Chapter 19: Chemical Kinetics

Key topics: *Reaction Rates Factors That Affect Reaction Rates Reaction Mechanisms*

How fast does a reaction occur?

e.g., many famous painting are changing color...

Red paint from the pond in Van Gogh's *Wheat Stack Under a Cloudy Sky* has degraded to grey/white over time.

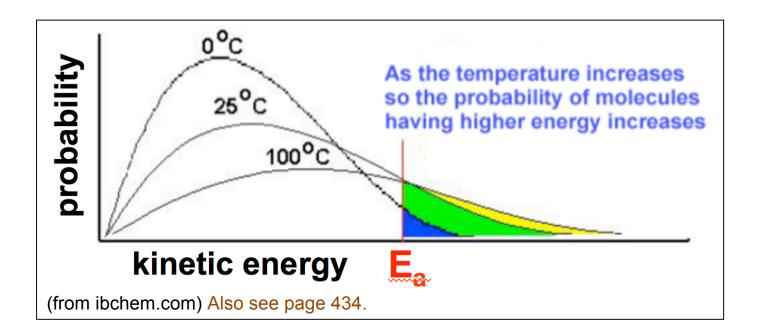
Collision Theory of Chemical Reactions

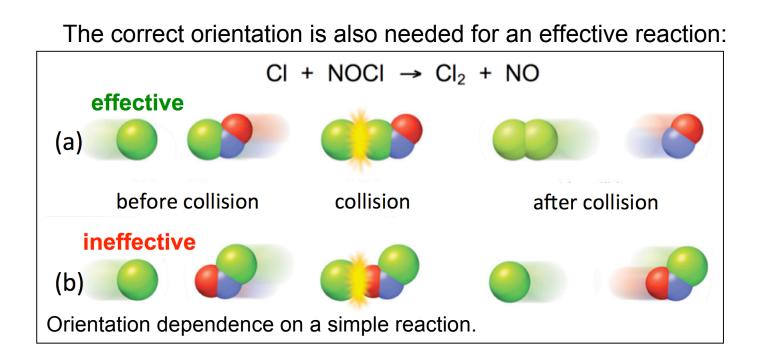
A very simple picture of a chemical reaction between two molecules is that

- 1. They must collide with enough energy to react
- 2. They must collide in the correct orientation to react

The collision (kinetic energy) can be transferred into <u>vibrational</u> <u>energy</u>, which can lead to <u>bond breaking</u>. This is the first step in a chemical reaction.

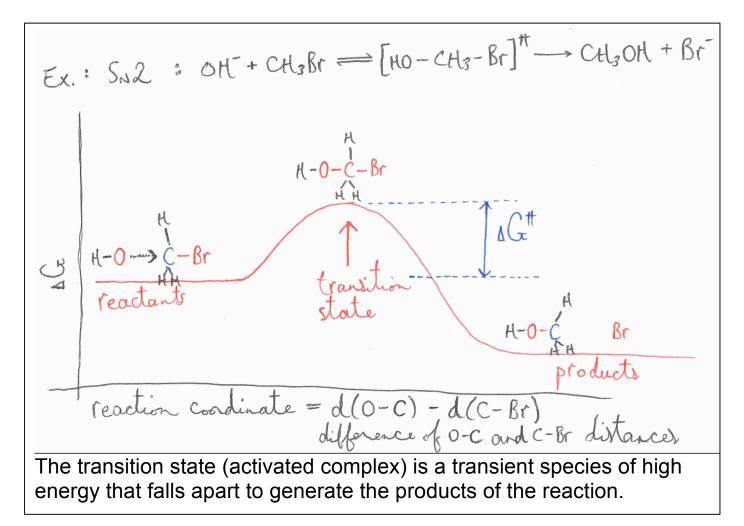
The minimum energy required to initiate a reaction is called the **activation energy**, E_a . If the collision is < E_a , it is ineffective and the reactants simply bounce off each other. Temperature has a large effect on having energy > E_a .





