
SugarC: Scalable Desugaring of Real-World Preprocessor Usage
into Pure C

Zachary Patterson
The University of Texas at Dallas

USA
Zach.Patterson@utdallas.edu

Zenong Zhang
The University of Texas at Dallas

USA
zenong@utdallas.edu

Brent Pappas
University of Central Florida

USA
pappasbrent@Knights.ucf.edu

Shiyi Wei
The University of Texas at Dallas

USA
swei@utdallas.edu

Paul Gazzillo
University of Central Florida

USA
paul.gazzillo@ucf.edu

ABSTRACT

Variability-aware analysis is critical for ensuring the quality of
configurable C software. An important step toward the develop-
ment of variability-aware analysis at scale is to transform real-
world C software that uses both C and preprocessor into pure C
code, by replacing the preprocessor’s compile-time variability with
C’s runtime-variability. In this work, we design and implement a
desugaring tool, SugarC, that transforms away real-world prepro-
cessor usage. SugarC augments C’s formal grammar specification
with translation rules, performs simultaneous type checking dur-
ing desugaring, and introduces numerous optimizations to address
challenges that appear in real-world preprocessor usage. The exper-
iments on DesugarBench, a benchmark consisting of 108 manually-
created programs, show that SugarC supports many more language
features than two existing desugaring tools. When applied on three
real-world configurable C software, SugarC desugared 774 out of
813 files in the three programs, taking at most ten minutes in the
worst case and less than two minutes for 95% of the C files.

CCS CONCEPTS

• Software and its engineering→ Preprocessors; Source code
generation; Software product lines.

KEYWORDS

C preprocessor, syntax-directed translation, desugaring

ACM Reference Format:

Zachary Patterson, Zenong Zhang, Brent Pappas, Shiyi Wei, and Paul Gazz-
illo. 2022. SugarC: Scalable Desugaring of Real-World Preprocessor Us-
age into Pure C. In 44th International Conference on Software Engineering

(ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3510003.3512763

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3512763

1 INTRODUCTION

The preprocessor is widely used when developing real-world C
programs to enable flexible configuration and reuse of the software.
Its extensive usage has significant impacts on the performance and
reliability of C software. Past studies have shown that bugs exist
only under some configurations of the software (i.e., variability
bugs) [1], and the preprocessor makes bug detection challenging
since only one configuration can be tested at a time [34].

Most research on bug detection in configurable C software fo-
cuses on a combinatorial testing approach [9, 14, 33, 47], which
samples the large software configuration spaces, and then applies
the testing and analysis techniques on each of the samples. How-
ever, the sampling-based approach lacks the guarantee of program
correctness under all configurations. This limitation makes a sound
static analysis more desirable in many applications.

Variability-aware analyses have been developed to detect parsing
errors [16, 24], type errors [26], and run-time defects such as double
free errors [42]. Viewing real-world C programs as being written
in two languages (i.e., C and preprocessor), the variability-aware
analyses analyze C software as a whole using data structures that
represent the combined language. However, the development of
the variability-aware analyses as specialty analyses of the two lan-
guages makes it infeasible to reuse many existing C static analysis
tools which focus on analyzing only C (i.e., variability-oblivious
tools). This explains the large gap in terms of bug detection capabil-
ities between the state-of-the-art variability-oblivious tools (which
can perform inter-procedural analysis using techniques such as
separation logic [20] and model checking [7]) and variability-aware
tools [42]. As research on variability-oblivious analysis marches on,
variability-aware analyses lag behind, because they have to con-
stantly maintain parity with the state-of-the-art, while supporting
the preprocessor, which amplifies the engineering effort.

Our goal is to close the gap by transforming real-world C soft-
ware that uses both C and preprocessor into pure C code, i.e.,
to desugar unpreprocessed C into a simpler subset of the lan-
guage. Desugaring converts the preprocessor’s difficult-to-analyze
compile-time variability into run-time variability represented in
pure C. This desugared code can then be analyzed by existing
variability-oblivious tools which do not support unpreprocessoed
C, or it can be used as a common intermediate representation for
developing new variability-aware analyses.

https://doi.org/10.1145/3510003.3512763
https://doi.org/10.1145/3510003.3512763

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zachary Patterson, Zenong Zhang, Brent Pappas, Shiyi Wei, and Paul Gazzillo

The key challenge to our approach is that preprocessor usage
often has no direct equivalence in C. The transformation tool needs
to account for all interactions of the preprocessor with C usage
and scale to all variations of the source code created by these in-
teractions. Moreover, real-world C programs are not ideal, having
syntactic and type errors in untested configurations [1], an obstacle
to correct and complete transformation.

Prior work on the desugaring approach has limited support
for real-world C. C Reconfigurator [21] is an effort to conduct
variability-aware verification by transforming a subset of unpre-
processed C constructs. But it specifies its transformation on an
idealized language instead of C; as such its implementation lacks
support for many common C constructs including structs and some
function definitions. Hercules [12, 41, 43] handles unpreprocessed
C by traversing abstract syntax trees (ASTs) produced by the Type-
Chef [25] variability-aware C parser and type checker. Hercules’
transformation is informally described and is also not over the com-
plete C grammar; thus, its implementation has unsound support
for C constructs, including structs, functions, and some expres-
sions [41]. Moreover, it relies on the strict assumption that no type
errors are present in any configuration, limiting its capability on
real-world C.

In this paper, we introduce a newly designed desugaring trans-
formation and implement it in a new tool called SugarC that is
capable of desugaring real-world C programs. Because real-world
C is not guaranteed to be type-safe or even syntactically valid in all
configurations, our desugarer performs simultaneous type checking
and transformation and preserves syntactic and type errors in the
desugared output as run-time errors. SugarC is specified as a novel
syntax-directed translation of unpreprocessed C to pure C, where
we augment C’s formal grammar specificationwith translation rules.
This approach combines both the soundness of a formal grammar
specification and the realism of using C’s actual grammar specifica-
tion. Using C’s own grammar makes our support for C constructs
explicit, as well as for those constructs we intentionally omit, such
as the now-uncommon K&R-style functions [22].

SugarC’s translation is defined by annotating each grammar
construct’s production with a semantic action that specifies the
translation of that construct and by associating each construct with
a semantic value. We represent semantic values in a data structure,
called amultiverse, that has several generic operators, including the
product operator. Product simplifies the specification of many trans-
formation rules by encapsulating variation, with some constructs,
such as statements, representable as identity transformations over
multiverse values. However, naive desugaring of more complex C
syntax, such as user-defined types, can cause exponential explosion
in the desugared output. To realize SugarC as a practical tool, we
employ novel optimizations that improve scalability for constructs
such as structs, unions, and enums declarations, which can have
multiple variations in real-world C.

To evaluate support for desugaring C constructs, we develop a
benchmark we call DesugarBench. It consists of 108 hand-created
programs, covering a wide range of constructs drawn from C’s
grammar specification. We evaluate SugarC as well as C Reconfig-
urator and Hercules, to compare support for unpreprocessed C.
While no tool supports all constructs, we show that SugarC supports
many more constructs, especially the kinds of challenging cases

1 #ifdef UINT

2 unsigned int x;

3 #endif
4 #ifdef CHAR

5 char x;

6 #endif
7
8 printf("%u\n", x);

(a) Unpreprocessed C code.

1 const bool __UINT, __CHAR;

2
3 int __x_1;

4 char __x_2;

5
6 if (__UINT && ! __CHAR) {

7 printf("%u\n", __x_1);

8 }

9 if (!__UINT && __CHAR) {

10 printf("%u\n", __x_2);

11 }

12 if ((__UINT && __CHAR) | |
13 (!__UINT && ! __CHAR)) {

14 __type_error();

15 }

(b) Desugared code.

Figure 1: An example of desugaring unpreprocessed C code.

found in real-world C. In addition, we perform an empirical evalua-
tion of SugarC’s scalability to desugar three real-world configurable
programs (axTLS, Toybox, and BusyBox). SugarC desugared 774
out of 813 files in the three programs, taking at most ten minutes
in the worst case and less than two minutes for 95% of the C files.

This paper makes the following contributions:
• The design and specification of a syntax-directed translation
that simultaneously type checks and desugars unprepro-
cessed C. (Section 2)
• The realization of our desugarer in a new tool called SugarC
that incorporates optimizations for scaling to real-world
usage of C constructs. (Section 3)
• A new benchmark suite, DesugarBench, that measures sup-
port for desugaring unpreprocessed C. (Section 4)
• An evaluation that compares SugarC with prior work on
DesugarBench, and on three real-world C programs that
demonstrates the scalability of SugarC. (Section 5)

Significance. Some of the most critical software infrastructures
are implemented as highly-configurable C programs, and this con-
figurability increases the challenges of maintaining software quality
while also rendering traditional bug detection and testing infeasible.
SugarC is an important step in developing automated analyses that
are capable of scaling variability-aware analyses to large, real-world
programs. It creates the foundation for both leveraging existing
variability-oblivious analysis tools and accelerating the develop-
ment of new variability-aware analyses to increase the reliability
and security of our software infrastructures.

