Central Force Problem

$$x = r\sin\theta\cos\phi\tag{1}$$

$$y = r\sin\theta\sin\phi\tag{2}$$

$$z = r\cos\theta \tag{3}$$

Rangle of variables is

$$0 \le r < \infty \tag{4}$$

$$0 \le \theta \le \pi \tag{5}$$

$$0 \le \phi < 2\pi \tag{6}$$

Volume element for integration is

$$dx \, dy \, dz = \underbrace{r^2 \sin \theta}_{\text{Jacobian}} \, dr \, d\theta \, d\phi \tag{7}$$

The Laplacian becomes

$$\nabla^2 \psi = \frac{1}{r^2} \left[\frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} \right]$$
(8)

the ϕ equation

$$\frac{d^2Q}{d\phi^2} = -m^2Q , \qquad 0 \le \phi < 2\pi \tag{9}$$

This is just the "particle on a ring" problem again in a slightly different form. Thus we know the solutions are $\sin m\phi$ or $\cos m\phi$, or $e^{\pm im\phi}$ with boundary conditions $Q(0)=Q(2\pi)$ and $Q'(0)=Q'(2\pi)$. The unnormalized solutions in real form are $Q_0(\phi)=1$ for m=0 and $Q_m(\phi)=\sin m\phi$, $Q_m(\phi)=\cos m\phi$ for m>0 (doubly degenerate).

the θ equation

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dP}{d\theta} \right) - \frac{m^2}{\sin^2\theta} P = -\lambda P \tag{10}$$

This equation is called the Associated Legendre Equation. A solution of the form $P(\theta) = \sin^m \theta \cos^\alpha \theta$ might work: m is the obvious choice of power for the sin function because the

second term $\frac{m^2}{\sin^2\theta}P$ will then cancel out some of the derivative operations in the first term. Plug this guess in to obtain (after using some trig. identities)

$$-(m+\alpha)(m+\alpha+1)\sin^{m}\theta\cos^{\alpha}\theta + \alpha(\alpha-1)\sin^{m}\theta\cos^{\alpha-2}\theta = -\lambda\sin^{m}\theta\cos^{\alpha}\theta$$
 (11)

This works if $\alpha = 0$ or $\alpha = 1$ and $\lambda = (m + \alpha)(m + \alpha + 1)$. For any other α , the term $\alpha(\alpha - 1)\sin^m\theta\cos^{\alpha-2}\theta$ is uncompensated for. However, we can compensate for this term by adding lower order corrections to P as follows

$$P = \sin^m \theta \left[\cos^\alpha \theta + A \cos^{\alpha - 2} \theta + B \cos^{\alpha - 4} \theta + \cdots \right]$$
 (12)

As long as $\alpha \in \mathbb{Z} > 0$, the chain of leftover terms thus generated will terminate because of the $\alpha(\alpha - 1)$ prefactor. We therefore conclude that, for a given m,

$$\lambda = (m+\alpha)(m+\alpha+1)$$
 where $\alpha \in \mathbb{Z} \ge 0$ (13)

This can be rephrased by defining $\ell = m + \alpha$, in terms of which we can say $\lambda = \ell(\ell + 1)$, $\ell \in \mathbb{Z} \geq 0$ and also $m \leq \ell$ since $m = \ell - \alpha$, $\alpha \in \mathbb{Z} \geq 0$. Finally, the solutions look like

$$P_{\ell m}(\theta) = \sin^m \theta \left[\cos^{\ell - m} \theta + A \cos^{\ell - m - 2} \theta + B \cos^{\ell - m - 4} \theta + \cdots \right]$$
 (14)

Notice that each solution has two labels (quantum numbers) ℓ and m.

the radial equation

$$-\frac{\hbar^2}{2m}\frac{1}{r^2}\left[\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) - \lambda R\right] + V(r)R = ER \tag{15}$$

Note: any two-particle problem in which the potential energy depends only on the distance between the particles (i.e. HCl) can be reduced to an effective one-particle central force problem for the relative motion. In this case, r is the relative separation between particles and m is the reduced mass

$$m = \frac{m_1 m_2}{m_1 + m_2} = \mu \tag{16}$$

Use $\lambda = \ell(\ell+1)$ and rearrange

$$-\frac{\hbar^2}{2m}\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \left[V(r) + \underbrace{\frac{\hbar^2}{2m}\frac{\ell(\ell+1)}{r^2}}_{\text{centrifugal potential}}\right]R = ER \tag{17}$$

We cannot solve this equation exactly without knowing the exact form of the function V(r), but we can examine the behavior of the solutions in the limits $r \to 0$ and $r \to \infty$.

$$r \to 0$$

Of the last three terms the centrifugal potential dominates because it blows up like $1/r^2$ whereas V(r) goes at most like 1/r (Coulomb potential). Therefore the differential equation becomes

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) = \frac{\ell(\ell+1)}{r^2}R, \quad r \to 0 \text{ limit}$$
 (18)

It is easy to show that $R(r) = r^{\ell}$ solves this.

$$r \to \infty$$

Of the last three terms, the energy E dominates because V(r) and the centrifugal potential go to zero. Therefore the differential equation becomes

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) = -\frac{2mE}{\hbar^2}R, \quad r \to \infty \text{ limit}$$
 (19)

It is easy to show that $R(r) = e^{-\alpha r}$ where $\alpha = \sqrt{-2mE/\hbar^2}$ is a solution as $r \to \infty$ (must take the limit after plugging in; E is negative for bound states). Another possibility is $e^{\alpha r}$ but this blows up at large r which makes it unacceptable. For <u>any</u> V(r) which goes to zero at infinity (always true in chemistry) and diverges more weakly than $1/r^2$ at $r \to 0$ (always true in chemistry), we have deduced that

$$R(r) \sim r^{\ell} \quad \text{near } r = 0$$
 (20)

$$R(r) \sim e^{-\alpha r} \quad \text{as } r \to \infty$$
 (21)

We can use this information to sketch the general appearance of any atomic orbital.

s orbitals $\ell = 0$

Near the nucleus, $R(r) \sim r^0 \Rightarrow$ finite value at nucleus.

p orbitals $\ell = 1$

Near the nucleus, $R(r) \sim r^1 \Rightarrow 0$ value at the nucleus, but has a finite slope.

d orbitals $\ell=2$

Near the nucleus, $R(r) \sim r^2 \Rightarrow 0$ value at the nucleus, zero slope at the nucleus.

General Observations

The tails (i.e. $r \to \infty$) decay exponentially

The probability of being close to the nucleus has the trend $s>p>d>\cdots$ because of the short ranged $R\sim r^\ell$ behavior, i.e. $r^0>r^1>r^2>\cdots$ near r=0.

The lowest energy radial function for a given ℓ value has zero nodes.

One node is added for each successive higher energy state: this is required by orthogonality.

In general, the energy depends on the "principle" quantum number n (labeling which state of a given ℓ we are talking about), $n = \ell + 1, \ell + 2, \ell + 3, \ldots$, and also on ℓ . However, the energy does not depend on the m quantum number because the radial equation does not contain it. Hence the correct labeling for solutions of the radial equation is $R_{n\ell}(r)$ with the energy labeled as $E_{n\ell}$. Each $E_{n\ell}$ is $(2\ell + 1)$ -fold degenerate due to the $2\ell + 1$ different m values corresponding to each ℓ .

The total wavefunction has the form $\psi_{n\ell m}(r,\theta,\phi) = R_{n\ell}(r)\mathcal{Y}_{\ell m}(\theta,phi)$.