Transition state theory (TST), also known as Activated Complex Theory, is a more sophisticated theory that has two main assumptions

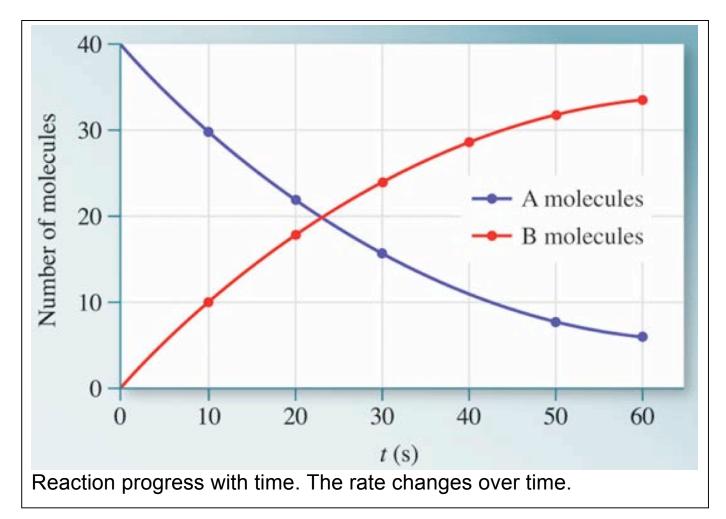
- 1) The transition state is in equilibrium with the reactions.
- 2) One (special) vibrational motion results in the breakup of the transition state into the products.



Measuring Reaction Progress & Expressing Reaction Rate

We can express the reaction rate as either:

- Rate of disappearance of reactants (decrease or -ve)
- Rate of appearance of products (increase or +ve)



We can follow a color change, conductance change, pressure change, or whatever is convenient.

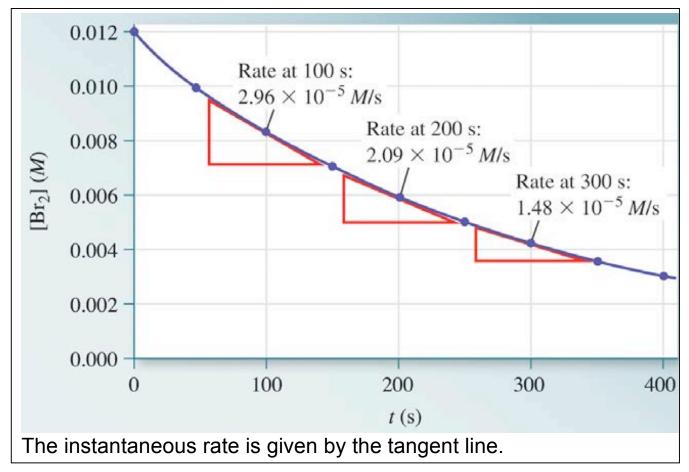
Consider the reaction	$A \rightarrow B.$	
average rate $=$ -	$\Delta[A]$	$\Delta[B]$
average rate – -	Δt –	$\overline{\Delta t}$

Br₂ (aq) + HCOOH (aq) \rightarrow 2 Br⁻ (aq) + 2 H⁺ (aq) + CO₂ (g) (colored)

Reaction progress can be monitored using a spectrometer.

average rate $= -\frac{\Delta[Br_2]}{\Delta t} = -\frac{[Br_2]_{\text{final}} - [Br_2]_{\text{initial}}}{t_{\text{final}} - t_{\text{initial}}}$ The average rate decreases over time (see Table 19.1).

The **instantaneous rate** is given by the tangent line:



From Table 19.1:

Time (s)	[Br ₂]	Rate (<i>M</i> /s)
50	0.0101	3.52 x 10⁻⁵
250	0.00500	1.75 x 10⁻⁵

We can see that when $[Br_2]$ is halved, the rate is halved. Therefore rate \propto $[Br_2]$, or rate = k $[Br_2]$ where k is the proportionality constant.

k = rate constant (does depend on the temperature)

Value of k? $k = \text{rate / [Br_2]}$ at t = 50 s, $k = \frac{3.52 \times 10^{-5} M \text{s}^{-1}}{0.0101 M} = 3.49 \times 10^{-3} \text{ s}^{-1}$ at t = 250 s, $k = \frac{1.75 \times 10^{-5} M \text{s}^{-1}}{0.00500 M} = 3.50 \times 10^{-3} \text{ s}^{-1}$ (same within experimental error)

Consider the reaction $A \rightarrow 2B$. rate $= -\frac{\Delta[A]}{\Delta t} = \frac{1}{2} \frac{\Delta[B]}{\Delta t}$

In general for the reaction $aA + bB \rightarrow cC + dD$ rate $= -\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$

e.g., Write the balanced equation corresponding to the following rate expression

rate = $-\frac{1}{2} \frac{\Delta[N_2O_5]}{\Delta t} = \frac{1}{2} \frac{\Delta[N_2]}{\Delta t} = \frac{1}{5} \frac{\Delta[O_2]}{\Delta t}$

Solution:

-ve sign indicates reactants and +ve sign indicates products.