We have made our SugarC specification and implementation,
DesugarBench, and all experimental data available [36].

2 DESIGN OF SUGARC

The preprocessor adds several constructs to C: macro definition
(#define) and expansion, header inclusion (#include), and conditional
compilation (#ifdef). These constructs have subtle semantics when
combined with C. For instance, making multiple declarations of the
same symbol is not possible in C, but is legal in unpreprocessed
C. Figure 1a has two declarations of x (lines 2 and 5). Since these
declarations are guarded by preprocessor conditionals, this program

SugarC: Scalable Desugaring of Real-World Preprocessor Usage into Pure C ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

is legal as long as only one of the macros UNIT or CHAR is defined.
Otherwise, there will be a type error, either an undeclared symbol
error on line 8 (if neither macro is defined) or redeclaration error
(if both macros are defined).

Figure 1b shows the desugared code. In general, SugarC rep-
resents C constructs affected by the preprocessor’s compile-time
behavior as equivalent run-time C behavior. Configuration macros
(such as UNIT and CHAR) are represented as const bool C variables (line
1), and preprocessor conditionals are desugared depending on their
context. The multiple declarations of x in the unpreprocessed code
cannot be within C conditionals because of C’s scoping rules and
because there is no C syntax for conditionals outside of function
bodies. Instead, we desugar these declarations of the same symbol
as single declarations of different symbols, __x_1 and __x_2 (lines 3
and 4). Then the use of the original symbol x is multiplexed into all
of its possible variations, guarded by C conditionals (lines 6–15).
Note that our desugarer also represents compile-time errors at run-
time, via calls to a __parse_error or __type_error function that only
applies to the errant set of configurations, ensuring all variations
of the unpreprocessed source are preserved (line 14).

We specify the desugaring as a syntax-directed translation of the
unpreprocessed source to pure C. Syntax-directed translation is a
classic transformation technique that works by augmenting a for-
mal grammar with rules guiding the translation [2]. The translation
is defined by (1) annotating each grammar construct’s production
with a semantic action governing the translation of the construct
and (2) associating a semantic value that holds the result of the trans-
lation of that construct. In our case, each C construct’s semantic
action produces a pure C version of all variations of the unprepro-
cessed construct, storing the pure C code as a semantic value. This
approach allows us to use a formal grammar specification to model
the effects of the preprocessor, while still following the actual gram-
mar of C. Our syntax-directed translation is specified as a bison

grammar [17] with semantic actions. These semantic actions are
read by the underlying parsing framework (we use SuperC [16] in
our implementation) to generate a parser that dispatches control to
the semantic actions after parsing each construct.

SugarC also performs simultaneous type checking during the
transformation to preserve type and syntactic errors in the desug-
ared output as run-time errors. Doing this is important for handling
real-world code, because unpreprocessed source code is not guaran-
teed to be type-safe in all configurations. By type checking during
desugaring, SugarC is able to weaken the assumption of type cor-
rectness for all configurations that prior works (Hercules and C
Reconfigurator) rely on, while still desugaring the type-safe vari-
ations of the unpreprocessed source. Preserving these errors in the
desugared output ensures that type-unsafe configurations are not
silently transformed into valid variations of the source code.

2.1 Representing Semantic Values

To record all variations of a desugared construct, we use a multi-

verse object for semantic values. Similar to prior work on variational
data structures [44], choice calculus [11], and Makefile static anal-
ysis [15], SugarC’s multiverse holds a set of values, each tagged
with a presence condition, i.e., a logical expression that represents
the configurations in which the value appears.

We define a multiverse 𝑀 as a set of 𝑛 pairs of a source code
construct 𝑠 and presence condition 𝑝 .

𝑀 = {(𝑠1, 𝑝1), (𝑠2, 𝑝2), ..., (𝑠𝑛, 𝑝𝑛)}
𝑀 is always a finite set, because there are a finite number of possi-
ble variations of unpreprocessed source code due to preprocessor
conditionals. For example, the multiverse for all variations of the
variable usage of x in Figure 1a on line 8 would be:

{(‘__x_1’, __UINT ∧ ¬__CHAR),
(‘__x_2’,¬__UINT ∧ __CHAR),
(‘__type_error()’, __UINT ∧ __CHAR ∨ ¬__UINT ∧ ¬__CHAR) }

To ensure all possible variations of each construct are captured,
SugarC maintains two invariants of the presence conditions in the
multiverse. First, the presence conditions must be disjoint, i.e., each
pair of presence conditions should be mutually exclusive. This re-
flects the determinism of the preprocessor: one configuration yields
one variation of the source code. Second, the presence conditions
must be covering, i.e., the union of the presence conditions is logical
True. This ensures that the transformation will record all variations
of the input source code. The above multiverse satisfies these two
invariants because a type error is present if __UINT and __CHAR are
both defined or undefined, and a variation of x is present when only
one of the macros is defined; the presence conditions are disjoint
and cover all four interactions between the two conditions.

We define several generic operations on multiverses to ease the
specification of transformation rules. The product operator lifts any
binary operator, such as string concatenation, to multiverse opera-
tor by taking the cartesian product of all elements in the multiverse.
For instance, as part of the transformation for the declarations on
lines 2 and 5 in Figure 1a, the semantic action needs to concatenate
the resulting desugarered declarations that are emitted on lines 3–4
in Figure 1b. Since there are two variations each, there are four
possible variations of their concatenation.

The product of two multiverses 𝐴 and 𝐵 over a scalar operator ◦
is defined as follows:

𝐴 ×◦ 𝐵 = {(𝑎 ◦ 𝑏, 𝑝 ∧ 𝑞) | ∀(𝑎, 𝑝) ∈ 𝐴,∀(𝑏, 𝑞) ∈ 𝐵}

This formal definition can be found in [15] in the context ofMakefile
analysis, albeit it was only implemented for string concatenation
in that context. SugarC, however, embodies the generic version of
this operator, automatically lifting string concatenation, list con-
catenation, declarator construct composition (used when collecting
declarations), among other operators. The product operator allows
for many semantic actions to be specified as a straightforward iden-
tity transform, with the multiverse encapsulating correct handling
of multiple variations (see Section 2.3).

In addition, we define new operators including scalar product,
which allows for one operand to be a scalar value instead of a mul-
tiverse; filter for trimming elements that have infeasible presence
conditions; deduplicate for unioning elements with identical values;
and transfom, a unary operator, which is effectively a map.

2.2 Representing the Symbol Table

SugarC maintains a symbol table for all variations for two reasons.
First, it stores the renamings of identifiers, since multiple declara-
tions of the same symbol may legally occur in unpreprocessed C

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zachary Patterson, Zenong Zhang, Brent Pappas, Shiyi Wei, and Paul Gazzillo

code. Second, it stores type information so that the desugarer can
also perform type checking. While configuration-aware symbol ta-
bles [13] and type checking [24] have been addressed in prior work,
SugarC is the first to perform type checking and desugaring simul-
taneously, which addresses the challenge of handling real-world
code that has no guarantee of type safety in all configurations.

Since we need to preserve all variations of the unpreprocessed
source, we resolve this by generating a unique renaming for each
variation of the symbol. This enables SugarC to choose the right
renaming for the symbol wherever it is used. In the case of multiple
possible renamings, SugarC generates a C conditional to ensure
each variation of the identifier use is preserved (lines 6-11 in Figure
1b).

We define symbol table 𝑆 as a structure that maps𝑚 identifiers
𝑣𝑖 (from the unpreprocessed source code) to a multiverse of pairs
of type 𝜏𝑣𝑖

𝑗
and renaming 𝑟 𝑣𝑖

𝑗
for each identifier.

𝑆 = {𝑣1 ↦→ ((𝜏𝑣11 , 𝑟
𝑣1
1), 𝑝1), ((𝜏

𝑣1
2 , 𝑟

𝑣1
2), 𝑝2), ...),

𝑣2 ↦→ ((𝜏𝑣21 , 𝑟
𝑣2
1), 𝑝1), ((𝜏

𝑣2
2 , 𝑟

𝑣2
2), 𝑝2), ...),

... ,

𝑣𝑚 ↦→ ((𝜏𝑣𝑚1 , 𝑟
𝑣𝑚
1), 𝑝1), ((𝜏

𝑣𝑚
2 , 𝑟

𝑣𝑚
2), 𝑝2), ...)}

A typical type checker will use the lack of an entry in the symbol
table to determine whether a symbol has not yet been declared,
e.g., to prevent multiple declarations, and use-before-declaration.
Our configuration-aware symbol table, however, may have an entry
in some configurations while the symbol has not been declared
in others. To account for this, we add special type entries to each
symbol’s multiverse, called undeclared and error. With these entries,
the symbol table captures in which configurations the symbol is de-
fined or has a type error. This ensures that each symbol’s associated
multiverse of definitions meets the covering invariant.

