Central Force Problem

$$
\begin{align*}
& x=r \sin \theta \cos \phi \tag{1}\\
& y=r \sin \theta \sin \phi \tag{2}\\
& z=r \cos \theta \tag{3}
\end{align*}
$$

Rangle of variables is

$$
\begin{align*}
& 0 \leq r<\infty \tag{4}\\
& 0 \leq \theta \leq \pi \tag{5}\\
& 0 \leq \phi<2 \pi \tag{6}
\end{align*}
$$

Volume element for integration is

$$
\begin{equation*}
d x d y d z=\underbrace{r^{2} \sin \theta}_{\text {Jacobian }} d r d \theta d \phi \tag{7}
\end{equation*}
$$

The Laplacian becomes

$$
\begin{equation*}
\nabla^{2} \psi=\frac{1}{r^{2}}\left[\frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right] \tag{8}
\end{equation*}
$$

the ϕ equation

$$
\begin{equation*}
\frac{d^{2} Q}{d \phi^{2}}=-m^{2} Q, \quad 0 \leq \phi<2 \pi \tag{9}
\end{equation*}
$$

This is just the "particle on a ring" problem again in a slightly different form. Thus we know the solutions are $\sin m \phi$ or $\cos m \phi$, or $e^{ \pm i m \phi}$ with boundary conditions $Q(0)=Q(2 \pi)$ and $Q^{\prime}(0)=Q^{\prime}(2 \pi)$. The unnormalized solutions in real form are $Q_{0}(\phi)=1$ for $m=0$ and $Q_{m}(\phi)=\sin m \phi, Q_{m}(\phi)=\cos m \phi$ for $m>0$ (doubly degenerate).
the θ equation

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d P}{d \theta}\right)-\frac{m^{2}}{\sin ^{2} \theta} P=-\lambda P \tag{10}
\end{equation*}
$$

This equation is called the Associated Legendre Equation. A solution of the form $P(\theta)=$ $\sin ^{m} \theta \cos ^{\alpha} \theta$ might work: m is the obvious choice of power for the sin function because the
second term $\frac{m^{2}}{\sin ^{2} \theta} P$ will then cancel out some of the derivative operations in the first term. Plug this guess in to obtain (after using some trig. identities)

$$
\begin{equation*}
-(m+\alpha)(m+\alpha+1) \sin ^{m} \theta \cos ^{\alpha} \theta+\alpha(\alpha-1) \sin ^{m} \theta \cos ^{\alpha-2} \theta=-\lambda \sin ^{m} \theta \cos ^{\alpha} \theta \tag{11}
\end{equation*}
$$

This works if $\alpha=0$ or $\alpha=1$ and $\lambda=(m+\alpha)(m+\alpha+1)$. For any other α, the term $\alpha(\alpha-1) \sin ^{m} \theta \cos ^{\alpha-2} \theta$ is uncompensated for. However, we can compensate for this term by adding lower order corrections to P as follows

$$
\begin{equation*}
P=\sin ^{m} \theta\left[\cos ^{\alpha} \theta+A \cos ^{\alpha-2} \theta+B \cos ^{\alpha-4} \theta+\cdots\right] \tag{12}
\end{equation*}
$$

As long as $\alpha \in \mathbb{Z}>0$, the chain of leftover terms thus generated will terminate because of the $\alpha(\alpha-1)$ prefactor. We therefore conclude that, for a given m,

$$
\begin{equation*}
\lambda=(m+\alpha)(m+\alpha+1) \quad \text { where } \quad \alpha \in \mathbb{Z} \geq 0 \tag{13}
\end{equation*}
$$

This can be rephrased by defining $\ell=m+\alpha$, in terms of which we can say $\lambda=\ell(\ell+1)$, $\ell \in \mathbb{Z} \geq 0$ and also $m \leq \ell$ since $m=\ell-\alpha, \alpha \in \mathbb{Z} \geq 0$. Finally, the solutions look like

$$
\begin{equation*}
P_{\ell m}(\theta)=\sin ^{m} \theta\left[\cos ^{\ell-m} \theta+A \cos ^{\ell-m-2} \theta+B \cos ^{\ell-m-4} \theta+\cdots\right] \tag{14}
\end{equation*}
$$

