Chapter 6

Survival Analysis

Survival analysis traditionally focuses on the analysis of time duration until one or more
events happen and, more generally, positive-valued random variables. Classical examples are
the time to death in biological organisms, the time from diagnosis of a disease until death,
the time between administration of a vaccine and development of an infection, the time
from the start of treatment of a symptomatic disease and the suppression of symptoms, the
time to failure in mechanical systems, the length of stay in a hospital, duration of a strike,
the total amount paid by a health insurance, the time to getting a high school diploma. This
topic may be called reliability theory or reliability analysis in engineering, duration analysis
or duration modeling in economics, and event history analysis in sociology. Survival analysis
attempts to answer questions such as: what is the proportion of a population which will
survive past a certain time? Of those that survive, at what rate will they die or fail? Can
multiple causes of death or failure be taken into account? How do particular circumstances
or characteristics increase or decrease the probability of survival?

To answer such questions, it is necessary to define the notion of “lifetime”. In the case of
biological survival, death is unambiguous, but for mechanical reliability, failure may not be
well defined, for there may well be mechanical systems in which failure is partial, a matter
of degree, or not otherwise localized in time. Even in biological problems, some events (for
example, heart attack or other organ failure) may have the same ambiguity. The theory
outlined below assumes well-defined events at specific times; other cases may be better
treated by models which explicitly account for ambiguous events.

While we are still dealing with a random variable X, that may be characterized by its
cumulative distribution function FX(x) (also often referred to as the lifetime distribution
function), because survival analysis is primarily interested in the time until one or more
events, the random variable is assumed to be nonnegative (it is supported on [0, 00)) and
it is traditionally characterized by the survival function GX(z) := P(X > z) = 1 — FX(z).
That is, the survival function is the probability that the time of death is later than some
specified time x. The survival function is also called the survivor function or survivorship
function in problems of biological survival, and the reliability function in mechanical survival
problems. Usually one assumes G(0) = 1, although it could be less than 1 if there is the
possibility of immediate death or failure. The survival function must be nonincreasing:
GX(u) > GX(t) if u > t. This reflects the notion that survival to a later age is only possible
if all younger ages are attained. The survival function is usually assumed to approach zero
as age increases without bound, i.e., G(z) — 0 as © — oo, although the limit could be
greater than zero if eternal life is possible. For instance, we could apply survival analysis to
a mixture of stable and unstable carbon isotopes; unstable isotopes would decay sooner or
later, but the stable isotopes would last indefinitely.

Typically, survival data are not fully and/or directly observed, but rather censored and
the most commonly encountered form is right censoring. For instance, suppose patients
are followed in a study for 12 weeks. A patient who does not experience the event of
interest for the duration of the study is said to be right censored. The survival time for this
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person is considered to be at least as long as the duration of the study. Another example
of right censoring is when a person drops out of the study before the end of the study
observation time and did not experience the event. This person’s survival time is said to be
right censored, since we know that the event of interest did not happen while this person
was under observation. Censoring is an important issue in survival analysis, representing a
particular type of modified data.

Another important modification of survival data is truncation. For instance, suppose
that there is an ordinary deductible D in an insurance policy. The latter means that if a
loss occurs, then the amount paid by an insurance company is the loss minus deductible.
Then a loss less than D may not be reported, and as a result that loss is not observable
(it is truncated). Let us stress that truncation is an illusive modification because there is
nothing in truncated data that manifests about the truncation, and only our experience
in understanding of how data were collected may inform us about truncation. Further, to
solve a statistical problem based on truncated observations, we need to know or request
corresponding observations of the truncating variable.

It also should be stressed that censoring and/or truncation may preclude us from consis-
tent estimation of the distribution of a random variable over its support, and then a feasible
choice of interval of estimation becomes a pivotal part of statistical methodology. In other
words, censoring or truncation may yield a destructive modification of data.

As it will be explained shortly, survival analysis of truncated and censored data re-
quires using new statistical approaches. The main and pivotal one is to begin analysis of
an underlying distribution not with the help of empirical cumulative distribution function
or empirical density estimate but with estimation of a hazard rate which plays a pivotal
role in survival analysis. For a continuous lifetime X, its hazard rate (also referred to as the
failure rate or the force of mortality) is defined as hX (x) := ¥ (x)/G* (). Similarly to the
density or the cumulative distribution function, the hazard rate characterizes the random
variable. In other words, knowing hazard rate implies knowing the distribution. As we will
see shortly, using a hazard rate estimator as the first building block helps us in solving a
number of complicated problems of survival analysis including dealing with censored and
truncated data.