2.3 Semantic Actions for Desugaring

We use pseudo-code to show the semantic actions. An action’s
function is named after the grammar construct, e.g., WhileLoop or
Declaration, while its parameters are the components of the gram-
mar rule. For instance, a WhileLoop construct has the following
context-free grammar rule:

WhileLoop→ ‘while’ Expression Statement

Its semantic action function thus has the following pseudo-code
signature:

WhileLoop(Expression, Statement)
Semantic actions in our implementation have access to global

parsing state. In particular, this includes the symbol table for the
current scope, which is called symtab in the semantic actions below.

We now highlight a few illustrative semantic actions from a
variety of constructs. The complete grammar with all semantic
actions can be found in the anonymized, released artifact.

2.3.1 Statements. Desugaring statements in the unpreprocessed
C language involves no more than taking the cross-product of all
variations of the components of statements. This is possible because
transforming a multiverse of statements only requires surrounding
each multiverse element with a C conditional.

Algorithm 1 The semantic action for transforming while loops.
Input: Multiverse values for the Expression and Statement.
Output: A desugared while loop as a multiverse.
1: function WhileLoop(Expression, Statement)
2: return (‘while’ ×+ Expression) ×+ Statement

Algorithm 1 shows the semantic action for while loops. Line 1
defines the semantic action functionWhileLoop which takes Ex-
pression, a multiverse of conditional expressions, and Statement, a
multiverse of C statements. Line 2 is the cross-product of all com-
ponent symbols of the WhileLoop construct, including the ‘while’
keyword and semi-colon. The ×+ product operator lifts the string
concatenation scalar operation to all pairs of multiverse elements,
updating the presence conditions accordingly. Note that scalar se-
mantic values such as ‘while’ are not multiverses and we use a
special scalar product operator to take the product of a scalar and
multiverse.

The representation and preservation of all variations of the
source program is encapsulated by themultiverse, enabling a straight-
forward definition of the translation rule. For instance, if the Expres-
sion construct has two variations due to a preprocessor conditional,
while all other constructs have only one variation. The repeated ap-
plications of the product operator will yield two complete variations
of the entire WhileLoop which are stored as a single multiverse
object.

The desugaring of compound statements can be expressed sim-
ilarly using a lifted concatenation. In practice, this can yield an
exponential explosion of variations. This explosion can be avoided
by simply swapping out the semantic value of the compound state-
ment. Instead of using a string, our specification using a list of
strings and lifts list concatenation instead of string concenation.
This allows for the translation rule to remain simple, while improv-
ing performance in practice.

2.3.2 Declarations. Handling declarations is more complicated
than statements, because (1) preprocessor conditionals around dec-
larations are not equivalent to C conditionals due to scoping rules,
(2) multiple declarations of the same symbol are prohibited, and (3)
there is no language support for conditionals outside of function
bodies. Instead, SugarC produces one, unconditional declaration
for each variation, but renames the symbol. In order to ensure the
renaming is applied to all uses of the symbol, the symbol table
records all variations of the symbol simultaneously.

Algorithm 2 shows the semantic action for declarations. C dec-
larations contain a type specifier, which can be primitive types,
structs, unions, etc., and a declarator, which can both give the sym-
bol its name as well as declare compound types such as functions
and pointers. The semantic action takes a multiverse of values for
the type specifier and declarator. Line 2 first combines the two
multiverses into all possible pairs of type specifiers and declarators
by lifting an operator that creates a pair of two elements, i.e.,

𝐴 ×pair 𝐵 = {((𝑎, 𝑏), 𝑝 ∧ 𝑞) | ∀(𝑎, 𝑝) ∈ 𝐴,∀(𝑏, 𝑞) ∈ 𝐵}
Lines 3 and 4 update the configuration-aware symbol table with

each declaration. Conceptually, the update operation replaces the
prior multiverse entry for the given (name𝑖 , 𝜏𝑖) pair. This update
needs to account for both redeclaration errors and also ensure

SugarC: Scalable Desugaring of Real-World Preprocessor Usage into Pure C ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Algorithm 2 The semantic action for transforming declarations.
Input: Multiverse values for the TypeSpec and Declarator.
Output: Desugared declarations, i.e., multiverse of declaration renamings.
1: function Declaration(TypeSpec, Declarator)
2: 𝐷 = TypeSpec ×pair Declarator
3: for each ((name𝑖 , 𝜏𝑖), 𝑝𝑖) ∈ 𝐷 do

4: symtab[name𝑖] ← Update(symtab[name𝑖], 𝜏𝑖 , 𝑝𝑖)
5: 𝐴 = Rename(symtab,TypeSpec)
6: 𝐵 = Rename(symtab,Declarator)
7: return 𝐴 ×+ 𝐵 ×+ ‘;’

that each declaration only affects the configuration defined by the
presence condition 𝑝𝑖 . The function ensures this by conjoining the
presence condition 𝑝𝑖 of the new declaration with that of the old,
𝑝old. The Update function is defined as follows:

Update(𝑀,𝜏𝑖 , 𝑝𝑖) =

⋃
(𝜏old,𝑝old) ∈𝑀

{(error, 𝑝old)} if𝜏old = error
{(𝜏𝑖 , 𝑝old ∧ 𝑝𝑖),
(undeclared, 𝑝old ∧ ¬𝑝𝑖)} if𝜏old = undeclared
{(error, 𝑝old ∧ 𝑝𝑖),
(𝜏old, 𝑝old ∧ ¬𝑝𝑖)} if𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

There are three cases to consider when updating a symbol table
entry: (1) If the previous entry was a type error, then the entry
remains a type error. (2) If the entry was undeclared, then the entry
is replaced with the newly-given type. Since there may still be
some configurations left undeclared, the undeclared entry remains
under the configurations where the new entry does not overlap, i.e.,
𝑝old ∧ ¬𝑝𝑖 . (3) If the entry was already declared, the entry becomes
an error in the configurations that overlap between the old and new
declarations. For non-overlapping configurations, the entry remains
the same. C’s type checker has subtle rules for redeclaration not
reflected in this pseudo-code but are present in our implementation:
redeclarations are prohibited in the function-local scopes but are
permitted in the global scope as long as the types are identical
(which C allows to support having separate function definitions
from function declarations in headers).

Once the symbol table is updated for all variations of the decla-
ration, the action produces the desugared version of each variation
(lines 5-7). Our actual implementation creates a new identifier for
each new variation of a symbol’s declaration and stores it along-
side the type in the symbol table. We abbreviate the symbol table
here for brevity, and instead use Rename in place of the process of
looking up the renamings in the table.

The TypeSpecifier also needs renaming because of user-specified
type names. Declaration syntax in C is complicated, supporting
not only variable declarations, but also additional specifier syn-
tax for structures, unions, and enums, user-defined types (typedef),
separate declarator syntax specifying compound types (functions,
pointers, and arrays), lists of declarators in one declaration, dif-
ferences between locally- and globally-scoped symbols, and more.
User-defined structures and types have consequences for the scal-
ability of desugaring, and we leave a discussion of our optimized
handling of these in Section 3.1.

2.3.3 Expressions. Like statements, expression translations are also
specified with an identity transform. For instance, a binary C expres-
sions take the cross-product of each element of the multiverses from
the left and right expressions, i.e., Left×op Right. Unlike statements,
however, expressions have type. In order to perform type-checking
and desugaring simultaneously, the semantic value of an expression
is a multiverse of pairs (𝑠, 𝜏) to hold both the desugared expression
𝑠 and its type 𝜏 . The product ×op lifts the C construct’s operator
itself, both concenating the desugared expression and checking
type compatibility, i.e., 𝐴 ×op 𝐵 =

{((𝑎+op+𝑏, 𝜏op (𝜏𝑎, 𝜏𝑏)), 𝑝∧𝑞) | ∀((𝑎, 𝜏𝑎), 𝑝) ∈ 𝐴,∀((𝑏, 𝜏𝑏), 𝑞) ∈ 𝐵}

This desugaring operation is particularly subtle, because the opera-
tor is used both as a string value for producing a source translation
𝑎 + op + 𝑏 and as a function type 𝜏op (𝜏𝑎, 𝜏𝑏). Essentially, this prod-
uct operation takes each combination of variations of the left side
and the right side, then for each combination produces both the
desugared string translation and the result of checking the type
compatibility of the operands for the operator. Observe that this
formulation gracefully handles type errors, since the error type is
carried along just for the type-unsafe configurations until it can be
replaced at the statement-level with a __type_error() call.

3 REALIZING SUGARC IN PRACTICE

Using cross products from the ground up and killing parsing error
branches would create a correct output. But this approach would
lead to incredibly large desugared source files. To reduce the result-
ing size of the transformation and create output that is amenable to
static analysis, we perform several novel optimizations that make
desugaring feasible with real-world code. These optimizations in-
volve the user-defined types created by structs, unions, and enums
as well as our design choices for error representation.