So this reaction should be: $2N_2O_5 \rightarrow 2N_2 + 5O_2$ We should double check that the reaction is balanced.

e.g., Consider the following unbalanced equation: $A + B \rightarrow C$. When C is being formed at the rate of 0.086 *M*/s, A is being consumed at a rate of 0.172 *M*/s, and B at 0.258 *M*/s. Balance the equation from this information. Solution:

We are told that $\frac{\Delta[C]}{\Delta t} = 0.086$, $\frac{\Delta[A]}{\Delta t} = -0.172$, $\frac{\Delta[B]}{\Delta t} = -0.258$ If we write the balanced equation $aA + bB \rightarrow cC$, we know that

 $-\frac{1}{a}\frac{\Delta[\mathbf{A}]}{\Delta t} = -\frac{1}{b}\frac{\Delta[\mathbf{B}]}{\Delta t} = \frac{1}{c}\frac{\Delta[\mathbf{C}]}{\Delta t} \quad \text{or} \quad \frac{0.172}{a} = \frac{0.258}{b} = \frac{0.086}{c}$

If we divide each expression by 0.086 we get $\frac{2}{a} = \frac{3}{b} = \frac{1}{c}$ Therefore a = 2, b = 3, and c = 1.

Dependence of Reaction Rate on Reactant Concentration

In the bromine reaction we considered earlier, $Br_2(aq) + HCOOH(aq) \rightarrow 2Br^-(aq) + 2H^+(aq) + CO_2(g)$ we determined the rate = k [Br₂].

In terms of the reactant concentrations, we write rate = $k[Br_2]^x + [HCOOH]^y$

with x = 1 and y = 0. The exponents (x and y) are <u>empirically</u> determined. Without experimental data we can't simply predict their values.

In general, for $aA + bB \rightarrow cC + dD$, the rate law is rate $= k[A]^x[B]^y$

> x = 0: the reaction is 0th order with respect to A.

> x = 1: the reaction is 1st order with respect to A.

> x = 2: the reaction is 2nd order with respect to A.

The overall reaction order is the sum of the exponents, so the bromine reaction is 1^{st} order overall (1 + 0 = 1).

To determine the rate law, we often analyze <u>initial rate</u> data from experiments. (The initial rate is the instantaneous rate at the beginning of the reaction.)

For the reaction $F_2(g) + 2CIO_2(g) \rightarrow 2FCIO_2(g)$ we have the following experimental data:

TABLE 19.2	Initial Rate Data for t	he Reaction Between	F ₂ and ClO ₂
Experiment	$[F_2](M)$	[CIO ₂] (<i>M</i>)	Initial rate (M/s)
1	0.10	0.010	1.2×10^{-3}
2	0.10	0.040	4.8×10^{-3}
3	0.20	0.010	2.4×10^{-3}

We know the rate law must be $rate = k[F_2]^x[ClO_2]^y$. Comparing exp. 1 and 3,

 $\frac{\text{rate}_3}{\text{rate}_1} = \frac{k[\text{F}_2]^x[\text{ClO}_2]^y}{k[\text{F}_2]^x[\text{ClO}_2]^y} = \frac{2.4 \times 10^{-3} M \text{s}^{-1}}{1.2 \times 10^{-3} M \text{s}^{-1}} = \frac{k[0.20]^x[0.010]^y}{k[0.10]^x[0.010]^y}$ $\Rightarrow 2 = 2^x \Rightarrow x = 1$

 $\begin{aligned} & \frac{\text{rate}_2}{\text{rate}_1} = \frac{k[\text{F}_2]^x[\text{ClO}_2]^y}{k[\text{F}_2]^x[\text{ClO}_2]^y} = \frac{4.8 \times 10^{-3} M \text{s}^{-1}}{1.2 \times 10^{-3} M \text{s}^{-1}} = \frac{k[0.10]^x[0.040]^y}{k[0.10]^x[0.010]^y} \\ & \Rightarrow 4 = 4^y \Rightarrow y = 1 \end{aligned}$

Therefore we have

rate = $k[F_2]^1[ClO_2]^1$ (2nd order overall)

Then we can determine *k* from any single exp. $k = \frac{\text{rate}}{[F_2][\text{ClO}_2]} = \frac{2.4 \times 10^{-3} M \text{s}^{-1}}{[0.20 M][0.010 M]} = 1.2 M^{-1} \text{s}^{-1}$

The rate has units of $M \text{ s}^{-1}$, so k has units as follows:

	of the Rate Constant <i>k</i> for Reactions of Orders	of Various
Overall reaction order	Sample rate law	Units of <i>k</i>
0	rate $= k$	$M \cdot \mathrm{s}^{\scriptscriptstyle -1}$
1	rate = k [A] or rate = k [B]	s^{-1}
2	rate = $k[A]^2$, rate = $k[B]^2$, or rate = $k[A][B]$	$M^{-1} \cdot \mathrm{s}^{-1}$
3*	rate = $k[A]^2[B]$ or rate = $k[A][B]^2$	$M^{-2} \cdot \mathrm{s}^{-1}$
*Another possibility for a third-order reaction	is rate = k [A][B][C], although such reactions are very rar	e.

