
Born-Oppenheimer Approximation

Atoms and molecules consist of heavy nuclei and light electrons. Consider (for simplicity)

a diatomic molecule (e.g. HCl). Clamp/freeze the nuclei in space, a distance r0 apart.

Under this condition, solve the Schroedinger equation for the stationary electronic states.

This solution gives us the ground electronic state energy Eelect
0 (r0), the first excited electronic

state energy Eelect
1 (r0), etc. Now repeat this procedure for a distance r1, r2, . . .. “connect

the dots” to obtain the potential energy surfaces. Consider being at r0 with clamped/frozen

nuclei, and being in the ground electronic state. Unclamp/unfreeze the nuclei, and suppose

r begins to increase and is now r = r1. What is the energy of the electrons (which interact,

of course, with the nuclei)? The Born-Oppenheimer, or adiabatic, approximation says that

at r = r1, the electrons behave as if the nuclei were always at r = r1 (frozen). In other words,

the electrons respond instantaneously (adapt immediately) to changes in r. The electrons

“shadow” the nuclei. Since the electrons “track” the nuclei, we only need to figure out how

the nuclei behave, and then we will know where the electrons are (in the Born-Oppenheimer

picture). Eelect also includes the potential energy between the (clamped) nuclei. Hence Eelect

is the potential energy function under which the nuclei move. Whence to find the stationary

nuclear states and energies, we should solve
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For a diatomic this equation becomes a central force problem. Why? because Eelect =

Eelect(r) where r = internuclear separation. The energy E for a central force problem is

obtained by solving the radial equation after changing to spherical polar coordinates. This

looks like (using the reduced mass 1/µ = 1/M1 + 1/M2)
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We get
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This energy E is due to vibrational and rotational motion. For no rotation (pure vibration)

we have ` = 0 to give [
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We will now perform a Taylor series expansion of Eelect(r) about its minimum and truncate

at 2nd order.
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where G(x) = F (x+ r0)

This is the harmonic oscillator equation (1d) we solved earlier!

En = Eelect(r0) + ~ω0(n+
1

2
) , n ≥ 0 ∈ Z (12)

Consider now a rigid rotor, namely where ` = 0 but the vibrational motion produces only

small displacements: approximate r = r0 in the term
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We are looking to solve(
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in the rigid rotor harmonic oscillator (RRHO) approximation.

Selection Rules

Selection rules specify the possible transitions among quantum levels due to absorption

or emission of electromagnetic radiation. The underlying idea is that, for a molecule to be

able to interact with the electromagnetic field and absorb or emit a photon of frequency ω,

it must possess, at least transiently, a dipole oscillating at that frequency ω. For emission

and absorption spectra (Raman is different) we can say that for rotational transitions, there

is no spectrum unless the molecule has a permanent dipole moment. That is, the molecule

must be polar. A polar molecule appears to possess a fluctuating dipole when rotating but

a nonpolar molecule does not.

For vibrational transitions, there is no emission/absorption unless the dipole moment of

the molecule changes during the vibrational motion. The idea is that the molecule can shake

the electromagnetic field into oscillation it its dipole changes as it vibrates.

Note 1: The permanent dipole moment of the molecule can be zero as long as it changes

during vibration.

Note 2: Some vibrational motions do not affect the molecule’s dipole moment. Such

vibrations are called inactive or dark.

Now let us specialize to the case of the rigid rotor harmonic oscillator model of a diatomic

molecule.

Consider the electric field to be along the z−axis (in the laboratory frame). Transitions

between states 1 and 2 occur if

(µz)12 ≡
∫
ψ∗2µ̂zψ1 is not zero (16)

where µz is the z−component of the molecular dipole moment.

Rigid rotor selection rule is ∆` = ±1

3



The rigid rotor wavefunctions are the spherical harmonics Y`m(θ, φ) since r is not chang-

ing. Transitions between any two states are allowed if

(µz)
`,m,`′,m′

=

∫ 2π

0

∫ π

0

Y`′m′(θ, φ)∗µzY`m(θ, φ) sin θ dθ dφ (17)

is non-zero. µz = µ cos θ, giving
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∫ 2π
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Y∗`′m′Y`m cos θ sin θ dθ dφ (18)

µ must clearly be non-zero, proving our claim that a molecule must have a permanent dipole

moment to have a rotational spectrum.

