
General Properties of Stationary States

Let us recall the integration by parts formula from integral calculus∫ b

a

u dv = uv

∣∣∣∣b
a

−
∫ b

a

v du (1)

or, in more detail, ∫ b

a

u(x)
∂v(x)

∂x
dx = u(x)v(x)

∣∣∣∣b
a

−
∫ b

a

v(x)
∂u(x)

∂x
dx (2)

In quantum mechanics, generally the boundary term uv|ba is zero, either because both bound-

aries evaluate to zero or to the same value. Therefore we can safely assume it is zero, uv|ba = 0.

Hence in quantum mechanics the integration by parts equation is∫ b

a

u dv = −
∫ b

a

v du (3)

Two applications of integration by parts gives∫ b

a

u
∂2v

∂x2
dx =

∫ b

a

v
∂2u

∂x2
dx (4)

or, in 3d, ∫ b

a

u∇2v =

∫ b

a

v∇2u (5)

Property 1

The energies En in the TISE

− ~2

2m
∇2ψn + V ψn = Enψn (6)

are real, even though ψn may be complex.

Proof: Multiply through by ψ∗n and integrate to get

− ~2

2m

∫
ψ∗n∇2ψn︸ ︷︷ ︸R
ψn∇2ψ∗n

+

∫
ψ∗nV ψn︸ ︷︷ ︸
clearly real

= En

∫
ψ∗nψn︸ ︷︷ ︸

clearly real

(7)

But
∫
ψ∗n∇2ψn and

∫
ψn∇2ψ∗n are complex conjugates and since they are also equal, they

must be real. Therefore En is real.

Orthogonality
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Different stationary states (of the same TISE) are orthogonal to each other, namely∫
ψn ψ

∗
m = 0 if m 6= n (8)

Proof: Write down the TISE for ψn and the complex conjugate of this equation for ψm.

− ~2

2m
∇2ψn + V ψn = Enψn (9)

− ~2

2m
∇2ψ∗m + V ψ∗m = Em︸︷︷︸

always real

ψ∗m (10)

Multiply Eq. (9) by ψ∗m and integrate, and multiply Eq. (10) by ψn and integrate:

− ~2

2m

∫
ψ∗m∇2ψn +

∫
ψ∗mV ψn = En

∫
ψ∗mψn (11)

− ~2

2m

∫
ψn∇2ψ∗m +

∫
ψnV ψ

∗
m = Em

∫
ψnψ

∗
m (12)

Subtracting, we get (En − Em)
∫
ψnψ

∗
m = 0. If n 6= m, there are two cases.

Case 1: non-degenerate. En 6= Em ⇒
∫
ψnψ

∗
m = 0. If all these states are also normalized,

they are said to be “orthonormal”. Case 2: degenerate. En can equal Em even if n 6= m.

The proof is more complicated than the non-degenerate case. We need to use the Gram-

Schmitt orthogonalization procedure to construct orthogonal states by taking appropriate

linear combinations of the two wavefunctions. (proof omitted)

Expectation Value

Suppose we have a quantity Q(x, y, z) depending only on the particle coordinates (and

not on the momenta). Since |ψ|2 is a probability density,

〈Q〉 =

∫∫∫
Q(x, y, z)|ψ|2dx dy dz (13)

is its average or mean value in the usual probability sense. In other words, it is a weighted

average with |ψ|2 being the weight. In quantum mechanics this is generally called the

expectation value and is denoted by angular brackets 〈·〉. Usually we break |ψ|2 up, since

multiplication is commutative, and write:

〈Q〉 =

∫∫∫
ψ∗Qψ dx dy dz (14)
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Since |ψ|2 is a probability density in space, how do we get information about quantities

that depend on the particle momentum? We can get an expression for its expectation value

by appealing to the Correspondence Principle, which says “Quantum mechanics must reduce

to classical mechanics in some way”! To be able to turn this into a mathematical statement,

we shall require that quantum mechanics reproduce classical mechanics “on average”, namely

at the level of expectation value.

In particular, we have in classical mechanics that

px = mv = m
x

t
(15)

Taking the average (expectation value) of both sides gives the quantum analog

〈px〉 = m
d

dt
〈x〉 (16)

Let us work out the d〈x〉/dt term in detail

d

dt
〈x〉 =

d

dt

∫
ψ∗xψ =

∫
∂ψ∗

∂t
xψ +

∫
ψ∗x

∂ψ

∂t
(17)

Now, we need to use the TDSE as follows

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
+ V ψ (18)

⇒ ∂ψ

∂t
=

i~
2m

∂2ψ

∂x2
− i

~
V ψ and

∂ψ∗

∂t
= − i~

2m

∂2ψ∗

∂x2
+
i

~
V ψ∗ (19)

Substituting these expressions into Eq. (17) gives

− i~
2m

∫
∂2ψ∗

∂x2
xψ +

i~
2m

∫
ψ∗x

∂2ψ

∂x2
(20)

Now we will apply integration by parts twice to the first term as follows∫
∂2ψ∗

∂x2
xψ =

∫
ψ∗

∂2

∂x2
(xψ) (21)

=

∫
ψ∗
(

2
∂ψ

∂x
+ x

∂2ψ

∂x2

)
(22)