Notice that each solution has two labels (quantum numbers) ℓ and m.
the radial equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}}\left[\frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\lambda R\right]+V(r) R=E R \tag{15}
\end{equation*}
$$

Note: any two-particle problem in which the potential energy depends only on the distance between the particles (i.e. HCl) can be reduced to an effective one-particle central force problem for the relative motion. In this case, r is the relative separation between particles and m is the reduced mass

$$
\begin{equation*}
m=\frac{m_{1} m_{2}}{m_{1}+m_{2}}=\mu \tag{16}
\end{equation*}
$$

Use $\lambda=\ell(\ell+1)$ and rearrange

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+[V(r)+\underbrace{\frac{\hbar^{2}}{2 m} \frac{\ell(\ell+1)}{r^{2}}}_{\text {centrifugal potential }}] R=E R \tag{17}
\end{equation*}
$$

We cannot solve this equation exactly without knowing the exact form of the function $V(r)$, but we can examine the behavior of the solutions in the limits $r \rightarrow 0$ and $r \rightarrow \infty$.
$r \rightarrow 0$
Of the last three terms the centrifugal potential dominates because it blows up like $1 / r^{2}$ whereas $V(r)$ goes at most like $1 / r$ (Coulomb potential). Therefore the differential equation becomes

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=\frac{\ell(\ell+1)}{r^{2}} R, \quad r \rightarrow 0 \text { limit } \tag{18}
\end{equation*}
$$

It is easy to show that $R(r)=r^{\ell}$ solves this.

$r \rightarrow \infty$

Of the last three terms, the energy E dominates because $V(r)$ and the centrifugal potential go to zero. Therefore the differential equation becomes

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=-\frac{2 m E}{\hbar^{2}} R, \quad r \rightarrow \infty \text { limit } \tag{19}
\end{equation*}
$$

It is easy to show that $R(r)=e^{-\alpha r}$ where $\alpha=\sqrt{-2 m E / \hbar^{2}}$ is a solution as $r \rightarrow \infty$ (must take the limit after plugging in; E is negative for bound states). Another possibility is $e^{\alpha r}$ but this blows up at large r which makes it unacceptable. For any $V(r)$ which goes to zero at infinity (always true in chemistry) and diverges more weakly than $1 / r^{2}$ at $r \rightarrow 0$ (always true in chemistry), we have deduced that

$$
\begin{align*}
& R(r) \sim r^{\ell} \quad \text { near } r=0 \tag{20}\\
& R(r) \sim e^{-\alpha r} \quad \text { as } r \rightarrow \infty \tag{21}
\end{align*}
$$

We can use this information to sketch the general appearance of any atomic orbital.

$$
s \text { orbitals } \ell=0
$$

Near the nucleus, $R(r) \sim r^{0} \Rightarrow$ finite value at nucleus.

$$
p \text { orbitals } \ell=1
$$

Near the nucleus, $R(r) \sim r^{1} \Rightarrow 0$ value at the nucleus, but has a finite slope.

d orbitals $\ell=2$

Near the nucleus, $R(r) \sim r^{2} \Rightarrow 0$ value at the nucleus, zero slope at the nucleus.

General Observations

The tails (i.e. $r \rightarrow \infty$) decay exponentially

The probability of being close to the nucleus has the trend $s>p>d>\cdots$ because of the short ranged $R \sim r^{\ell}$ behavior, i.e. $r^{0}>r^{1}>r^{2}>\cdots$ near $r=0$.

The lowest energy radial function for a given ℓ value has zero nodes.
One node is added for each successive higher energy state: this is required by orthogonality.

In general, the energy depends on the "principle" quantum number n (labeling which state of a given ℓ we are talking about), $n=\ell+1, \ell+2, \ell+3, \ldots$, and also on ℓ. However, the energy does not depend on the m quantum number because the radial equation does not contain it. Hence the correct labeling for solutions of the radial equation is $R_{n \ell}(r)$ with the energy labeled as $E_{n \ell}$. Each $E_{n \ell}$ is $(2 \ell+1)$-fold degenerate due to the $2 \ell+1$ different m values corresponding to each ℓ.

The total wavefunction has the form $\psi_{n \ell m}(r, \theta, \phi)=R_{n \ell}(r) \mathcal{Y}_{\ell m}(\theta, p h i)$.

