Chem 5314 -- Graduate Physical Chemistry

Syllabus

(SOME) LECTURE NOTES

Lecture notes, part 1
Lecture notes, part 2
Lecture notes, part 3
Lecture notes, part 4
Lecture notes, part 5
Lecture notes, part 6
Lecture notes, part 7
Lecture notes, part 8




Homework Assignments and Test Solutions





python section

jupyter notebook (web browser version)
PIB python notebook (exact numerical solution) before class on September 26


PIB python notebook (exact numerical solution) as it looked at the end of class on September 26


heat capacity python notebook (beginning of class October 12)





Extra Material



boltzmann dist. animated gif, particle in 1d box (1)


boltzmann dist. animated gif, particle in 1d box (2)


boltzmann dist. animated gif, particle in 1d box (3)


dist. vs. indist. N=5, Etotal=43


Stirling approximation of log N!


Tent function fit to particle in a box eigenfunctions





Particle in box applications
drop first term
Double well applet
psi1 and psi2


prob. density animated gif


TST diagram


Application of transition state theory to water transport across cell membranes
perturbation notes


perturbation graphs


benzene molecular orbitals





fitting a function python notebook


perturbation theory notes


another set of perturbation theory notes


python code for the bisection method to refine the energy in the exact (numerical) solution of the TISE
python code for illustrating thermalization of a mode (heat capacity)
vibrational frequencies of a water molecule from Gaussian at the B3LYP/cc-pVDZ level of theory
vibrational frequencies of a hexane molecule from Gauusian at the B3LYP/6-31G(d) level of theory
python code for the quantum mechanical heat capacity calculation
temperature (Kelvin) vs. energy (kcal/mol) for 200 molecules of hexane at 1 atm pressure from MD simulations
temperature (Kelvin) vs. non-bonded energy (kcal/mol) for 200 molecules of hexane at 1 atm pressure from MD simulations
updated data for temperature (Kelvin) vs. non-bonded energy (kcal/mol) for 200 molecules of hexane at 1 atm pressure from MD simulations
temperature (Kelvin) vs. volume (cubic Angstroms) for 200 molecules of hexane at 1 atm pressure from MD simulations

Postulates of Quantum Mechanics



central force notes

Anharmonic notes 1
HO and Morse plots for vibrational selection rules
Morse oscillator powerpoint notes
SWNTs inside mammalian cells (Raman spectroscopy)
Microwave spectroscopy
Original ref. for the Arp 220 microwave spectra
CO spectrum
cos*cos frequencies
Bright Ideas for Chemical Biology


Raman slides
Omary1.pdf
Omary2.pdf
IR for large molecules (and Raman) notes
Indistinguishability Notes
fermion/boson discussion


Stern Gerlach slides

quantum computing slides (powerpoint)

quantum computing slides (pdf)

article I used for the quantum computing Deutsch's algorithm (pdf)

google AI quantum computer

error detection (ISBN)

error detection (ISBN)

Scientific American article on the quantum eraser



Interaction free measurement article from Scientific Amerian

Superposition states in photosynthesis

my 3-electron notes

Hartree Fock, and other, notes by Dr. Sherrill, Georgia Tech.

Fock operator slides from U. Southampton

HF my notes, 20-23, 36-38

qm/mm article including electron correlation, dispersion

page 282 of Simon/McQuarrie

the famous calculus of variations problem




Atkins (3rd ed.)