This yields

d

dt
〈x〉 = −i~

m

∫
ψ∗
∂ψ

∂x
(23)
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Multiplying by m, we finally obtain

〈px〉 = −i~
∫
ψ∗
∂ψ

∂x
(24)

What about 〈p2
x〉? An important classical formula involving p2

x is

p2
x

2m
+ V (x) = constant (25)

(conservation of energy for a 1d system)

In order to use the correspondence principle, we will take the TISE

− ~2

2m

∂2ψ

∂x2
+ V ψ = Eψ (26)

and multiply both sides by ψ∗ and integrate

− ~2

2m

∫
ψ∗
∂2ψ

∂x2
+

∫
ψ∗V ψ = E

∫
ψ∗ψ (27)

The 2nd term is just 〈V 〉, and the RHS is clearly a constant since
∫
ψ∗ψ = 1. Therefore, by

analogy, the first term can be identified with the first term of Eq. (25).

p2
x

2m
= − ~2

2m

∫
ψ∗
∂2ψ

∂x2
(28)

Thus we can identify

〈p2
x〉 = −~2

∫
ψ∗
∂2ψ

∂x2
(29)

Quantum Operators

We have just deduced that, in 1d,

〈px〉 = −i~
∫
ψ∗
∂ψ

∂x
and 〈p2

x〉 = −~2

∫
ψ∗
∂2ψ

∂x2
(30)

If we now define a momentum operator by

p̂x = −i~ ∂

∂x
(31)

where the “hat” denotes an operator, we can write

〈px〉 =

∫
ψ∗p̂xψ (32)
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〈p2
x〉 =

∫
ψ∗p̂2

xψ (33)

where p̂2
x means p̂xp̂x, namely apply the operator twice

Note that if Â and B̂ are operators, and we define Ĉ = ÂB̂, then Ĉψ means Â(B̂ψ), i.e.

from right to left like composition of functions, (f ◦ g)(x) = f(g(x)).

An obvious generalization suggests

〈pnx〉 =

∫
ψ∗p̂nxψ (34)

Recall, also, that for powers of x,

〈xn〉 =

∫
ψ∗xnψ (35)

All of this can be united by postulating the following general principle:

The expectation value of any property Q(x, y, z, px, py, pz) depending on the coordinates

and/or the momenta of the particle is given by

〈Q〉 =

∫∫∫
ψ∗Q̂ψ dx dy dz (36)

where Q̂ is an operator obtained by making the replacement

x̂→ x , ŷ → y , ẑ → z , p̂x → −i~
∂

∂x
, p̂y → −i~

∂

∂y
, p̂z → −i~

∂

∂z
(37)

in the classical mechanics expression for Q.

Example: the classical mechanics expression for the energy is

E =
p2

2m
+ V (38)

To turn this into an operator, we must realize that p2 = p · p = p2
x + p2

y + p2
z → −~2∇2 so

that the energy operator is

− ~2

2m
∇2 + V = Ĥ (39)

This operator dominates quantum theory so it is given a special symbol H, called the

“Hamiltonian” operator. Schroedinger’s Equations can thus be written succinctly as

Ĥψ = i~
∂ψ

∂t
time dependent (40)

Ĥψn = Enψn time independent (41)
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“Sharpness” of the Q distribution

Now that we can calculate expectation values, we can also calculate standard deviations.

For any propertyQ, the deviation from the mean value is justQ−〈Q〉. The squared deviation

is (Q − 〈Q〉)2 = Q2 − 2Q〈Q〉 + 〈Q〉2 and the mean value of this is 〈Q2〉 − 2〈Q〉2 + 〈Q〉2 =

〈Q2〉 − 〈Q〉2. The root mean square (RMS) deviation = standard deviation =

∆Q =
√
〈Q2〉 − 〈Q〉2 (42)

∆Q is a measure of the “sharpness” of the distribution of Q values in a given ψ. Generally

∆Q 6= 0. ⇒ Q is spread over a range of values. However, there are special situations in

which Q is not spread out, i.e. ∆Q = 0.

Eigenfunctions & Eigenvalues

Consider functions ψ satisfying

Q̂ψ = qψ , q ∈ C (43)

i.e. Q̂ operating on ψ produces a number q multiplied by ψ. These ψ’s are called the

eigenfunctions of Q and the corresponding numbers q the eigenvalues.

For an eigenfunction of Q,

〈Q〉 =

∫
ψ∗Q̂ψ =

∫
ψ∗qψ = q

∫
ψ∗ψ = q (44)

since we will assume that ψ is normalized. Also,

〈Q2〉 =

∫
ψ∗Q̂2ψ =

∫
ψ∗Q̂(Q̂ψ) =

∫
ψ∗Q̂(qψ) = q

∫
ψ∗Q̂ψ = q2 (45)

where we assume that the operator Q̂ is linear which let us perform the manipulation

Q̂(qψ) = qQ̂ψ. Hence ∆Q =
√
〈Q2〉 − 〈Q〉2 =

√
q2 − q2 = 0. Thus, if ψ is an eigenfunction

of the operator Q̂, the property Q has an absolutely precise value, the eigenvalue. Only

under these conditions can we have precise, well-defined values of physical properties in

quantum theory.

For example, the stationary states satify Ĥψn = Enψn, namely the stationary states are

eigenfunctions of the energy operator (the Hamiltonian operator)
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