3.1 Handling Struct, Union, and Enum

C allows for user-defined types in the forms of struct, union, and
enum (SUE) constructs. The preprocessor usage inside and outside
of SUE definitions cause complex interactions which have not been
properly addressed by past works, as they either ignore SUE con-
structs or transform them with the naive combinatorial approach.
But using the strategy of taking a cross-product of all possible
struct definitions creates a large explosion of desugared variations,
since real-world structs commonly use configurable data types as
well as have structs as field members that may themselves have
multiple definitions. As an optimization, we represent the fields
from all variations of an input struct using a single combined SUE
specifier when possible. In Figure 2a, the preprocessor usage in
lines 1-5 defines two possible types of thisSize. Using thisSize to
declare the field f in struct X, the type of f depends on the value of
the preprocessor condition WORDSIZE. Figure 2b shows the result of
applying SugarC on the code. Because each struct stores its fields
in the symbol table presented in Section 2.2, getting a member for f
would only return mutually exclusive conditions for each possible
definition. This can be seen in Figure 2b where data.f expands into
an if statement representing the presence conditions associated
with f_4 and f_5 respectively.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zachary Patterson, Zenong Zhang, Brent Pappas, Shiyi Wei, and Paul Gazzillo

1 #if WORDSIZE == 32

2 typedef long int thisSize;

3 #else
4 typedef int thisSize;

5 #endif
6 struct X {

7 thisSize f;

8 };

9 void foo () {

10 struct X data;

11 data.f = 3;

12 }

(a) Struct with a configurable

field.

1 typedef long int thisSize_1;

2 typedef int thisSize_2;

3 struct X_3 {

4 thisSize_1 f_4;

5 thisSize_2 f_5;

6 };

7 void foo_4 () {

8 struct X_3 data_5;

9 if (WORDSIZE == 32)

10 data_5.f_4 = 3;

11 if (!(WORDSIZE == 32))

12 data_5.f_5 = 3;

13 }

(b) Desugared code.

Figure 2: Desugaring struct with a configurable field.

Multiple conditional SUE definitions and forward references. How-
ever, it is not always possible to use one object to represent every
SUE definition. For instance, a flexible array is an array with no
defined size value, but upon memory allocation through malloc,
the array can use any number of elements as any extra memory is
attributed to the size of that array. Due to this unique property, a
flexible array must be the last element of a struct, and each struct
may only have one flexible array. This specific instance can be seen
in Toybox as structs used for status messages, as shown in Figure
3a. If we were to desugar this in the same manner that we handled
the code in Figure 2a, then the result would violate the one flexible
array per struct rule. So as Figure 3b demonstrates, we are forced
to split struct optval_status into two separate structs.

This makes forward references to SUE objects challenging since
now the declaration could refer to any of the definitions. In addition,
they are also forcibly pointers, since otherwise their size cannot be
determined. As we continue parsing the code, we post-hoc add the
SUE definitions to the union, and print it at the top of the scope,
but below the moved up SUE definitions as displayed in Figure 3b.

Anonymous Objects. It is common for real-world SUE objects
to contain unnamed SUE objects as fields, or for variables to be
defined with a struct or union without naming the structure. We
give every anonymous object a name, which is "anonymous_#"
and additionally a renaming "anonymous_#_#". This is so that later
symbol table accesses can find the specific renamings that may be
linked to an anonymous object without running into renamings
from a different anonymous object. Since anonymous nested SUE
objects can have their fields referenced by their parent, we print an
additional field access when encountered, which is necessary since
the inner object may have to be split into multiple objects. The
types associated with the variables themselves become important
as we get into sizeof and typeof operations.

Sizeof. Sizeof becomes problematic with our method of combin-
ing SUE object fields, as the size of the transformed SUE object no
longer represents the size of what any given configuration may
have. In Figure 4a, fields of struct Y are conditionally defined. Specif-
ically, if A is defined, then Y contains an int field b; if A is not defined,
the field b is a short. As discussed above, this struct is transformed
into lines 6-11 in Figure 4b by representing all fields in one object. If

1 #if WORDSIZE == 32

2 typedef long int thisSize;

3 #else
4 typedef int thisSize;

5 #endif
6 struct optval_status *status;

7 struct optval_status {

8 unsigned int status;

9 thisSize message[];

10 };

(a) Struct with a flexible array

1 typedef long int thisSize_1;

2 typedef int thisSize_2;

3 struct optval_status _5{

4 unsigned int status_3;

5 thisSize_1 message_4[];

6 };

7 struct optval_status _7{

8 unsigned int status_3;

9 thisSize_2 message_6[];

10 };

11 struct
__forward_tag_reference_8

{

12 union {

13 struct optval_status_5

optval_status_5;

14 struct optval_status_7

optval_status_7;

15 };

16 };

17 struct
__forward_tag_reference_8

*status_9;

(b) Desugared code.

Figure 3: A simplified excerpt from Toybox where flexible

arrays requires the transformation to separate the structs.

no special treatment is given to the sizeof, sizeof(struct X_4)-sizeof

(struct Y_9) will result in a negative value (the size of three ints in
X_4 minus the size of three ints and a short in Y_9) and therefore
cause a type error.

Our solution, shown in lines 12-24 in Figure 4b, is to create a
standin struct for what the definition would be under each presence
condition. Then in lines 25-30, we make two versions of the array;
array_20 is associated with A being defined, and array_21 is associ-
ated with A being undefined. Therefore, the standin structs used in
expressions at lines 27 and 30 correlate with __sizeofStandin_16 and
__sizeofStandin_19, respectively. This approach allows us to account
for whatever padding that might be incurred by the compiler to
make the size as accurate as possible. While this introduces over-
head, it is practical because the use of sizeof on conditional defined
structs does not appear frequently in real code. We handle a union
object similarly when sizeof is used.

Initialization. Struct objects are initialized with an initializer list
consisting of constant values (line 17 in Figure 4a). This brings two
challenges to SugarC. First, if there are different presence conditions
within the initializer list, multiple definitions need to be created.
Second, depending on which preprecessor condition is used, differ-
ent fields could be assigned to, as shown in Figure 4b. To handle
these challenges, we define the struct as a standalone definition,
and then assign each value individually, as shown in lines 32-40 in
Figure 4b. If the struct or list is constant, or in the global scope, we
have no choice but to duplicate the definitions and correct which
values are assigned to what fields.

3.2 Emitting Errors and Line Numbers

As shown in Figure 1b, we represent type errors at the statement
level alongside type-safe variations of the code, which allows static

SugarC: Scalable Desugaring of Real-World Preprocessor Usage into Pure C ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 struct X {

2 int a;

3 int b;

4 int c;

5 };

6 struct Y {

7 #ifdef A

8 int a;

9 int b;

10 #else
11 int a;

12 short b;

13 #endif
14 };

15 int array[sizeof(struct X)-

sizeof(struct Y)];

16 void foo() {

17 struct Y y = {4,2};

18 }

(a) Example of initialization

and sizeof usage on structs.

1 struct X_4 {

2 int a_1;

3 int b_2;

4 int c_3;

5 };

6 struct Y_9 {

7 int a_5;

8 int b_6;

9 int a_7;

10 short b_8;

11 };

12 struct {

13 typeof (int) __tmp_10;

14 typeof (int) __tmp_11;

15 typeof(int) __tmp_12;

16 } __sizeofStandin_13;

17 struct {

18 typeof (int) __tmp_14;

19 typeof (int) __tmp_15;

20 } __sizeofStandin_16;

21 struct {

22 typeof (int) __tmp_17;

23 typeof (short) __tmp_18;

24 } __sizeofStandin_19;

25 int array_20[

26 sizeof(typeof(
__sizeofStandin_13

)) -

27 sizeof(typeof(
__sizeofStandin_16

))];

28 int array_21[

29 sizeof(typeof(
__sizeofStandin_13

)) -

30 sizeof(typeof(
__sizeofStandin_19

))];

31 void foo_23() {

32 struct Y_9 y_22;

33 if (A)

34 y_22.a_5 = 4

35 if (!A) {

36 y_22.a_7 = 4;

37 if (A)

38 y_22.b_6 = 2;

39 if (!A)

40 y_22.b_8 = 2;

41 }

(b) Desugared code.

Figure 4: Desugaring sizeof when used on structs, and initial-

izing struct variables.

analyses to identify and terminate these control flows. If one or
more of the expressions in a statement contain type errors, then the
error is lifted to the statement level for representation as an error
function call; the entire configuration is invalidated by a type error,
which would halt compilation if selected as a single variation of
the unpreprocessed C. Since our desugarer performs type-checking
during transformation, we can express type error handling in our
translation rules. SugarC represents presence conditions in the out-
put by creating a variable for each Boolean predicate in the presence
condition, declared as const bool. It records presence conditions as

1 IP_UDP_DHCP_SIZE = sizeof(struct ip_udp_dhcp_packet) -

CONFIG_UDHCPC_SLACK_FOR_BUGGY_SERVERS,

2 char c[IP_UDP_DHCP_SIZE == 576 ? 1 : -1];

Figure 5: Excerpt from BusyBox for illustrating SugarC’s

expression evaluation limitation.

symbolic formulas, using z3 [10] and BDDs [45]. When emitting
any presence condition, we replace the Boolean predicate with its
corresponding variable name.

