
Chem 3322 central force notes

Our goal is to solve the TISE for the central force problem where the potential is a

function of r only.
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∇2ψ + V (r)ψ = Eψ (1)

Try separation of variables: ψ(r, θ, φ) = R(r)P (θ)Q(φ)

We need to transform the Laplacian into spherical polar coordinates, which is Eq. (5.49)

in McQuarrie/Simon:

∇2ψ =
1

r2

[
∂

∂r

(
r2
∂ψ

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2

]
(2)

The TISE is thus
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Divide through by ψ = RPQ to get
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The expression in [· · · ] is a function of r only. Why? Solve for it:
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Therefore, the sum of the 2nd and 3rd terms in [· · · ] must be a constant because they

have angle dependence only. Call this constant −λ.
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Rearrange Eq. (6) to obtain
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and then again to obtain
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Hence the left hand side of Eq. (8) is a function of θ only, which can only hold if
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We have acheived our goal! The three separated equations are:
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A brief table of some of the P`m(θ) (unnormalized)

` = 0 P00 = 1

` = 1 P10 = cos θ

P11 = sin θ

` = 2 P20 = 3 cos2 θ − 1

P21 = sin θ cos θ

P22 = sin2 θ

` = 3 P30 = 5 cos3 θ − 3 cos θ

P31 = sin θ(5 cos2 θ − 1)

P32 = sin2 θ cos θ

P33 = sin3 θ

Spherical harmonics, normalized with respect to the (θ, φ) parts of 3d integration in

spherical polar coordinates:

` = 0 Y00 =
(

1
4π

)1/2
` = 1 Y10 =

(
3
4π

)1/2
cos θ

Y11 =
(

3
4π

)1/2
sin θ

sinφ

cosφ
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Notice that, for each `, there are 2` + 1 different spherical harmonics. Using x =

r sin θ cosφ, y = sin θ sinφ, z = r cos θ and various trig. identities, the spherical harmonics

up to ` = 2 can be rewritten as: (normalized)

` = 0 Y00 =
(

1
4π

)1/2
“s” orbital

` = 1 Y10 =
(

3
4π

)1/2
z/r “pz” orbital

Ysin
11 =

(
3
4π

)1/2
y/r “py” orbital

Ycos
11 =

(
3
4π

)1/2
x/r “px” orbital

` = 2 Y20 =
(

5
16π

)1/2
(3z2 − r2)/r2 “dz2” orbital

Ysin
21 =

(
15
4π

)1/2
yz/r2 “dyz” orbital

Ycos
21 =

(
15
4π

)1/2
xz/r2 “dxz” orbital

Ysin
22 =

(
15
4π

)1/2
xy/r2 “dxy” orbital

Ycos
22 =

(
15
16π

)1/2
(x2 − y2)/r2 “dx2−y2” orbital

You can now understand the origin of the traditional designations of px, py, pz, etc.

4