Note:

rate law defined in terms of reactants only

- > exponents are usually positive whole numbers or zero
 - can be negative (inhibitor)
 - can be a fraction (won't see in this course)

e.g., For the reaction $A + B \rightarrow 2C$, the rate = $k[A]^2$ with $k = 1.3 \times 10^{-2} M^{-1} s^{-1}$. Fill in the missing table entries:

Experiment	[A] (<i>M</i>)	[B] (<i>M</i>)	Initial rate (M/s)
1	0.013	0.250	2.20×10^{-6}
2	0.026	0.250	
3		0.500	2.20×10^{-6}

Solution:

Blue entry: the rate is the same as exp. 1, so [A] must be the same as exp. 1 since this is what the rate depends on.

Green entry: since [A] doubles from exp. 1, the rate must be 2^2 = 4 times the rate of exp. 1 = 8.80 × 10⁻⁶.

Dependence of Reaction Concentration on Time

How do the reactant (and product) concentrations change with time? Analyze this in terms of the overall reaction order.

First Order Reactions

A first order reaction depends on the concentration of one of the reactants raised to the first power. We will write such a reaction as $aA \rightarrow products$.

rate $= -\frac{1}{a} \frac{\Delta[A]}{\Delta t} = k[A] \Rightarrow -\frac{\Delta[A]}{\Delta t} = (ak)[A] = k^*[A]$ where we have redefined the rate constant to include the stoichiometric coefficient. Now we change Δ to d (finite change to infinitesimal change) and just write k for k^* d[A] = d[A] = d[A]

$$-\frac{d[\mathbf{A}]}{dt} = k[\mathbf{A}] \implies \frac{d[\mathbf{A}]}{[\mathbf{A}]} = -k \, dt \text{ or } \frac{1}{[\mathbf{A}]} d[\mathbf{A}] = -k \, dt$$

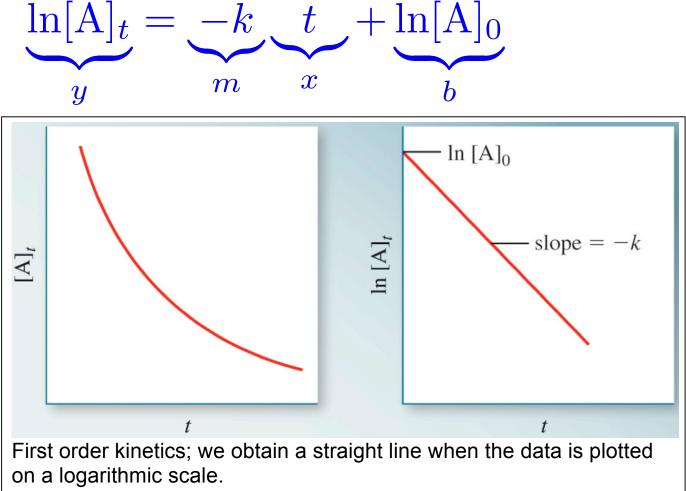
and integrate from t = 0 to t = t

$$\int_{[A]_0}^{[A]_t} \frac{1}{[A]} d[A] = -k \int_0^t dt$$

which gives the first order integrated rate law $\ln[A]_t - \ln[A]_0 = -kt$ or $\ln \frac{[A]_t}{[A]_0} = -kt$ or $[A]_t = [A]_0 e^{-kt}$

e.g., For $2A \rightarrow B$, $k = 7.5 \times 10^{-3} \text{ s}^{-1}$. With $[A]_0 = 2.25 M$, find [A] after 2 minutes.

Solution: 2 minutes = 120 s, so $[A]_t = [A]_0 e^{-kt} = (2.25 M) e^{-0.9} = 0.91 M$ From concentration vs. time data (*e.g.* Lab 17 in Chem 1112) we would do the following:



<u>Half-life</u>: The half-life of a reaction $(t_{1/2})$ is the time required for the reactant concentration to drop to half of its original value. We express this as

$$\begin{split} [A]_t &= [A]_{t_{1/2}} = \frac{[A]_0}{2} \implies \frac{[A]_{t_{1/2}}}{[A]_0} = \frac{1}{2} \\ \text{Then the integrated rate law gives} \\ \ln \frac{[A]_{t_{1/2}}}{[A]_0} &= \ln \frac{1}{2} = -kt_{1/2} \end{split}$$

$$\ln \frac{1}{2} = -\ln 2 \approx -0.693$$
 so that $t_{1/2} = \frac{0.693}{k}$



e.g., Calculate the rate constant for the first order decay of 24 Na (t_{1/2} = 14.96 hours).