When is this expression non-zero for µ 6= 0? We need to use the properties of the spherical

harmonics. The math is straightforward, and gives

m = m′ and `′ = `+ 1 or`′ = `− 1 (19)

Another way to express this is ∆m = 0, ∆` = ±1

harmonic oscillator selection rule is ∆n = ±1

Wavefunctions are

ψn(x) = (xn + Axn−2 +Bxn−4 + · · · )e−αx2 , n ≥ 0 ∈ Z (20)

For a transition between n and n′ we need to look at

(µz)nn′ =

∫ ∞
−∞

ψ∗n′(x)µzψn(x) dx (21)

To proceed, we Taylor expand µz about the equilibrium internuclear separation
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where x = 0 is the equilibrium separation. We truncate at first order, giving
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The first term is 0 unless n′ = n by orthogonality, but n′ = n is not a transition (no change).

Thus, the permanent dipole moment plays no role in vibrational spectroscopy. Note: since

real molecules are not harmonic oscillators, we should correct this to read: the permanent

dipole moment plays a negligible role in vibrational spectroscopy.
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The second term is non-zero for n′ = n + 1 or n′ = n − 1, namely if ∆n = ±1. This

can be proved by using the harmonic oscillator wavefunctions. It is also necessary that

dµ
dx

∣∣
0
6= 0. This derivative is zero for homonuclear diatomics as well as for certain vibrations

of polyatomic molecules (eg. symmetric stretch of CO2 and CH4). For polyatomics, the

selection rules can be derived from group theory, which we will not cover.

Rigid Rotor Harmonic Oscillator (RRHO) Spectroscopy

The infrared absorption spectrum of HCl can be analyzed to gain information about both

rotations and vibrations of the molecule. The absorption lines shown involve transitions from

the ground state n = 0 to the first excited vibrational state of HCl, n = 1. The rotational

quantum number must change by ` = ±1 during such a vibrational transition according to

the RRHO selection rules. This is what we observe experimentally.

The “missing” line in the center would correspond to the n = 0 to n = 1 transition

without any change in `. What is observed is a closely spaced series of lines going upwards

and downwards from the missing pure vibrational line. The splitting of the lines shows the

difference in rotational inertia of the two chlorine isotopes 35Cl and 37Cl.

Bond force constant for HCl

Approximate the n = 0 to n = 1 vibrational transition by the harmonic oscillator model.

E0 =
1

2
~ω and E1 =

3

2
~ω ⇒ ∆E = ~ω (24)

and ω =
√
k/µ where µ = mHmCl/(mH + mCl) is the reduced mass. But this is the

“missing” line in the infrared absorption spectrum of HCl, so what can we do? We can use

the midpoint between the n = 0, ` = 1 → n = 1, ` = 0 and n = 0, ` = 0 → n = 1, ` = 1

transitions. This assumes that the first excited vibrational state does not stretch the bond.

We get k ≈ 480 N/m = 480 J/m2.

Bond length of HCl

The rigid rotor energy levels are

E` =
`(`+ 1)~2

2I
(25)

where I = µr2 is the moment of inertia.

∆E`=1→`=0 =
1(2)~2

2I
− 0(1)~2

2I
=

2~2

2I
(26)

Twice this is 2∆E = 4~2/(2I). This gives r ≈ 0.13 nm = 1.3 Å.
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Another way to measure bond lengths is to do pure rotational (microwave) spectroscopy.

From experiment, one can calculate the following information:

cm−1 83.03 103.73 124.3 145.03 165.51 185.86 206.38 226.5

`→ `+ 1 3→ 4 4→ 5 5→ 6 6→ 7 7→ 8 8→ 9 9→ 10 10→ 11

r (nm) 0.1288 0.1288 0.1289 0.1289 0.1290 0.1291 0.1292 0.1293
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