Syntactic errors in a configuration, however, represent viola-
tions of the grammar on which we specify our translation rules.
Since there is no way to identify what illegal syntax was supposed
to mean, and branches may fork across different scopes, there is
no consistent way to correctly display the error alongside valid
code; instead we collect the presence conditions of all branches
with syntactic errors into a single unioned presence condition. We
then emit the union as a run-time conditional check that results
in a runtime error if triggered. By guaranteeing this check is per-
formed at runtime, the remainder of the desugared output can elide
run-time checks for configurations that have syntactic errors. This
significantly reduces the number of static conditionals that need
to be emitted during desugaring; we have observed desugared out-
puts reduced to less than 10% of their previous sizes without this
optimization in syntactic error handling due to the reduction in the
size of output presence conditions.

In addition, the underlying parser generation was modified to
emit line numbers in the output that correspond to the unprepro-
cessed source line numbers. This enables us to automatically map
the desugared output back to the unpreprocessed input, which
we use to automatically map alarms in desugared output to their
unpreprocessed counterparts.

3.3 Limitations

There are several limitations in the current implementation of Sug-
arC. First, because SugarC does not take any system configura-
tion as input, it cannot properly evaluate the value of the size of
types. This results in improper sizes or unexpected calculations
in some configurations. In Figure 5, for SugarC to determine if
IP_UDP_DHCP_SIZE == 576 requires evaluating the size of each field of
the struct ip_udp_dhcp_packet. This means that SugarC needs to make
judgments about the size of types such as int or long, which it can-
not do without using additional system configuration as inputs.
Similarly, SugarC cannot validate the names of registers for assem-
bly statements. In terms of nonequivalent output, there may be
different values associated with enum values than expected. Since
each subsequent value increases, combining the lists of enums to-
gether could make expressions evaluate differently.

Second, variadic arguments are only partially supported in Sug-
arC. While ellipsis can be parsed, and is supported when used in
functions and type checking, usage of va_args is not identified as a
type and therefore will result parsing errors as attempting to parse
as a new identifier.

Third, our handling of sizeof in structs may cause memory issues
when executing the desugared code. This could happen when sizeof

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zachary Patterson, Zenong Zhang, Brent Pappas, Shiyi Wei, and Paul Gazzillo

Table 1: DesugarBench.

Category Abbr. # of Programs

(Declarations) basic BASIC 18
(Declarations) struct, union and enum SUE 16
(Declarations) typedef TYPEDEF 5
(Declarations) external EXTERN 4
(Function definitions) ANSI ANSI 7
(Function definitions) K&R K&R 6
(Function definitions) variadic VARG 4
(Expressions) function call and identifier FCI 10
(Expressions) unary, binary and ternay UBT 7
(Statements) control-flow CTRL 6
Semantic error SEM 21
Syntactic error SYN 4

is used in the context of malloc, which requires the actual size of a
desugared struct.

Lastly, the implementation of the language is not complete. Fea-
tures introduced in later versions of C, such as declarations leading
switch cases, are not supported by our parser. Extensions provided
by compilers may also not be supported such as _builtin_offset_.
There are also a few obsolete representations, such as K&R style
function definitions, that we do not support.

4 DESUGARBENCH

We present DesugarBench, a benchmark that allows for compar-
isons between desugaring tools in terms of their support for C
features. DesugarBench consists of 108 configurable C files under
12 categories to represent language features that are important for
desugaring tools to handle. Table 1 shows the categories, abbrevia-
tions and number of programs of DesugarBench. We will refer to
the categories by their abbreviations in the rest of the paper.

We define the following principles for generating DesugarBench
programs. First, the benchmark programs should cover many C lan-
guage and program features.We first inspect the grammar discussed
in Section 2, and identify four high-level constructs: declarations,
expressions, function definitions, and statements. These constructs
are further divided into the first 10 categories in Table 1 that cover
different language features. For example, standard C compilers still
support the original K&R C functions declaration as well as the
now-common ANSI C functions, which have very different syn-
tax [22]. We therefore include K&R and ANSI as two categories
of function definitions. As discussed above, syntactic and/or se-
mantic errors may exist in some configurations in real programs.
Thus, we include cases of these in two categories, SEM and SYN of
DesugarBench. Each benchmark program is manually created and
is meant to test a specific feature. Some programs are created to test
common features. For example, the program function_pointer in
the ANSI category is designed to test if a function pointer defined
in a static branch can be correctly transformed. Others simulate
corner cases. For example, function_no_param_dec in the K&R cate-
gory describes an unusual situation where a function can be legally
declared without parameters and defined with parameters in ANSI
style, as the declaration can be interpreted as K&R style.

Second, the benchmark programs are createdwith small sizes and
not biased toward certain features. The small sizes make it easier to

reason about the expected results of the desugaring tools (i.e., the
program semantics should be preserved), since we manually check
for semantic equivalence. The sizes of programs in DesugarBench
range from 3 to 37 lines of code. In addition, we make sure that
there are not redundant benchmark programs for the same feature
by checking the syntax. Category BASIC, SUE and SEM cover more
C syntax than other categories. Thus, they contain more programs,
as shown in Table 1.

Third, each benchmark program should include at least one static
conditional. This ensures that each program is the appropriate tar-
get of the desugaring tools, which transform the unpreprocessed C
program into an equivalent program represented in C. In Desug-
arBench, all programs in the declarations, expressions, function
definitions, and statements categories do not contain errors in any
static branch, while each program in the semantic and parsing error
categories contains an error in one of its static branches.

5 EVALUATION

We conducted experiments to answer two research questions on
SugarC’s practicality of desugaring real-world preprocessor usage.
• RQ1: Does SugarC support more language features than
existing desugarers?
• RQ2: Can SugarC desugar real-world C programs?

To answer RQ1, we compare SugarC with C Reconfigurator
and Hercules on DesugarBench. We check if these tools can trans-
form the benchmark programs into semantically equivalent pro-
grams. Using this result, we discuss how well the features in each
benchmark category are supported by each tool. We also compare
the execution results of the original files and the SugarC-desugared
files under same static conditionals to check implementation cor-
rectness. To answer RQ2, we run SugarC to desugar three real-
world programs, and report its performance. In addition, we compile
and apply an off-the-shelf static analysis tool on the transformed
programs.

5.1 Experimental Setup

5.1.1 Running desugaring tools on DesugarBench. We implemented
a script to run SugarC, C Reconfigurator, and Hercules on all
DesugarBench programs and semi-automatically diagnose the out-
puts by compiling each desugared file using GCC to check if the
tools produce valid C programs. If a tool fails to generate a desug-
ared file (e.g., tool crashes)1 or if the desugared file does not compile
with GCC, we report that the tool fails on this benchmark program.
Otherwise, one author performed manual review to decide if each
desugared file is semantically equivalent to its original program.

To check if SugarC-desugared files can produce equivalent re-
sults as the original files under the same configuration, we update
each benchmark program in all categories except SEM and SYN
to return different values from the main function under different
static conditionals. We then use a file with external declarations
of the static conditionals in each original file as Booleans. These
Booleans are evaluated to true or false to execute the desugared

1Recall that Hercules relies on TypeChef to catch type errors and does not transform
any programs with such errors.C Reconfigurator uses a similar strategy for syntactic
errors. For the SEM and SYN categories in DesugarBench, we treat C Reconfigurator
and Hercules as passing these programs if the correct errors are caught.

SugarC: Scalable Desugaring of Real-World Preprocessor Usage into Pure C ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: SugarC, C Reconfigurator, and Hercules results on DesugarBench.

Tool

Declarations Function Defintions Expressions Statements SEM SYN TotalBASIC SUE TYPEDEF EXTERN ANSI K&R VARG FCI UBT CTRL

SugarC 18 | 0 16 | 0 5 | 0 4 | 0 7 | 0 0 | 6 1 | 3 9 | 1 7 | 0 6 | 0 20 | 1 4 | 0 97 | 11

C Reconfigurator 5 | 13 5 | 11 3 | 2 3 | 1 3 | 4 0 | 6 1 | 3 1 | 9 5 | 2 3 | 3 0 | 21 3 | 1 32 | 76

Hercules 12 | 6 12 | 4 4 | 1 2 | 2 7 | 0 2 | 4 0 | 4 6 | 4 6 | 1 5 | 1 17 | 4 0 | 4 73 | 35

file. This allow us to compare the results obtained from executing
the desugared files with the results obtained from executing the
original files under the same configurations.

