Perturbation Theory Notes

Write

$$
\begin{equation*}
H=H_{0}+\lambda V \tag{1}
\end{equation*}
$$

Here H represents the problem of interest when $\lambda=1 . H_{0}$ represents a problem with known solutions. We can think about turning on the perturbation from $\lambda=0$.

Let us take H_{0} to be the particle in a box problem, and take the perturbation, V as

$$
\begin{equation*}
V(x)=a x-\frac{a L}{2} \tag{2}
\end{equation*}
$$

so that the perturbation is symmetrical and shouldn't raise the overall energy of the particle.
For the particle in a box we have

$$
\begin{equation*}
H_{0} \phi_{n}^{(0)}=E_{n}^{(0)} \phi_{n}^{(0)} \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
E_{n}^{(0)}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{n}^{(0)}=\sqrt{2 / L} \sin (n \pi x / L) \tag{5}
\end{equation*}
$$

Recall that the set $\left\{\phi_{n}^{(0)}\right\}$ forms a basis, where $n \in[1, \infty)$.
Let ϕ_{n}, E_{n} be the fully perturbed $(\lambda=1)$ wavefunctions and energies, $H \phi_{n}=E_{n} \phi_{n}$.
We seek a perturbative expansion (a power series) of the form

$$
\begin{gather*}
E_{n}=E_{n}^{(0)}+\lambda E_{n}^{(1)}+\lambda^{2} E_{n}^{(2)}+\cdots \tag{6}\\
\phi_{n}=\phi_{n}^{(0)}+\lambda \phi_{n}^{(1)}+\lambda^{2} \phi_{n}^{(2)}+\cdots \tag{7}
\end{gather*}
$$

Substituting into $H \phi_{n}=E_{n} \phi_{n}$ yields

$$
\begin{array}{r}
\left(H_{0}+\lambda V\right)\left(\phi_{n}^{(0)}+\lambda \phi_{n}^{(1)}+\lambda^{2} \phi_{n}^{(2)}+\cdots\right)= \\
\left(E_{n}^{(0)}+\lambda E_{n}^{(1)}+\lambda^{2} E_{n}^{(2)}+\cdots\right)\left(\phi_{n}^{(0)}+\lambda \phi_{n}^{(1)}+\lambda^{2} \phi_{n}^{(2)}+\cdots\right) \tag{8}
\end{array}
$$

To proceed we equate like powers of λ. This is because we want this expression to hold for any value of λ. The easiest way to see that we should collect powers of λ is to set $\lambda=0$, which gives us the expression containing only zeroth powers. Next, we take $d / d \lambda$ on both sides and evaluate at $\lambda=0$, which gives us the expression containing only first powers. Next, we take $d^{2} / d \lambda^{2}$ on both sides and evaluate at $\lambda=0$, which gives us the expression containing only second powers. And so on. Let us write down these expressions.

$$
\begin{align*}
\lambda^{0}: & H_{0} \phi_{n}^{(0)}=E_{n}^{(0)} \phi_{n}^{(0)} \\
\lambda^{1}: & H_{0} \phi_{n}^{(1)}+V \phi_{n}^{(0)}=E_{n}^{(0)} \phi_{n}^{(1)}+E_{n}^{(1)} \phi_{n}^{(0)} \tag{9}
\end{align*}
$$

The zeroth power expression is just the unperturbed problem. To proceed with the first power expression we expand $\phi_{n}^{(1)}$ using our basis set $\left\{\phi_{n}^{(0)}\right\}$

$$
\begin{equation*}
\phi_{n}^{(1)}=\sum_{\ell=1}^{\infty} c_{\ell} \phi_{\ell}^{(0)} \tag{11}
\end{equation*}
$$

This gives

$$
\begin{equation*}
H_{0} \sum_{\ell=1}^{\infty} c_{\ell} \phi_{\ell}^{(0)}+V \phi_{n}^{(0)}=E_{n}^{(0)} \sum_{\ell=1}^{\infty} c_{\ell} \phi_{\ell}^{(0)}+E_{n}^{(1)} \phi_{n}^{(0)} \tag{12}
\end{equation*}
$$

In the expression we known that

$$
\begin{equation*}
H_{0} \sum_{\ell=1}^{\infty} c_{\ell} \phi_{\ell}^{(0)}=\sum_{\ell=1}^{\infty} c_{\ell} E_{\ell}^{(0)} \phi_{\ell}^{(0)} \tag{13}
\end{equation*}
$$

Making this replacement, we now multiply on both sides by $\phi_{s}^{(0)}$ and integrate

$$
\begin{equation*}
\sum_{\ell=1}^{\infty} c_{\ell} E_{\ell}^{(0)} \delta_{s \ell}+\int_{0}^{L} V(x) \phi_{s}^{(0)} \phi_{n}^{(0)} d x=E_{n}^{(0)} \sum_{\ell=1}^{\infty} c_{\ell} \delta_{s \ell}+E_{n}^{(1)} \delta_{s n} \tag{14}
\end{equation*}
$$

Defining (this is matrix element notation)

$$
\begin{equation*}
\int_{0}^{L} V(x) \phi_{s}^{(0)} \phi_{n}^{(0)} d x=V_{s n} \tag{15}
\end{equation*}
$$

we have, after collapsing the sums,

$$
\begin{equation*}
c_{s} E_{s}^{(0)}+V_{s n}=c_{s} E_{n}^{(0)}+E_{n}^{(1)} \delta_{s n} \tag{16}
\end{equation*}
$$

For $s=n$ we have

$$
\begin{equation*}
E_{n}^{(1)}=V_{n n} \tag{17}
\end{equation*}
$$

For $s \neq n$ we have

$$
\begin{equation*}
c_{s} E_{s}^{(0)}+V_{s n}=c_{s} E_{n}^{(0)} \tag{18}
\end{equation*}
$$

which yields (non-degenerate case)

$$
\begin{equation*}
c_{s}=\frac{V_{s n}}{E_{n}^{(0)}-E_{s}^{(0)}} \tag{19}
\end{equation*}
$$

Thus, to first order, we have

$$
\begin{gather*}
E_{n}=E_{n}^{(0)}+\lambda V_{n n}+\cdots \tag{20}\\
\phi_{n}=\phi_{n}^{(0)}+\lambda \sum_{\ell \neq n} \frac{V_{\ell n}}{E_{n}^{(0)}-E_{\ell}^{(0)}} \phi_{\ell}^{(0)}+\cdots \tag{21}
\end{gather*}
$$