Estimation of the hazard rate has a number of its own challenges, and this explains
why it is hardly ever explored for the case of direct observations. The main one is that
the hazard rate is not integrated over its support (the integral is always infinity), and then
there is an issue of choosing an appropriate interval of estimation. Nonetheless, estimation
of the hazard rate (in place of more traditional characteristics like density or cumulative
distribution function) becomes more attractive for truncated and/or censored data. Further,
as it was mentioned earlier, truncation and/or censoring may preclude us from estimation
of the distribution over its support, and then the problem of choosing a feasible interval
of estimation becomes bona fide. Further, the hazard rate approach allows us to avoid
using product-limit estimators, like a renowned Kaplan—Meier estimator, that are the more
familiar alternative to the hazard rate approach. We are not using a product-limit approach
because it is special in its nature, not simple for statistical analysis, and cannot be easily
framed into our E-estimation methodology. At the same time, estimation of the hazard rate
is based on the sample mean methodology of our E-estimation.

The above-presented comments explain why the first four sections of the chapter are
devoted to estimation of the hazard rate for different types of modified data. We begin with
a classical case of direct observations considered in Section 6.1. It introduces the notion
of the hazard rate, explains that the hazard rate, similarly to the density or the cumula-
tive distribution function, characterizes a random variable, and explains how to construct
hazard rate E-estimator. Right censored (RC), left truncated (LT), and left truncated and
right censored (LTRC) data are considered in Sections 6.2-6.4, respectively. Sections 6.5-6.7



HAZARD RATE ESTIMATION FOR DIRECT OBSERVATIONS 183

discuss estimation of the survival function and the density. Sections 6.8 and 6.9 are devoted
to nonparametric regression with censored data.

In what follows ax and Bx denote the lower and upper bounds of the support of a
random variable X.

6.1 Hazard Rate Estimation for Direct Observations

Consider a nonnegative continuous random variable X. It can be a lifetime, or the time to
an event of interest (which can be the time of failure of a device, or the time of an illness
relapse), or an insurance loss, or a commodity price. In all these cases it is of interest to
assess the risk associated with X via the so-called hazard rate function

B () = lim Pla <X <z+v|X >z) f¥=)

= X >
v=0 v GX(z)’ G (z) >0, z>0, (6.1.1)

where we use our traditional notation f*(z) for the probability density of X and GX (x) :=
P(X > ) = [ fX(u)du =1 — FX(x) for the survival (survivor) function, and F¥(z) is
the cumulative distribution function of X. If one thinks about X as a time to an event-
of-interest, then h*(x)dx represents the instantaneous likelihood that the event occurs
within the interval (z,z + dz) given that the event has not occurred at time x. The hazard
rate quantifies the trajectory of imminent risk, and it may be referred to by other names
in different sciences, for instance as the failure rate in reliability theory and the force of
mortality in actuarial science and sociology.

Let us consider classical properties and examples of the hazard rate. The hazard rate,
similarly to the probability density or the survival function, characterizes the random vari-
able X. Namely, if the hazard rate is known, then the corresponding probability density
is

FX (@) = WX (z)e Jo 7 @)dv — X ()= HY (@), (6.1.2)

where H* (z) := [/ h* (v)dv is the cumulative hazard function, and the survival function

is
GX(z)=e 1o W @)dv _ o= H (x), (6.1.3)

The preceding identity follows from integrating both sides of the equality
X (x) = —[dGX () /dz] /G (z), (6.1.4)

and then using G*(0) = 1. Relation (6.1.2) follows from (6.1.1) and the verified (6.1.3).

A corollary from (6.1.3) is that for a random variable X supported on [0,b], b < oo we
get lim,_,, hX(x) = oco. This property of the hazard rate for a bounded lifetime plays a
critical role in its estimation.