Statistical Mechanics: Chapter 21. In particular, see example 21.1 on page 511, eq. 21.1.13 on page 512, Fig. 21.2 on page 513 (not e that in Fig. 21.2, beta*epsilon = beta*hbar*omega), and example 21.2 on page 513.
chapter 13: quantum, intro.
Eq. 13.1.1 -- Energy in classical mechanics
Eq. 13.2.8 -- de Broglie relation
Eq. 13.3.1 -- TISE
bottom of Box 13.1 -- TDSE
page 299-301 -- constant potential solutions
page 301 -- interpretation of psi as a probability density
13.3.6 -- normalization
13.4.3, 13.4.4b -- eigenfunctions / eigenvalue concept
13.4.5 -- Form of the momentum operator
13.4.7 -- expectation value
13.4.8 -- Heisenberg uncertainty relation
Problems: 13.20, 13.21, 13.22, 13.24, 13.25, 13.30, 13.31
chapter 14: quantum, particle in a box, harmonic oscillator, spherical harmonics
page 314-320 -- particle in a box
page 322-327 -- Harmonic oscillator
page 331-335 -- rotational motion in 3d, spherical harmonics (Box 14.2), energies of the rigid rotor (14.3.2 2), picture of spherical harmonics (Fig. 14.14)
Problems: 14.1, 14.11, 14.21
chapter 15: hydrogen atom
page 345: nice discussion of the centrifugal potential
Fig 15.4 -- pictures of the radial wavefunctions
15.1.15 -- hydrogenic energy levels
page 350-354: atomic orbitals
Problems: 15.7, 15.8, 15.9, 15.12, 15.14
page 375 -- Born-Oppenheimer approx.
page 434 -- selection rules
Fig. 18.2 -- rotational selection rules
Fig. 18.3 -- vibrational selection rules
page 442-445 -- rotational transitions
page 448 -- harmonic oscillator
Eq. 18.3.8, 18.3.9 vibrational transitions
Fig. 18.14 and eq. (18.3.15) -- vibrational/rotational spectra
Problems: A18.6, 18.1, 18.2, 18.16, 18.17, 18.18, 18.19, 18.20, 18.21, 18.22, 18.23, 18.24, 18.28, 18.29, 18 .36, 18.39b
-->

McQuarrie/Simon

recent topics (October/November 2019):
sections 5-2, 5-3, 5-4, 5-5, 5-6, 5-7, 5-8, 5-9
chapter 6
section 7-4
sections 8-4, 8-5, 8-6
sections 9-1, 9-4, 9-16
sections 13-1, 13-2, 13-5, 13-6, 13-7, 13-12, 13-13
chapter 14
section 15-1
sections 17-1, 17-2, 17-3, 17-4, 17-5, 17-6, 17-7
sections 18-1, 18-4, 18-5


chapter 1: background to quantum theory
Practice problems: 1-9, 1-11, 1-14, 1-25, 1-34, 1-37, 1-38, 1-39
Mathchapter A: review of complex numbers
Practice problems: A-5, A-6
chapter 2: classical waves
Practice problems: 2-5, 2-16, 2-18
Mathchapter B: probability
Practice problems: B-1, B-2, B-3, B-4, B-5
chapter 3: Schroedinger equation, particle in box (1d and 3d)
Practice problems: 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-11, 3-12, 3-13, 3-14, 3-16, 3-17, 3-19, 3- 20, 3-21, 3-23, 3-25, 3-26, 3-27, 3-28, 3-29, 3-30, 3-35
chapter 4: theory
4.4: separation of variables to get time-independent equation
chapter 5: harmonic oscillator (center of mass coordinates), rigid rotor
chapter 6: hydrogen atom
eq. 6.1 -- potential energy
eq. 6.2 -- Hamiltonian operator
eq. 6.6 -- separation of variables is being attempted
eq. 6.8 -- radial equation
eq. 6.10 -- angular eq. : spherical harmonics
eq. 6.11 -- separation of variables for the angular part
eq. 6.20 -- phi solutions
Table 6.2 -- theta solutions
Table 6.3 -- spherical harmonics
page 206 -- energies
Table 6.5 -- atomic wavefunctions for hydrogenic atoms
page 209-210 -- "s" orbitals
page 213-218 -- "p" and "d" orbitals
Problems: 6.1, 6.3, 6.20, 6.21, 6.22, 6.23, 6.24, 6.25, 6.28, 6.29, 6.32, 6.33, 6.35, 6.36
page 323-324 -- Born-Oppenheimer approx.
page 497 -- rotational and vibrational transitions
Fig. 13.1 -- rotational/vibrational levels for a diatomic in the harmonic oscillator / rigid rotor approx. < br> eq. 13.11 -- selection rules in harmonic oscillator / rigid rotor approx.
Fig. 13.2 -- rotational / vibrational spectrum
Fig. 13.4 -- beyond the harmonic approx.
page 521 -- active and inactive vibrational motions
page 531-532 -- rigid rotor selection rules
page 533-534 -- harmonic oscillator selection rules
Problems: 13.1, 13.2, 13.3, 13.5, 13.7, 13.8, 13.9, 13.11, 13.12, 13.34