Solution: $14.96 h = \frac{0.693}{k} \Rightarrow k = \frac{0.693}{14.96 h} = 4.63 \times 10^{-2} h^{-1} \left(\times \frac{24 h}{1 day} = 1.11 day^{-1} \right)$ e.g., The decomposition of H_2O_2 is first order: $H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$ with $k = 7.00 \times 10^{-4} \text{ s}^{-1}$ and $[H_2O_2]_0 = 0.100 \text{ M}$. How long will it take for $[H_2O_2] = 0.0370 \text{ M}$?

Solution: $\ln \frac{[A]_t}{[A]_0} = -kt \implies t = -\frac{1}{k} \ln \frac{[A]_t}{[A]_0} = -\frac{1}{7 \times 10^{-4} \,\mathrm{s}^{-1}} \ln \frac{0.0370 \, M}{0.100 \, M}$ = 1420 s = 23.7 min.

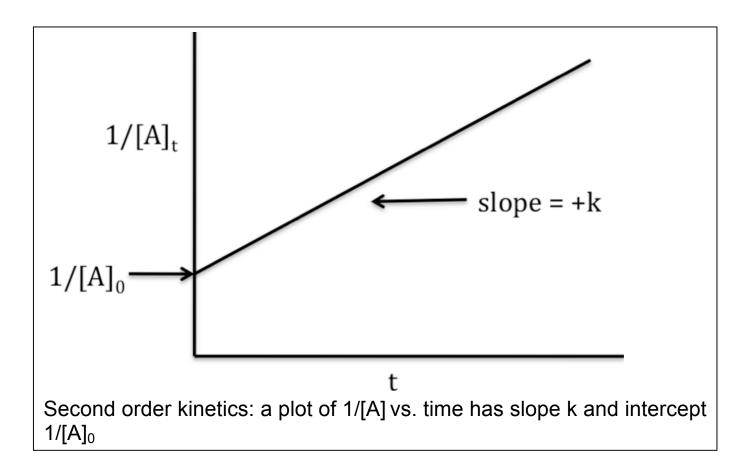
Second Order Reactions

For $A + B \rightarrow C$, A second order reaction looks like either 1) rate = $k[A]^2$ 2) rate = k[A][B]

We will only consider case 1).

Similar to the first order case, we redefine the rate constant to include the stoichiometric coefficient. We write

rate = $-\frac{\Delta[A]}{\Delta t} = k[A]^2$ Now we change Δ to d (finite change to infinitesimal change): $-\frac{d[A]}{dt} = k[A]^2 \Rightarrow \frac{1}{[A]^2} d[A] = -k dt$ Then we integrate from t = 0 to t = t $\int_{[A]_0}^{[A]_t} \frac{1}{[A]^2} d[A] = -k \int_0^t dt \Rightarrow -\frac{1}{[A]_t} + \frac{1}{[A]_0} = -kt$ and rearrange $\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$



To compute the half-life, we use $[A]_t = [A]_{t_{1/2}} = [A]_0/2$

$$\frac{1}{[A]_0/2} = kt_{1/2} + \frac{1}{[A]_0} \quad \Rightarrow \quad t_{1/2} = \frac{1}{k[A]_0}$$

e.g., The reaction $2A \rightarrow B$ is second order in A with $k = 32 M^{-1}$ s⁻¹. (a) With $[A]_0 = 0.0075 M$, how long does it take for [A] to drop to 0.0018 M? Calculate the half-life of the reaction for $[A]_0 = 0.0075 M$ and for $[A]_0 = 0.0025 M$.

Solution:

$$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0} \Rightarrow kt = \frac{1}{[A]_t} - \frac{1}{[A]_0} \Rightarrow t = \frac{1}{k[A]_t} - \frac{1}{k[A]_0}$$

$$t = \frac{1}{(32 M^{-1} s^{-1})(0.0018 M)} - \frac{1}{(32 M^{-1} s^{-1})(0.0075 M)} = 17.36 s - 4.17 s$$
=13.2 s. For the half-life,

$$t_{1/2} = \frac{1}{(32 M^{-1} s^{-1})(0.0075 M)} = 4.17 s$$

$$t_{1/2} = \frac{1}{(32 M^{-1} s^{-1})(0.0025 M)} = 12.5 s$$

Zeroth Order Reactions

A zeroth order reaction is independent of reactant concentration: For $aA \rightarrow products$, rate = $k[A]^0 = k$.