An important property of the hazard rate is that if V and U are independent lifetimes,
then the hazard rate of their minimum is the sum of the hazard rates, that is, h™*(V:V) (z) =
hY (x) + hY (x). Indeed, we have

GOV () = P(min(U, V) > z) = P(U > )P(V > z) = GY (2)GY (z), (6.1.5)

and this, together with (6.1.4), yield the assertion. This property allows us to create a wide
variety of shapes for hazard rates. Another important property, following from (6.1.3) and
GX(00) = 0, is that the hazard rate is not integrable on its support, that is the hazard
rate must satisfy fOOO hX(x)dr = oco. This is the reason why hazard rate estimates are
constructed for a finite interval [a,a+b] C [0, 00) with @ = 0 being the most popular choice.
Further, similarly to the probability density, the hazard rate is nonnegative and has the same
smoothness as the corresponding density because the survival function is always smoother
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than the density. The last but not the least remark is about scale-location transformation
Z = (X —a)/b of the lifetime X. This transformation allows us to study Z on the standard
unit interval [0, 1] instead of exploring X over [a, a+b]. Then the following formulae become
useful,
G%(2) =GX(a+bz2), f%(2) =bf*(a+bz), (6.1.6)
and
h?(2) = bhX (a+bz), h*(x) =b"'hZ((x — a)/b). (6.1.7)

Among examples of hazard rates for variables supported on [0, 00), the most “famous”
is the constant hazard rate of an exponential random variable X with the mean E{X} = \.
Then the hazard rate is h*(z) = A"'I(z > 0) and the cumulative hazard is HX(z) =
(x/N)I(x > 0). Indeed, the density is fX(z) = \"te™2/*I(x > 0), the survival function is
GX(x) = e®/*, and this yields the constant hazard rate. The converse is also valid and
a constant hazard rate implies exponential distribution, the latter is not a major surprise
keeping in mind that the hazard rate characterizes a random variable. A constant hazard rate
has coined the name memoryless for exponential distribution. Another interesting example
is the Weibull distribution whose density is f* (z;k,\) = (k/)\)(x/)\)k_le_(x/)‘)kl(x > 0),
where £ > 0 is the shape parameter and A > 0 is the scale parameter. The mean is
AL(1 + 1/k) with T'(2) being the Gamma function, the survivor function is GX (x;k, \) =
e~ @/ N (g > 0), the hazard rate function is hX (x;k, \) = (k/\)(z/A\)*~1I(x > 0), and the
cumulative hazard is HX (z;k,\) = (x/A\)*I(z > 0). Note that if £ < 1 then the hazard
rate is decreasing (it is often used to model “infant mortality”), if & > 1 then the hazard
rate is increasing (it is often used to model “aging” process), and if £k = 1 then the Weibull
distribution becomes exponential (memoryless) with a constant hazard rate.

Now we are in a position to formulate the aim of this section. Based on a sample
X1, Xa,..., X, of size n from the random variable of interest (lifetime) X, we would like to
estimate its hazard rate h*X (x) over an interval [a,a +b], @ > 0, b > 0. Because hazard rate
is the density divided by the survival function, and the survival function is always smoother
than the density, the hazard rate can be estimated with the same rate as the corresponding
density. Furthermore, a natural approach is to use (6.1.1) and to estimate the hazard rate
by a ratio between estimates of the density and survival function. We will check the ratio-
estimate shortly in Figure 6.1, and now simply note that the aim is to understand how a
hazard rate may be estimated using our E-estimation methodology because for censored and
truncated data, direct estimation of the density or survival function becomes a challenging
problem.

To construct an E-estimator of the hazard rate, according to Section 2.2 we need to
suggest a sample mean or a plug-in sample mean estimator of Fourier coefficients of the haz-
ard rate. Remember that on [0, 1] the cosine basis is {po(z) = 1, ¢,(z) = V2 cos(njz),j =
1,2,...}. Similarly, on [a, a+b] the cosine basis is {1;(x) := b~/2¢;((x—a)/b),j = 0,1,...}.
Note that the cosine basis on [a,a + b] “automatically” performs the above-discussed trans-
formation Z := (X —a)/b of X. As a result, we can either work with the transformed Z and
the cosine basis on [0, 1] or directly with X and the corresponding cosine basis on [a, a + b].
Here, to master our skills in using different bases, we are using the latter approach. Suppose
that GX (a + b) > 0 and write for jth Fourier coefficient of h* (z), = € [a,a + b],

a+b x a+b fX(:L‘)
o= [ @ = [ LS @
=E{I(X € [a,a + b)) [G¥(X)] (X))} (6.1.8)
Also, to shed light on the effect of rescaling a random variable, note that if x; :=
fol h%(2)p;(z)dz is the jth Fourier coefficient of hZ(z), z € [0, 1], then

