
Error Detection Schemes

PostNET
The scheme used by the US Postal Service to encode zip codes in
machine readable form is called PostNET.

To encode a 5-digit zip code, 32 (long and short) bars are used.
The first and last bars are always long and are not part of the code.
The remaining 30 are divided into 6 groups of 5 bars, each group
representing a digit from 0-9. (9-digit zip codes use 52 bars)
 1 – ı ı ı   4 – ı  ı ı  7 –  ı ı ı  0 –   ı ı ı
 2 – ı ı  ı  5 – ı  ı  ı 8 –  ı ı  ı
 3 – ı ı   ı 6 – ı   ı ı 9 –  ı  ı ı

 Example above is : 56458-2

PostNET
Notice that a 6th digit has been added to the zip code. This last digit
is calculated from the others and is called a check sum digit. It is
the number needed to make the sum of all the digits a multiple of
10 (≡ 0 mod 10).

 So, in our example 5 + 6 + 4 + 5 + 8 = 28 and we need a 2 to get
to 30, so 2 is the check sum digit.

The purpose of the check sum digit is to detect errors in reading the
code. So, for instance, if the 4 in the zip code was misread as a 6,
then the sum of the digits would be 32, not divisible by 10, and so
the postal service's scanner would detect an error and reread the
code.

PostNET

If only one digit is in error (including the check sum digit) this
code will always detect it, since the error can be no larger than 9.
However, the scheme is defeated by any collection of errors which
add up to a multiple of 10.

The association of digits to groups of 5 bars is called a 2 out of 5
code (each group of 5 bars has 2 long bars), a very common coding
scheme used when there are only 10 symbols which need to be
coded. 2 out of 5 codes were used very heavily in the early days of
computers.

PostNET

ZIP (Zone Improvement Plan) codes were introduced by the U.S.
Postal Service in 1963. In 1983, the Postal service added four
more digits to the code and called the result a ZIP + 4 code.
Recently (probably 2003), two more digits were added to create
the Delivery Point Code. All of these codes use the same error
detecting scheme check digit as the basic ZIP code.

PostNET (POSTal Numeric Encoding Technique) is the bar code
scheme used to encode the ZIP code (or any of its derivatives).

ISBN's
The publishing industry uses the International Standard Book
Number (ISBN) to identify books. The ISBN for our text is
 ISBN 0 – 471 – 19047 – 0

This is a 10 digit number where the first group identifies the
language/country/region in which the book was published, the
second group identifies the publisher, the third group identifies the
book and the last digit is a check sum digit.

In this case the check sum digit is calculated so that
 10a

1
 + 9a

2
 + 8a

3
 + ... + 2a

9
 + a

10
 ≡ 0 mod 11,

where the ISBN is a
1
a

2
a

3
...a

9
a

10
. In the case where a

10
 = 10, an “X”

is used as the check sum digit.

ISBN's
So, for our example,
 10(0) + 9(4) + 8(7) + 7(1) + 6(1) + 5(9) + 4(0) + 3(4) + 2(7) = 176
 = 16(11) ≡ 0 mod 11
and the check sum digit is 0.

As with the PostNET code, any single digit error will be detected
because the error (no greater than 9) times a coefficient (no greater
than 10) can not be a multiple of 11 (since 11 is prime). Also, some
pairs of errors will be undetected.

This code however can detect a common type of human error that
the PostNET code can not, namely a transposition error –
interchanging two digits. In the PostNET code, this type of error
does not change the check sum calculation.

ISBN's

Suppose that in the ISBN code, the digits a
i
 and a

j
 are

interchanged. In the check sum calculation, the terms (11-i)a
i
 and

(11-j)a
j
 of the correct ISBN are replaced by (11-i)a

j
 and (11-j)a

i
 .

Thus, the difference in the two calculations is:
 (11-i)a

i
 + (11-j)a

j
 – (11-i)aj – (11-j)a

i
 = (11-i)(a

i
-a

j
) + (11-j)(a

j
-a

i
)

 = (11 - i – 11+ j)(a
i
 -a

j
) = (j-i)(a

i
 – a

j
).

Since i ≠ j and a
i
 ≠ a

j
 (if they are equal there is no change in the

ISBN) and both factors are less than 10, this product can not be a
multiple of 11. The (not necessarily adjacent) transposition error
will therefore be detected.

UPC
The Universal Product Code (UPC) is widely used by
supermarkets and mass market retailers for cash register checkout.

The UPC (actually, UPC-A as there is a compressed version called
UPC-E) is a 12 digit code. The first digit indicates the character set,
the next five identify the manufacturer, the following 5 identify the
product and the last digit is a check sum digit.

The bar code is divided into a left and right side by long thin bar
pairs at the beginning, end and middle. ∥⋯∥⋯∥

UPC
The digits are represented by patterns, of width 7, made up of four
variable width spaces and bars. Digits on the left side are of the
form space-bar-space-bar and those on the right side are of the
form bar-space-bar-space. The bars and spaces are between 1 and
4 units wide. The patterns on the right are the black/white
(bar/space) reversals of those on the left.

UPC
The reversal of the code on the right permits scanning in both
directions. For instance, the digit 1 on the left is 0011001 but on
the right it would be 1100110 and if this is read from the right we
obtain the scan code 0110011 which does not coincide with any of
the left codes – so it can be assigned to the digit 1 (from the right.)