Once again, we redefine the rate constant to include the stoichiometric coefficient and write

 $\begin{aligned} &-\frac{\Delta[\mathbf{A}]}{\Delta t} = k \\ &\text{Now we change } \Delta \text{ to } d \text{ (finite change to infinitesimal change):} \\ &-\frac{d[\mathbf{A}]}{dt} = k \quad \Rightarrow \quad d[\mathbf{A}] = -k \ dt \end{aligned}$

Then we integrate from t = 0 to t = t

$$\int_{[A]_0}^{[A]_t} d[A] = -k \int_0^t dt \implies [A]_t - [A]_0 = -kt \text{ or } [A]_t = -kt + [A]_0$$

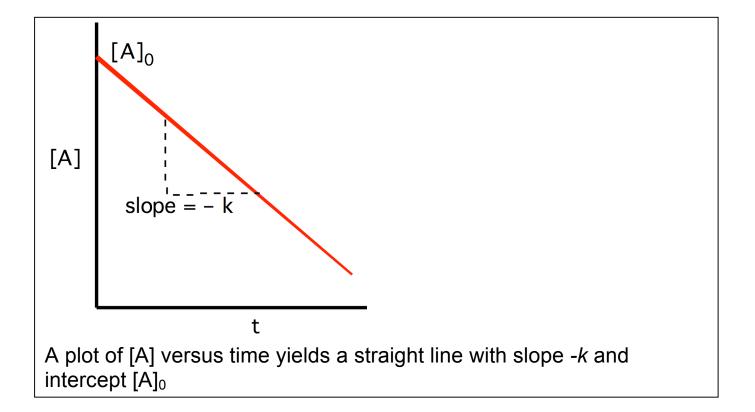


TABLE 19.5	Summary of the Kinetics of Zeroth-Order, First-Order, and Second-Order Reactions		
Order	Rate law	Integrated rate law	Half-Life
0	rate $= k$	$\left[\mathbf{A}\right]_{t} = -kt + \left[\mathbf{A}\right]_{0}$	$\frac{[A]_0}{2k}$
1	rate = $k[A]$	$\ln \frac{[A]_t}{[A]_0} = -kt$	$\frac{0.693}{k}$
2	rate = $k[A]^2$	$\frac{1}{\left[\mathbf{A}\right]_{t}} = kt + \frac{1}{\left[\mathbf{A}\right]_{0}}$	$\frac{1}{k[A]_0}$

Dependence of Reaction Rate on Temperature

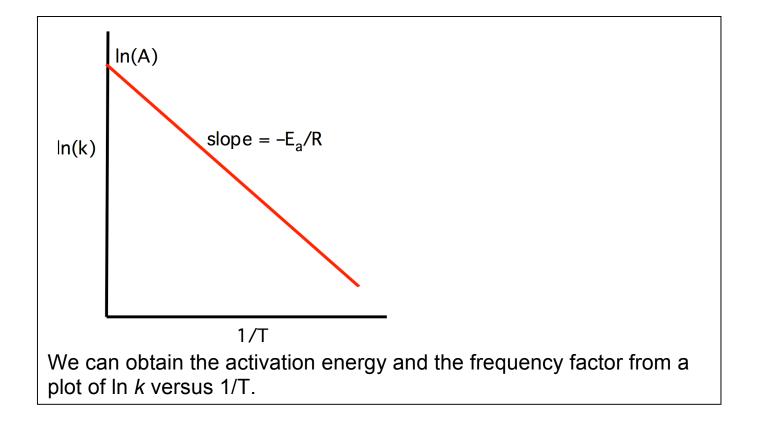
Reactions almost always occur faster at higher temperature. Quantified by the <u>Arrhenius Equation</u> for the rate constant

 $\begin{aligned} k &= A e^{-E_a/RT} \\ & \text{A = frequency factor} \\ & \text{E}_a \text{ = activation energy} \\ & \text{R = gas constant = 8.314 J K}^{-1} \text{ mol}^{-1} \\ & \text{T = temperature (in K)} \end{aligned}$

Increase E_a : decrease k Increase T : increase k

Take the logarithm of the Arrhenius Equation:

 $\ln k = \ln A - \frac{E_a}{RT} \qquad (\text{used } \ln xy = \ln x + \ln y)$



Now, consider two different temperatures:

 $\ln k_1 = \ln A - \frac{E_a}{RT_1} (1)$ and $\ln k_2 = \ln A - \frac{E_a}{RT_2} (2)$

Subtract (1) – (2) to obtain

$$\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

e.g., Determine E_a , and also k at 655 K, from the data:

T (K)	k (s⁻¹)
625	1.1 x 10 ⁻⁴
635	1.5 x 10 ⁻⁴
645	2.0 x 10 ⁻⁴

Solution:

From the first two data points,

 $\ln \frac{1.1}{1.5} = \frac{E_a}{R} \left(\frac{1}{635 \,\mathrm{K}} - \frac{1}{625 \,\mathrm{K}} \right) \Rightarrow -0.31 = (E_a/R)(-2.52 \times 10^5 \,\mathrm{K}^{-1})$ $E_a = (-0.31)(8.314 \,\mathrm{J} \,\mathrm{K}^{-1} \mathrm{mol}^{-1})/(-2.52 \times 10^5 \,\mathrm{K}^{-1}) = 102.3 \,\mathrm{kJ/mol}$

Then, using T = 645 K and T = 655 K, we have $\ln \frac{2.0}{k} = \frac{102.3 \times 10^3 \,\mathrm{J \, mol}^{-1}}{8.314 \,\mathrm{J \, K^{-1} mol}^{-1}} \left(\frac{1}{655 \,\mathrm{K}} - \frac{1}{645 \,\mathrm{K}}\right) = -0.291$ $\Rightarrow \ln 2.0 \times 10^{-4} - \ln k = -0.291 \Rightarrow \ln k = -8.226$ $\Rightarrow k = e^{-8.226} = 2.7 \times 10^{-4}$

Reaction Mechanisms

- Most reactions occur in a series of steps
- The balanced equation does not tell us how the reaction occurs!
- $\circ\,$ The series of steps is the reaction mechanism

Consider the reaction $2 \operatorname{NO}(g) + O_2(g) \rightarrow 2 \operatorname{NO}_2(g)$

This reaction cannot occur as written because

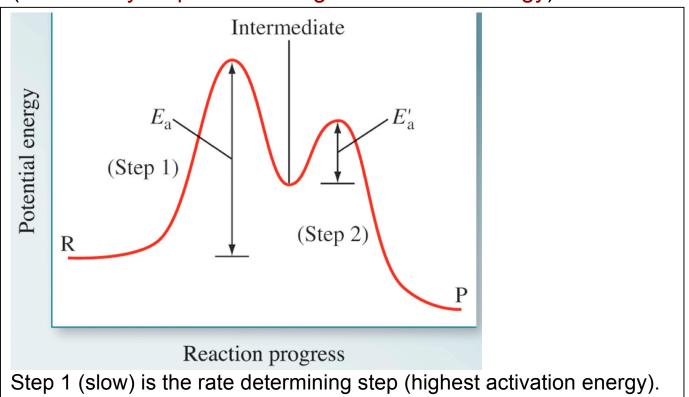
- 1. The simultaneous collision of 3 molecules is unlikely
- 2. N_2O_2 is detected during the course of the reaction

Possible mechanism:

elementary rxn 1: $NO + NO \rightarrow N_2O_2$ (slow)

elementary rxn 2: $N_2O_2 + O_2 \rightarrow 2 NO_2$ (fast)

The elementary reactions must add up to give the overall rxn. **Rate determining step**: slowest step in the rxn mechanism (elementary step with the largest activation energy)



N₂O₂ is called an *intermediate* because

1. It appears in the mechanism but not in the balanced Eq.

2. It is produced in one step and consumed in a later step.

For each elementary reaction, the rate law is given by the stoichiometry coefficients:

elementary rxn 1: $NO + NO \rightarrow N_2O_2$ (slow) rate₁ = $k_1[NO]^2$ elementary rxn 2: $N_2O_2 + O_2 \rightarrow 2 NO_2$ (fast) rate₂ = $k_2[N_2O_2][O_2]$

The rate law of the rate-determining step must be <u>equal</u> to the overall reaction rate law.

For $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{NO}_2(g)$ this is: rate = $k[\operatorname{NO}]^2$

For the reaction $H_2 + 2ICI \rightarrow 2HCI + I_2$ the experimentally determined rate law = k[H2][ICI].