In our experiments, we used the latest versions of Hercules [19]
and C Reconfigurator [28] as of August 2021. We observed out-
of-memory when running C Reconfigurator (implemented in
Java) with its default configuration. Therefore, we assigned JVM
options -Xms64g -Xmx64g to allocate enough memory. Default
configurations of SugarC and Hercules were used. We also had to
make all macro names in the benchmark to start with ENABLED_ for
C Reconfigurator to work properly. All three tools took less than
5 minutes to run on all DesugarBench programs.

5.1.2 Running SugarC on real-world programs. We evaluated Sug-
arC on three real-world programs, axTLS 2.1.4 [4], Toybox 0.7.5
[39], and BusyBox 1.28.0 [6]. We chose these programs because they
are common targets in the past evaluations of variability-aware
analyses [1, 21, 26, 33, 35, 37], and contain large numbers of config-
uration options (94, 316, and 998 in axTLS, Toybox, and BusyBox,
respectively). We ran SugarC on all the .c files in each program.
Any header inclusions, included directories, or macro definitions
given by the build system were automatically extracted from the
output of running make. Since hand-verifying semantic equivalence
for the entire programs was cost prohibitive, we say that the desug-
arer produced a compilable output if the output can be compiled by
GCC without error. We also applied an off-the-shelf static analysis
tool, Clang Static Analyzer, on all the compilable desugared outputs
to further validate if this tool can produced bug reports using the
desguared results as inputs.

Setting system macros. Most real-world C programs make use of
Standard Library headers, which contain large number of system
macros. These headers need to be desugared along with each .c

file that includes them, but much of the code does not apply to our
system. To address this, we identify a set of macros that models the
behavior of our system, assuming only GCC 9.4.0 [18] and Ubuntu
16.04 [40] (the environment in which we ran SugarC). This set of
macros has all the default macros of GCC 9.4.0 turned on, and all
macros that are associated with other system environments turned
off, which were identified over six weeks by 4 computer science
student workers with C development experience. This resulted in
129 macros either being defined or undefined.When desugaring a .c

file, we run SugarC with the -nostdinc option to prevent desugaring
any files outside our set. Additionally, we replace GCC-specific code
with an equivalent macro. For example, builtin_offset() function is
replaced by the macro definition #define __builtin_offsetof(st,m)((

size_t)&(((st *)0)->m)).

Setting guard macros. We also predefine the marcros that are not
intended for use as configuration macros and instead are undefined
by default; we call those guard macros. Such macros are commonly
used as header inclusion guards to prevent files from being included
multiple times and to mark typedefs as being defined to avoid
redefinition. In total, there were 257 guard macros in the standard
libraries, 1 in axTLS, 1 in BusyBox, and 454 in Toybox as it has flags
for each file to turn on cleanup statements.

Experimental environment. All experiments were conducted on
a server with 192GB of RAM and 48 CPUs running Ubuntu 16.04.
To measure SugarC performance, it was run three times on each
file in the real-world programs, and we report the median. We set a
1-hour timeout for each file.

5.2 RQ1: Does SugarC support more language

features than existing desugarers?

5.2.1 Semantic Equivalence. Table 2 shows the results of SugarC,
C Reconfigurator, and Hercules, organized by the categories
of DesugarBench. Each cell of the table reports the number of
benchmark programs passed and failed, respectively, with green
and red bars that represent the proportion of passed and failed
benchmarks for each category and tool. We observe that SugarC
supports many more features than C Reconfigurator and Hercules.
Specifically, SugarC passed all benchmark programs in 8 out of 12
categories, while C Reconfigurator and Hercules only passed all
programs in 0 and 1 categories, respectively.

For SugarC, all but one program in the K&R and VARG cate-
gories failed. As discussed in Section 3.3, SugarC currently does not
support K&R style function definitions and va_list used in variadic
functions. The one program in the VARG category passed because
this program only defines a variadic function using ellipsis, which
SugarC supports, but does not use va_list. SugarC failed on 1 out of
10 programs in the FCI category. The failing program involves the
operator offset, a compiler extension provided by GCC. It is also
a limitation of SugarC as discussed in Section 3.3. Finally, SugarC
failed on one program in the SEM category. This program has a
type error in one configuration by declaring an array with negative
size. SugarC does not evaluate expressions and check array bounds,
and so produces a program that retains the negative array size
type error. For the 2 programs that SugarC failed on FCI and SEM
category, C Reconfigurator and Hercules also did not pass.

C Reconfigurator and Hercules failed on 76 and 35 out of 108
benchmark programs, respectively. We observed several common
reasons for these failures. First, C Reconfigurator and Hercules
failed on 12 and 5 programs, respectively, due to mistakes in re-
naming multiply-declared symbols. For example, in one program in

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zachary Patterson, Zenong Zhang, Brent Pappas, Shiyi Wei, and Paul Gazzillo

Table 3: SugarC results on axTLS, Toybox, and BusyBox.

axTLS Toybox BusyBox

of files “compilable | uncompilable” 28 | 0 230 | 0 516 | 39
Median runtime (sec) and SIQR 77 31 47 14 51 2

the BASIC category, Hercules renames the multiple declarations of
variable x inside of preprocessor conditionals but does not rename a
subsequent use of x, causing a type error in its desugared code. Sec-
ond, Hercules failed on 5 programs due to incomplete desugaring,
i.e., missing variations from the original program. C Reconfigura-
tor did not fail on any program for this reason. One program in the
SYN category has two static branches, one with valid syntax (int *x)
and the other not (int *). Hercules preserved the valid declaration
but omitted the invalid one in its resulting transformation, repre-
senting an invalid configuration as valid. Third, the error handling
mechanisms in both tools are incomplete. C Reconfigurator in
particular failed on all programs with type error (SEM), because it
does not perform any type checking. While C Reconfigurator
reports some syntactic errors, it still missed one from the SYN cate-
gory. Hercules, which relies on a separate tool—TypeChef—for type
checking, failed to identify type errors in four programs in the SEM
category. Hercules also missed all programs in the SYN category.

Other programs reveal additional reasons of failure. For C Re-
configurator, it incorrectly handles C’s “most closely nested"
scoping rule to transform a reference to a local variable into a
reference to a global variable in two BASIC programs. Forward
references, structs with a flexible array, sizeof, and struct initial-
ization are not supported by C Reconfigurator, since by design
it supports a restricted subset of C. Additionally, the benchmark
evaluation shows that it misses most function calls. Hercules had
partial support for structs, unions, and enums, but it missed sizeof

and struct initialization.
When executing SugarC-desugared files, we found that for all

but 2 files, they produced the equivalent outputs as the original pro-
grams under the same configurations. One was the result of a bug
in SugarC in handling a static conditional that exists between the
function declaration and body, and another was due to mistyping
of an enum initialized with a large value, making it long long.

In summary, SugarC’s formal approach to specifying desugaring
rules enables it to support a wide-range of real-world C features
correctly, in contrast to the informal approaches of prior work.

5.3 RQ2: Can SugarC Desugar Real Programs?

Table 3 shows the results of running SugarC on axTLS, Toybox,
and BusyBox. The first row shows the number of C files in each
program that SugarC produced a compilable output and those that
it did not. The second row is the median running time in seconds
SugarC took to desugar the files with the semi-interquartile range
(SIQR) in a smaller font. Overall, for 774 out of 813 files SugarC

produced an output that when compiled by GCC had no errors, and

for 95% of these files, SugarC took less than 2 minutes per file.

In Table 3, the median desugaring times across all three programs
are between 47 and 77 seconds, showing that SugarC is efficient
in desugaring many programs. The two files that took the longest

time to complete were both from Toybox (posix/ps.c and pending/

traceroute.c), which took 586 and 614 seconds, respectively. The
longest running times for a file on axTLS and BusyBox were 302
seconds and 484 seconds, respectively. After manual investigation,
we conjecture that the overhead in ps.c was likely due to a constant
array of structs defined in the global scope named typos, which is
referenced frequently throughout the remainder of the code. The
array uses va_args, which causes a series of type errors that have
a multitude of type errors in many variations. The overhead in
traceroute.c was likely due to a 60 line switch statement where
every case is a macro definition.

Among the 39 files that SugarC could not desugar or had errors
in its output, SugarC did not produce desugared results in 20 files,
and the desugared files could not be compiled by GCC in 19 Busy-
Box files. For the 19 files not desugared in BusyBox, 15 files used
statements unsupported by SugarC, while the remaining 4 either
took longer than an hour to execute or ran out of memory. Manual
investigation of the 4 files that ran into timeout or memory issues
revealed two issues. Either the file had a large series of consecutive
#ifdef statements which led to a large multitude of parser branches,
or the file had a long list of conditional values inside of an enum or
list, which caused exponential explosion.

