7}\\
& =\left(\frac{1}{\sqrt{2}} \phi_{L}-\frac{1}{\sqrt{2}} \phi_{R}\right) ; X \rightarrow x_{1} ; Y \rightarrow y_{1} \tag{8}\\
& =\frac{1}{\sqrt{2}} \underbrace{\phi_{L} ; X \rightarrow x_{1} ; Y \rightarrow y_{1}}_{a}-\frac{1}{\sqrt{2}} \underbrace{\phi_{R} ; X \rightarrow x_{1} ; Y \rightarrow y_{1}}_{b} \tag{9}
\end{align*}
$$

If the state at t_{1} was just $\phi_{t_{1}}=a$, then at t_{2} the state would be $\phi_{L} ; X \rightarrow x_{2} ; Y \rightarrow y_{2}$
If the state at t_{1} was just $\phi_{t_{1}}=b$, then at t_{2} the state would be $\phi_{R} ; X \rightarrow x_{3} ; Y \rightarrow y_{1}$
But then it follows from linearity that the actual state is

$$
\begin{equation*}
\psi_{t_{2}}=\frac{1}{\sqrt{2}} \phi_{L} ; X \rightarrow x_{2} ; Y \rightarrow y_{2}-\frac{1}{\sqrt{2}} \phi_{R} ; X \rightarrow x_{3} ; Y \rightarrow y_{1} \tag{10}
\end{equation*}
$$

There is a non-separable correlation between the spin properties and spatial properties of the atom.

At time t_{3} we have

$$
\begin{equation*}
\psi_{t_{3}}=\frac{1}{\sqrt{2}} \phi_{L} ; X \rightarrow x_{3} ; Y \rightarrow y_{3}-\frac{1}{\sqrt{2}} \phi_{R} ; X \rightarrow x_{4} ; Y \rightarrow y_{2} \tag{11}
\end{equation*}
$$

and at time t_{4}

$$
\begin{align*}
\psi_{t_{4}} & =\frac{1}{\sqrt{2}} \phi_{L} ; X \rightarrow x_{5} ; Y \rightarrow y_{4}-\frac{1}{\sqrt{2}} \phi_{R} ; X \rightarrow x_{5} ; Y \rightarrow y_{4} \tag{12}\\
& =\left(\frac{1}{\sqrt{2}} \phi_{L}-\frac{1}{\sqrt{2}} \phi_{R}\right) ; X \rightarrow x_{5} ; Y \rightarrow y_{4} \tag{13}\\
& =\phi_{D} ; X \rightarrow x_{5} ; Y \rightarrow y_{4} \tag{14}
\end{align*}
$$

What if we measure the position of the atom at t_{3} ? The wavefunction collapses to either $X \rightarrow x_{3} ; Y \rightarrow y_{3}$ or $X \rightarrow x_{4} ; Y \rightarrow y_{2}$ in terms of position, so that,

$$
\begin{equation*}
\psi_{t_{3}}=\phi_{L} ; X \rightarrow x_{3} ; Y \rightarrow y_{3} \quad \text { or } \quad \psi_{\mathrm{t}_{3}}=\phi_{\mathrm{R}} ; \mathrm{X} \rightarrow \mathrm{x}_{4} ; \mathrm{Y} \rightarrow \mathrm{y}_{2} \tag{15}
\end{equation*}
$$

Thus at t_{4} we would find either (with equal probability)

$$
\begin{equation*}
\psi_{t_{4}}=\phi_{L} ; X \rightarrow x_{5} ; Y \rightarrow y_{4} \quad \text { or } \quad \psi_{\mathrm{t}_{4}}=\phi_{\mathrm{R}} ; \mathrm{X} \rightarrow \mathrm{x}_{5} ; \mathrm{Y} \rightarrow \mathrm{y}_{4} \tag{16}
\end{equation*}
$$

If we put an absorbing wall at $X \rightarrow x_{3} ; Y \rightarrow y_{1}$ (R path) then

$$
\begin{equation*}
\psi_{t_{4}}=\frac{1}{\sqrt{2}} \phi_{L} ; X \rightarrow x_{5} ; Y \rightarrow y_{4}-\frac{1}{\sqrt{2}} \phi_{R} ; X \rightarrow x_{3} ; Y \rightarrow y_{1} \tag{17}
\end{equation*}
$$

If we look for the atom at $X \rightarrow x_{5} ; Y \rightarrow y_{4}$ we will find it there 50% of the time, and if found its LR property would be "left" and its UD property would be $50 / 50 \mathrm{up} /$ down.