What reaction mechanism is consistent with this information?

elementary rxn 1: $H_2 + ICI \rightarrow HCI + HI$ (slow) elementary rxn 2: $HI + ICI \rightarrow HCI + I_2$ (fast) e.g., Propose a plausible mechanism for the reaction $A + 2B \rightarrow C + D$ given that the rate law is *k*[A][B]

Solution:		
elementary rxn 1:	$A + B \rightarrow C + E$	(slow)
elementary rxn 2:	$B + E \rightarrow D$	(fast)

Mechanisms with a Fast First Step

Consider the reaction $2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$ with experimentally determined rate = $k[NO]^2[Cl_2]$.

One possibility is that this reaction *is* an elementary step. But this is unlikely because it would require 3 molecules simultaneously colliding.

A more plausible mechanism is

elementary rxn 1:	$NO + Cl_2 \rightarrow NOCl_2$	(fast)
elementary rxn 2:	$NOCl_2 + NO \rightarrow 2NOCl$	(slow)

The overall rate law is given by the rate-determining step, which gives rate = $k[NOCl_2][NO]$

But this rate expression contains an *intermediate*, NOCl₂. We need an expression that only contains the <u>reactants</u>, or else we can't compare to the experimental rate law.

Since NOCl₂ is produced quickly and consumed slowly, it reaches a *steady state* concentration, and the first (fast) step establishes a dynamic equilibrium (forward = backward rate).

We express this as:

•

$$NO + Cl_2 \stackrel{k_1}{\rightleftharpoons} NOCl_2$$
$$NOCl_2 + NO \stackrel{k_2}{\rightarrow} 2NOCl_3$$

The dynamic equilibrium is $k_1[\text{NO}][\text{Cl}_2] = k_{-1}[\text{NOCl}_2]$ which lets us express $[\text{NOCl}_2] = \frac{k_1}{k_{-1}}[\text{NO}][\text{Cl}_2]$

The rate law is then:

rate = $k_2[NOCl_2][NO] = \frac{k_2k_1}{k_{-1}}[NO]^2[Cl_2]$

e.g., The reaction $H_2 + I_2 \rightarrow 2HI$ proceeds via a 2-step mechanism in which the rate law for the rate-determining step = $k[H_2][I]^2$. Write the mechanism and rewrite the rate law using only reactant concentrations.

Solution:

elementary rxn 1 : $I_2 \rightleftharpoons_{k_{-1}}^{k_1} 2I$ (fast) elementary rxn 2 : $H_2 + 2I \rightleftharpoons^{k_2} 2HI$ (slow)

The dynamic equilibrium is $k_1[I_2] = k_{-1}[I]^2$ so that $[I]^2 = \frac{k_1}{k_{-1}}[I_2] \Rightarrow \text{rate} = \frac{k_2k_1}{k_{-1}}[H_2][I_2]$

Catalyst:

In the presence of iodide ions (I^{-}), the decomposition of hydrogen peroxide *speeds up*.

Overall rxn: $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(q)$

Experimental rate law = $k[H_2O_2][I^-]$

elementary rxn 1:	$H_2O_2 + I^2$	\rightarrow H ₂ O + IO ⁻	(slow)
elementary rxn 2:	$H_2O_2 + IO^-$	\rightarrow H ₂ O + O ₂ + I ⁻	(fast)

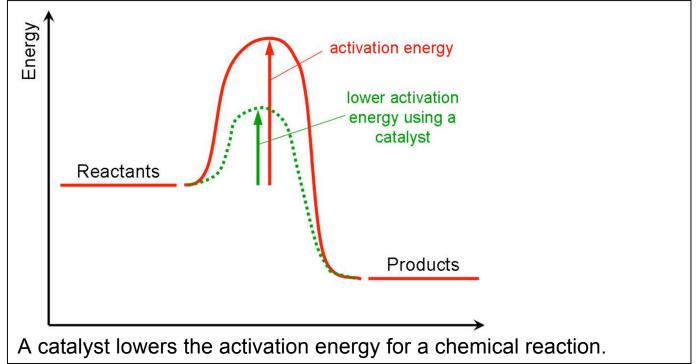
Recall that IO⁻ is called an *intermediate* because

- 1. It appears in the mechanism but not in the balanced Eq.
- 2. It is produced in one step and consumed in a later step.

What about the iodide ion?

- 1. It, also, does not appear in the balanced Eq.
- 2. It is consumed in one step and produced in a later step.

It is present at the start of the rxn, and it is present at the end. It is called a catalyst. Its function is to *speed up* the reaction.



Types of Catalysts

Heterogeneous catalysts: The reactants and catalyst are in different phases. The catalyst is often a solid (with a high surface area).

These are extremely important in industrial chemistry.

Homogeneous catalysts: The reactants and catalyst are in the same phase.

Enzyme catalysts: biological catalysts (in living cells)