For the 20 desugared files that could not be compiled, the recur-
ring errors were (1) an inability to evaluate expressions, which led
to negative-sized arrays, and (2) assembly statements looking for
registers that did not exist; both issues were discussed in Section 3.3.
The other encountered issues are: (1) the inability to differentiate
between constant variables and constant numbers when getting
addresses; (2) external declarations showing up later as static decla-
rations; (3) an unidentified instance where field names in a struct
initialization were not renamed; (4) incomplete struct types not
being marked as errors. Future updates to our data structures for
representing types would allow us to correct the first issues, and
further work is needed to reconcile the cause of the third issue with
the implementation.

The median size of the original files was 3KB, while the median
size of the desugared files was 1.2MB. However, the sizes between
the original file and the desugared file do not have a linear relation-
ship. When fitting the linear regression with original file size as
the independent variable and the desugared file size as the depen-
dent variable, the 𝑅2 value was 0.155. On the other hand, the 𝑅2
of the number of static conditionals (as independent variable) to
the desugared file size (as dependent variable) was 0.511. We also
find the largest desugared files were not the files with the most
conditions, but files which featured a complex struct or global list
with multiple static conditionals inside.

We ran Clang Static Analyzer on the 774 desugared files across
three programs. Clang Static Analyzer reported 336, 1122, and 3255
alarms running on the desugared code of axTLS, Toybox, and Busy-
Box, respectively. When performing its static analysis, Clang Static
Analyzer checks for certain function names (e.g., malloc) to find all
errors besides those of the type Dead store and Logic error. Since
SugarC renames all functions and variables during the desugaring
process, Clang Static Analyzer was only able to produce bug reports
of these two types in the desugared code. Nonetheless, this provides
further evidence that SugarC produced meaningful translations.

SugarC: Scalable Desugaring of Real-World Preprocessor Usage into Pure C ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

6 THREATS TO VALIDITY

There are two potential threats to the validity of our evaluation.
First, DesugarBench may not represent all language features and
could introduce bias toward SugarC. To mitigate this, we con-
structed the benchmark programs to cover the grammar, including
cases currently not supported by SugarC (e.g., K&R). In addition,
the author who constructed DesugarBench did not have knowl-
edge of SugarC’s implementation. Second, the three real-world
programs used in the evaluation may not represent all C features
and preprocessor usage. Indeed, we improved the SugarC imple-
mentation while desugaring these programs; we expect that other
programs also have features SugarC currently does not support.
Still, these programs are common targets of variability analysis
[1, 21, 26, 33, 35, 37], suitable for evaluating SugarC’s scalability.

7 RELATEDWORK

Hercules and C Reconfigurator. C Reconfigurator [21] uses
SuperC [16] to parse the code, and then uses Xtend [46] to perform
the transformation. The transformation rules of C Reconfigura-
tor were only specified and proven on the idealized imperative
language IMP. The prototype implementation was evaluated on
simplified excerpts from BusyBox and the Linux kernel, as well
as Libssh files [29]. As shown in Section 5.2, C Reconfigurator
has limited supported for many C features. SugarC, in constrast,
specifies its transformation rules on a formal C grammar, and im-
plements optimizations to support real-world C usage.

Hercules [12, 41, 43] presents a tree transformation on Type-
Chef’s variational AST [26]. Hercules also relies on TypeChef’s
type checker to find type errors, which halts if it finds a type error
in any configurations, preventing Hercules from being able to trans-
form such cases. Hercules transformed SQLite and BusyBox, albeit
when provided with a feature model for the software. Unlike Sug-
arC, Hercules’ transformation only has an informal description, and
thus only partial support for many C language features as shown
in Section 5.2. Moreover, SugarC’s simultaneous type checking and
desugaring approach allows for transforming programs that are not
type-safe in all configurations while preserving the compile-time
errors as run-time errors.

Variability-aware analysis and parsing. Different variability-aware
static analyses have been developed in the past [3, 5, 8, 23, 27, 30, 32,
38, 42]. These approaches often perform special-purpose analyses
on variational data structures that represent both the preprocessor
and C. For example, Rhein et al. [42] built data- and control-flow
analyses on top of the variational ASTs and control flow graphs
to detect bugs. SugarC takes a direction complementary to these
variability-aware analyses, desugaring preprocessor usage into C
to allow the desugared results to be used as a common intermediate
language for variability-oblivious and variability-aware analyses.
It is significant that our evaluation demonstrates that the desugar-
ing approach is scalable because this may significantly reduce the
engineering efforts to develop new variability-aware analyses.

SugarC, as a syntax-directed translation, is closely related to
past works on variability-aware parsing. TypeChef [25] performs
both variability-aware parsing and type checking on a specified
configuration space for a given file. The tool creates an AST that
holds variability-aware information inside of it, which has been

used as the basis for several variability-aware works, including
variability-aware static analysis [37] and refactoring [31]. SuperC
[16], which SugarC uses as the underlying parser, takes a differ-
ent approach to also create a variational AST which uses several
optimizations to improve the process.

8 CONCLUSIONS

This paper presented SugarC, a novel desugaring tool that uses a
syntax-directed translation to transform preprocessor usage into
pure C. SugarC performs type checking and desugaring simulta-
neously to allow programs with syntactic and type errors in some
configurations to be desugared, and these compile-time errors to
be preserved as run-time errors. SugarC specifies its translation
rules on real C grammar and includes novel optimizations to handle
the challenging, real-world user-defined types. We create Desugar-
Bench to compare existing desugaring tools, Hercules and C Recon-
figurator, with SugarC. The results show that SugarC supports
many more C language features than past tools. Our evaluation also
shows that SugarC is scalable to desugar three real-world programs
and demonstrates the applicability of these results as inputs to the
Clang Static Analyzer.

In the future, we plan to build an analysis framework that uses
SugarC-desugared results as the intermediate language and develop
new variability-aware analyses for bug detection. We will continue
improving and maintaining SugarC to efficiently desguar many
more real-world code and support complete language features.

ACKNOWLEDGMENTS

This work is supported by NSF grants CCF-1840934 and CCF-
1816951.

REFERENCES

[1] Iago Abal, Jean Melo, Ştefan Stănciulescu, Claus Brabrand, Márcio Ribeiro, and
Andrzej Wąsowski. 2018. Variability Bugs in Highly Configurable Systems: A
Qualitative Analysis. ACM Trans. Softw. Eng. Methodol. 26, 3, Article 10 (Jan.
2018), 34 pages. https://doi.org/10.1145/3149119

[2] A.V. Aho, A.V. Aho, R. Sethi, J.D. Ullman, and J.D. Ullman. 1986. Compilers,

Principles, Techniques, and Tools. Addison-Wesley Publishing Company.
[3] Sven Apel, Christian Kästner, Armin Größlinger, and Christian Lengauer. 2010.

Type safety for feature-oriented product lines. Automated Software Engineering

17, 3 (2010), 251–300.
[4] axTLS. 2016. axTLS Embedded SSL. http://axtls.sourceforge.net
[5] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and

Mira Mezini. 2013. SPLLIFT: Statically Analyzing Software Product Lines in
Minutes Instead of Years (PLDI ’13). Association for Computing Machinery, New
York, NY, USA, 355–364. https://doi.org/10.1145/2491956.2491976

[6] Busybox. 2021. BUSYBOX. https://busybox.net
[7] CBMC. 2021. C Bounded Model Checker. https://github.com/diffblue/cbmc
[8] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and

Jean-François Raskin. 2010. Model checking lots of systems: efficient verification
of temporal properties in software product lines. In Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering-Volume 1. ACM, 335–
344.

[9] Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, and Charles J. Colbourn.
2003. Constructing test suites for interaction testing. In Proceedings of the 25th

International Conference on Software Engineering (Portland, Oregon) (ICSE ’03).
IEEE Computer Society, Washington, DC, USA, 38–48. http://dl.acm.org/citation.
cfm?id=776816.776822

[10] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[11] Martin Erwig and Eric Walkingshaw. 2011. The Choice Calculus: A Represen-
tation for Software Variation. ACM Trans. Softw. Eng. Methodol. 21, 1, Article 6
(Dec. 2011), 27 pages. https://doi.org/10.1145/2063239.2063245

https://doi.org/10.1145/3149119
http://axtls.sourceforge.net
https://doi.org/10.1145/2491956.2491976
https://busybox.net
https://github.com/diffblue/cbmc
http://dl.acm.org/citation.cfm?id=776816.776822
http://dl.acm.org/citation.cfm?id=776816.776822
https://doi.org/10.1145/2063239.2063245

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zachary Patterson, Zenong Zhang, Brent Pappas, Shiyi Wei, and Paul Gazzillo

[12] Florian Garbe. 2017. Performance Measurement of C Software Product Lines.
Master’s thesis.

[13] Alejandra Garrido and Ralph Johnson. 2005. Analyzing Multiple Configurations
of a C Program. In ICSM. 379–388.

