Perturbation Theory Notes

Write

$$H = H_0 + \lambda V \tag{1}$$

Here *H* represents the problem of interest when $\lambda = 1$. H_0 represents a problem with known solutions. We can think about *turning on* the perturbation from $\lambda = 0$.

Let us take H_0 to be the particle in a box problem, and take the perturbation, V as

$$V(x) = ax - \frac{aL}{2} \tag{2}$$

so that the perturbation is symmetrical and shouldn't raise the overall energy of the particle.

For the particle in a box we have

$$H_0\phi_n^{(0)} = E_n^{(0)}\phi_n^{(0)} \tag{3}$$

with

$$E_n^{(0)} = \frac{n^2 \pi^2 \hbar^2}{2mL^2} \tag{4}$$

and

$$\phi_n^{(0)} = \sqrt{2/L} \sin(n\pi x/L)$$
 (5)

Recall that the set $\{\phi_n^{(0)}\}$ forms a *basis*, where $n \in [1, \infty)$. Let ϕ_n , E_n be the fully perturbed $(\lambda = 1)$ wavefunctions and energies, $H\phi_n = E_n\phi_n$. We seek a perturbative expansion (a power series) of the form

$$E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \cdots$$
(6)

$$\phi_n = \phi_n^{(0)} + \lambda \phi_n^{(1)} + \lambda^2 \phi_n^{(2)} + \cdots$$
 (7)

Substituting into $H\phi_n = E_n\phi_n$ yields

$$(H_0 + \lambda V) \left(\phi_n^{(0)} + \lambda \phi_n^{(1)} + \lambda^2 \phi_n^{(2)} + \cdots \right) = \left(E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \cdots \right) \left(\phi_n^{(0)} + \lambda \phi_n^{(1)} + \lambda^2 \phi_n^{(2)} + \cdots \right)$$
(8)

To proceed we equate like powers of λ . This is because we want this expression to hold for any value of λ . The easiest way to see that we should collect powers of λ is to set $\lambda = 0$, which gives us the expression containing only *zeroth* powers. Next, we take $d/d\lambda$ on both sides and evaluate at $\lambda = 0$, which gives us the expression containing only *first* powers. Next, we take $d^2/d\lambda^2$ on both sides and evaluate at $\lambda = 0$, which gives us the expression containing only *second* powers. And so on. Let us write down these expressions.

$$\lambda^0: H_0 \phi_n^{(0)} = E_n^{(0)} \phi_n^{(0)} (9)$$

$$\lambda^{1}: H_{0}\phi_{n}^{(1)} + V\phi_{n}^{(0)} = E_{n}^{(0)}\phi_{n}^{(1)} + E_{n}^{(1)}\phi_{n}^{(0)} (10)$$

The zeroth power expression is just the unperturbed problem. To proceed with the first power expression we expand $\phi_n^{(1)}$ using our basis set $\{\phi_n^{(0)}\}$

$$\phi_n^{(1)} = \sum_{\ell=1}^{\infty} c_\ell \phi_\ell^{(0)} \tag{11}$$

This gives

$$H_0 \sum_{\ell=1}^{\infty} c_\ell \phi_\ell^{(0)} + V \phi_n^{(0)} = E_n^{(0)} \sum_{\ell=1}^{\infty} c_\ell \phi_\ell^{(0)} + E_n^{(1)} \phi_n^{(0)}$$
(12)

In the expression we known that

$$H_0 \sum_{\ell=1}^{\infty} c_\ell \phi_\ell^{(0)} = \sum_{\ell=1}^{\infty} c_\ell E_\ell^{(0)} \phi_\ell^{(0)}$$
(13)

Making this replacement, we now multiply on both sides by $\phi_s^{(0)}$ and integrate

$$\sum_{\ell=1}^{\infty} c_{\ell} E_{\ell}^{(0)} \delta_{s\ell} + \int_{0}^{L} V(x) \phi_{s}^{(0)} \phi_{n}^{(0)} dx = E_{n}^{(0)} \sum_{\ell=1}^{\infty} c_{\ell} \delta_{s\ell} + E_{n}^{(1)} \delta_{sn}$$
(14)

Defining (this is matrix element notation)

$$\int_{0}^{L} V(x)\phi_{s}^{(0)}\phi_{n}^{(0)} dx = V_{sn}$$
(15)

we have, after collapsing the sums,

$$c_s E_s^{(0)} + V_{sn} = c_s E_n^{(0)} + E_n^{(1)} \delta_{sn}$$
(16)

For s = n we have

$$E_n^{(1)} = V_{nn} \tag{17}$$

For $s \neq n$ we have

$$c_s E_s^{(0)} + V_{sn} = c_s E_n^{(0)} \tag{18}$$

which yields (non-degenerate case)

$$c_s = \frac{V_{sn}}{E_n^{(0)} - E_s^{(0)}} \tag{19}$$

Thus, to first order, we have

$$E_n = E_n^{(0)} + \lambda V_{nn} + \cdots$$
(20)

$$\phi_n = \phi_n^{(0)} + \lambda \sum_{\ell \neq n} \frac{V_{\ell n}}{E_n^{(0)} - E_\ell^{(0)}} \phi_\ell^{(0)} + \dots$$
(21)