The check sum digit for the UPC is calculated by:
 3a

1
 + a

2
 + 3a

3
 + a

4
 + 3a

5
 + ... + 3a

11
 + a

12
 ≡ 0 mod 10

where a
1
a

2
a

3
 ...a

11
a

12
 is the UPC.

With this calculation all single digit errors are detected, and most
– but not all – adjacent transposition errors are detected.

UPC

If the digits a
i
 and a

i+1
 are interchanged then the check sum would

change by either:
 3a

i
 + a

i+1
 – 3a

i+1
 – a

i
 = 2(a

i
 – a

i+1
)

or
 a

i
 + 3a

i+1
 – a

i+1
 – 3a

i
 = 2(a

i+1
 – a

i
).

Thus, if |a
i
 – a

i+1
| = 5, the change would be ±10 and so, the error

would not be detected.

BookLand (ISBN) Bar Code
The industry standard bar code used to encode the ISBN of a book
is EAN-13 (European Article Numbering system), the European
version of UPC-A. This system encodes 13 digit numbers, with the
last digit being a check sum digit. (Bar codes for non-trade
paperbacks do not encode the ISBN and just use a standard UPC).

A BookLand code starts with 978 followed by the first nine digits
of the ISBN and the 13th digit is a check sum calculated by:
 a

1
 + 3a

2
 + a

3
 + 3a

4
 + a

5
 + + a

11
 + 3a

12
 + a

13
 ≡ 0 mod 10.

BookLand (ISBN) Bar Code

The BookLand code has the same error detecting (and non-
detecting) capabilities as the UPC-A code.

It is interesting to note that because the check digit of the ISBN is
not encoded by BookLand, this bar code loses the capability of
detecting all transposition errors which the ISBN had. Thus, in
order to gain optical scanner capability, a fairly good error
detecting code was replaced by a mediocre one.

By Jan. 1, 2007, all 10-digit ISBN's will be replaced by the 13-digit
BookLand code. When all the 10-digit numbers are used, a new
prefix (979) will be started.

Bank Check Code
On the bottom left of your personal checks there appears a nine
digit Bank Identification Number (between the two “|:” symbols).

The 9th digit of this code is a check sum digit computed by:
 7a

1
 + 3a

2
 + 9a

3
 + 7a

4
 + 3a

5
 + 9a

6
 + 7a

7
 + 3a

8
 + 9a

9
 ≡ 0 mod 10.

Bank Check Code

This code detects all single digit errors and transposition errors of
the forms ...ac... → ...ca... and ...abc... → ...cba... provided that
|a – c| ≠ 5. The UPC and EAN codes can not detect this second
type of transposition error.

Check Sum Schemes
All of the schemes we have looked at have the same basic form.

The coded number will be considered as a vector of length k, i.e.,
(a

1
,a

2
,...,a

k
), and there is a weighting vector also of length k,

(w
1
,w

2
,...,w

k
) so that the kth component of the code is calculated so

that the standard dot product of the two vectors,
 (a

1
,a

2
,...,a

k
)·(w

1
,w

2
,...,w

k
) = a

1
w

1
+a

2
w

2
+...+a

k
w

k
 ≡ 0 mod n

for some integer n, greater than any possible a
i
.

PostNET : k = 6, 10 or 12, n = 10 and (w
1
,w

2
,...,w

k
) = (1,1,...,1)

ISBN : k = 10, n = 11 and (w
1
,w

2
,...,w

k
) = (10,9,8,...,2,1)

UPC-A : k = 12, n = 10 and (w
1
,w

2
,...,w

k
) = (3,1,3,1,...,3,1)

BookLand: k = 13, n = 10 and (w
1
,w

2
,...,w

k
) = (1,3,1,3,...,3,1)

Bank : k = 9, n = 10 and (w
1
,w

2
,...,w

k
) = (7,3,9,7,3,9,7,3,9)

Check Sum Schemes
We can make some general statements about schemes of this type.

Proposition 1: The scheme can detect a single error occurring in
position i if and only if w

i
 is relatively prime to n.

Pf: Suppose that the error in position i is x. That is, instead of the
digit a

i
, we see the digit a

i
 + x. We have that 0 < |x| < n.

The new check sum differs from the original check sum by xw
i
. This

error is undetected iff xw
i
 ≡ 0 mod n. With w

i
 relatively prime to n,

this is equivalent to x ≡ 0 mod n, which is impossible. ❑

Check Sum Schemes
Proposition 2: The scheme can detect a transposition error in
positions i and j if and only if |w

i
 – w

j
| is relatively prime to n.

Pf: Suppose that the digits a
i
 and a

j
 are transposed. The change in

the check sum calculation is:
 a

i
w

i
 + a

j
w

j
 – a

i
w

j
 – a

j
w

i
 = a

i
(w

i
-w

j
) – a

j
(w

i
 – w

j
) = (a

i
 -a

j
)(w

i
 – w

j
).

This transposition is undetected iff |a
i
 – a

j
||w

i
 – w

j
| ≡ 0 mod n. With

|w
i
 – w

j
| relatively prime to n, this is equivalent to |a

i
 – a

j
| ≡ 0 mod n.

But this is impossible unless a
i
 = a

j
 and in that situation no

transposition error has occurred. ❑

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