[14] Brady J Garvin, Myra B Cohen, and Matthew B Dwyer. 2009. An improved
meta-heuristic search for constrained interaction testing. In 2009 1st International

Symposium on Search Based Software Engineering. IEEE, 13–22.
[15] Paul Gazzillo. 2017. Kmax: Finding All Configurations of Kbuild Makefiles

Statically. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering (Paderborn, Germany) (ESEC/FSE 2017). ACM, New York, NY, USA,
279–290. https://doi.org/10.1145/3106237.3106283

[16] Paul Gazzillo and Robert Grimm. 2012. SuperC: Parsing All of C by Taming the
Preprocessor. In Proceedings of the 33rd ACMSIGPLANConference on Programming

Language Design and Implementation (Beijing, China) (PLDI ’12). ACM, New York,
NY, USA, 323–334. https://doi.org/10.1145/2254064.2254103

[17] gnu. 2014. GNU Bison. https://www.gnu.org/software/bison/
[18] gnu. 2019. Using the GNU Compiler Collection (GCC). https://gcc.gnu.org/

onlinedocs/gcc-9.4.0/gcc/
[19] Hercules. 2017. Hercules. https://github.com/joliebig/Hercules
[20] Infer. 2021. Infer static analyzer. https://github.com/facebook/infer
[21] Alexandru Florin Iosif-Lazar, Jean Melo, Aleksandar S. Dimovski, Claus Brabrand,

and Andrzej Wasowski. 2017. Effective Analysis of C Programs by Rewriting
Variability. CoRR (2017).

[22] ISO. 2011. ISO/IEC 9899:2011 Information technology — Programming languages

— C. International Organization for Standardization, Geneva, Switzerland. 683
(est.) pages. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=57853

[23] Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake. 2012. Type check-
ing annotation-based product lines. ACM Transactions on Software Engineering

and Methodology (TOSEM) 21 (2012).
[24] Christian Kästner, Paolo G Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus

Ostermann, and Thorsten Berger. 2011. Variability-aware parsing in the presence
of lexical macros and conditional compilation. In ACM SIGPLAN Notices, Vol. 46.
ACM, 805–824.

[25] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. 2011. Variability-Aware Parsing in the Presence
of Lexical Macros and Conditional Compilation. SIGPLAN Not. 46, 10 (Oct. 2011),
805–824. https://doi.org/10.1145/2076021.2048128

[26] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. 2012. A Variability-
aware Module System. In OOPSLA. ACM, 773–792.

[27] Kim Lauenroth, Klaus Pohl, and Simon Toehning. 2009. Model checking of
domain artifacts in product line engineering. In 2009 IEEE/ACM International

Conference on Automated Software Engineering. IEEE, 269–280.
[28] Alex Lazar and Jean Melo. 2017. C Reconfigurator. https://github.com/itu-

square/c-reconfigurator
[29] libssh. 2021. The SSH library! https://www.libssh.org/
[30] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael

Schulze. 2010. An analysis of the variability in forty preprocessor-based software
product lines. In Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering-Volume 1. ACM, 105–114.
[31] Jörg Liebig, Andreas Janker, Florian Garbe, Sven Apel, and Christian Lengauer.

2015. Morpheus: Variability-Aware Refactoring in the Wild. In 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering, Vol. 1. 380–391. https:
//doi.org/10.1109/ICSE.2015.57

[32] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre, and
Christian Lengauer. 2013. Scalable Analysis of Variable Software. In Proceedings

of the 2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE

2013). ACM, New York, NY, USA, 81–91. https://doi.org/10.1145/2491411.2491437
event-place: Saint Petersburg, Russia.

[33] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A comparison of 10 sampling algorithms for configurable systems. In
Proceedings of the 38th International Conference on Software Engineering. ACM,
643–654.

[34] JeanMelo, Claus Brabrand, and AndrzejWasowski. 2016. HowDoes the Degree of
Variability Affect Bug Finding?. In Proceedings of the 38th International Conference

on Software Engineering (Austin, Texas) (ICSE ’16). ACM, New York, NY, USA,
679–690. https://doi.org/10.1145/2884781.2884831

[35] Austin Mordahl. 2019. Toward Detection and Characterization of Variability
Bugs in Configurable C Software: An Empirical Study. In 2019 IEEE/ACM 41st

International Conference on Software Engineering: Companion Proceedings (ICSE-

Companion). 153–155. https://doi.org/10.1109/ICSE-Companion.2019.00064
[36] Zachary Patterson, Zenong Zhang, Brent Pappas, Shiyi Wei, and Paul Gazzillo.

2021. SugarC: Scalable Desugaring of Real-World Preprocessor Usage into Pure
C. https://doi.org/10.5281/zenodo.5915048.

[37] Alexander Von Rhein, JöRG Liebig, Andreas Janker, Christian Kästner, and Sven
Apel. 2018. Variability-Aware Static Analysis at Scale: An Empirical Study. ACM
Trans. Softw. Eng. Methodol. 27, 4, Article 18 (Nov. 2018), 33 pages. https://doi.
org/10.1145/3280986

[38] Thomas Thüm, Sven Apel, Christian Kästner, Martin Kuhlemann, Ina Schaefer,
and Gunter Saake. 2012. Analysis strategies for software product lines. School of
Computer Science, University of Magdeburg, Tech. Rep. FIN-004-2012 (2012).

[39] Toybox. 2021. Toybox. https://github.com/landley/toybox
[40] ubuntu. 2018. Ubuntu 16.04.7 LTS (Xenial Xerus). https://releases.ubuntu.com/

16.04/
[41] Alexander von Rhein. 2016. Analysis strategies for configurable systems. Ph.D.

Dissertation. Universität Passau.
[42] Alexander von Rhein, Jörg Liebig, Andreas Janker, Christian Kästner, and Sven

Apel. 2018. Variability-Aware Static Analysis at Scale: An Empirical Study. ACM
Transactions on Software Engineering and Methodology 27, 4 (2018), Article No.
18. https://doi.org/10.1145/3280986

[43] Alexander von Rhein, Thomas Thüm, Ina Schaefer, Jörg Liebig, and Sven Apel.
2016. Variability encoding: From compile-time to load-time variability. J. Log.
Algebraic Methods Program. 85, 1 (2016), 125–145. https://doi.org/10.1016/j.jlamp.
2015.06.007

[44] Eric Walkingshaw, Christian Kästner, Martin Erwig, Sven Apel, and Eric Bodden.
2014. Variational Data Structures: Exploring Tradeoffs in Computing with Vari-
ability. In Proceedings of the 2014 ACM International Symposium on New Ideas,

New Paradigms, and Reflections on Programming & Software (Portland, Oregon,
USA) (Onward! 2014). Association for Computing Machinery, New York, NY, USA,
213–226. https://doi.org/10.1145/2661136.2661143

[45] John Whaley. 2007. JavaBDD. http://javabdd.sourceforge.net/.
[46] xtend. 2021. Java with spice! http://www.eclipse.org/xtend/
[47] C. Yilmaz, M. B. Cohen, and A. A. Porter. 2006. Covering arrays for efficient fault

characterization in complex configuration spaces. IEEE Transactions on Software

Engineering 32, 1 (Jan. 2006), 20–34. https://doi.org/10.1109/TSE.2006.8

https://doi.org/10.1145/3106237.3106283
https://doi.org/10.1145/2254064.2254103
https://www.gnu.org/software/bison/
https://gcc.gnu.org/onlinedocs/gcc-9.4.0/gcc/
https://gcc.gnu.org/onlinedocs/gcc-9.4.0/gcc/
https://github.com/joliebig/Hercules
https://github.com/facebook/infer
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
https://doi.org/10.1145/2076021.2048128
https://github.com/itu-square/c-reconfigurator
https://github.com/itu-square/c-reconfigurator
https://www.libssh.org/
https://doi.org/10.1109/ICSE.2015.57
https://doi.org/10.1109/ICSE.2015.57
https://doi.org/10.1145/2491411.2491437
https://doi.org/10.1145/2884781.2884831
https://doi.org/10.1109/ICSE-Companion.2019.00064
https://doi.org/10.5281/zenodo.5915048
https://doi.org/10.1145/3280986
https://doi.org/10.1145/3280986
https://github.com/landley/toybox
https://releases.ubuntu.com/16.04/
https://releases.ubuntu.com/16.04/
https://doi.org/10.1145/3280986
https://doi.org/10.1016/j.jlamp.2015.06.007
https://doi.org/10.1016/j.jlamp.2015.06.007
https://doi.org/10.1145/2661136.2661143
http://javabdd.sourceforge.net/
http://www.eclipse.org/xtend/
https://doi.org/10.1109/TSE.2006.8

	Abstract
	1 Introduction
	2 Design of SugarC
	2.1 Representing Semantic Values
	2.2 Representing the Symbol Table
	2.3 Semantic Actions for Desugaring

	3 Realizing SugarC in Practice
	3.1 Handling Struct, Union, and Enum
	3.2 Emitting Errors and Line Numbers
	3.3 Limitations

	4 DesugarBench
	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: Does SugarC support more language features than existing desugarers?
	5.3 RQ2: Can SugarC Desugar Real Programs?

	6 Threats to Validity
	7 Related Work
	8 Conclusions
	References