0; =b"?x;. (6.1.9)
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Assume for a moment that the survival function G*X(x) is known, then according to
(6.1.8) we may estimate 6; by the sample mean estimator

~ = (X)) (X, € [a,a + D))
0, :=n"! J . 1.1
A ; GX (X)) (6.1.10)
This Fourier estimator is unbiased and its variance is
~ B I(X; € [a,a+ b)) (X))
N — 1 9 g
V(d,) =n V( b ) (6.1.11)

Further, using (1.3.4) and the assumed G*(a + b) > 0 we may conclude that the corre-
sponding coeflicient of difficulty is

a+b

d(a,a +0b) := lim lim nV(4;) =b~" / hX (2)[GX ()] . (6.1.12)
n—00 j—00 a

The coeflicient of difficulty explicitly shows how the interval of estimation, the hazard rate

and the survival function affect estimation of the hazard rate. As we will see shortly, the

coefficient of difficulty may point upon a feasible interval of estimation.

Of course éj is an oracle-estimator which is based on an unknown survival function (note
that if we know G, then we also know the hazard rate hX). The purpose of introducing
an oracle estimator is two-fold. First to create a benchmark to compare with, and second to
be an inspiration for its mimicking by a data-driven estimator, which is typically a plug-in
oracle estimator. Further, in some cases the mimicking may be so good that asymptotic
variances of the estimator and oracle estimator coincide.

Let us suggest a good estimator of the survival function that may be plugged in the
denominator of (6.1.10). Because X is a continuous random variable, the survival function
can be written as

GX(z):=P(X >2) =P(X >z) =E{I(X >2)}, (6.1.13)

and then its sample mean estimator is

GX(z) :==n"1 zn:I(Xl > ). (6.1.14)
=1

Note that mingegy,...p} GX(Xy) = n~! > 0 and hence we can use the reciprocal of G (X;).
The sample mean estimator (6.1.14) may be referred to as an empirical survival function.

We may plug (6.1.14) in (6.1.10) and get the following data-driven estimator of Fourier
coefficients 6; of the hazard rate h¥ (z), z € [a,a + V],

n
éj — n—lsz(Xl)I(:XXl € [aﬂa’—'—b]). (6115)
=1 GX(X)

This is the proposed Fourier estimator, and it is possible to show that its coefficient of
difficulty is identical to (6.1.12). We may conclude that the empirical survival function is a
perfect estimator for our purpose to mimic oracle-estimator (6.1.10). Further, the asymptotic
theory shows that no other Fourier estimator has a smaller coefficient of difficulty, and hence
the proposed Fourier estimator (6.1.15) is efficient. In its turn this result yields asymptotic
efficiency of a corresponding hazard rate E-estimator hX (z).
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Let us present an example where the coefficient of difficulty is easily calculated. Consider
X with exponential distribution and E{X} = X. Then h¥(z) = 1/\, GX(z) = e~*/*, and
hence

a+b
d(a,a+0b) = b_l/ At/ My = b led/ A ebA —1). (6.1.16)

Note that the coefficient of difficulty increases to infinity exponentially in b. This is what
makes estimation of the hazard rate and choosing a feasible interval of estimation so chal-
lenging. On the other hand, it is not difficult to suggest a plug-in sample mean estimator
of the coefficient of difficulty,

d(a,a+b):=n""p"" zn: I(X; € [a,a + b)[GX (X)) 72 (6.1.17)
=1

To realize that this is indeed a plug-in sample mean estimator, note that (6.1.12) can be
rewritten as

d(a,a+b) =b""! /m X (@)[GX (2)]2de = b 'B{I(X € [a,a +b]))[GX(X)]?}. (6.1.18)

This is what was wished to show. The estimator (6.1.17) may be used for choosing a feasible
interval of estimation.

Figure 6.1 helps us to understand the problem of estimation of the hazard rate via
analysis of a simulated sample of size n = 400 from the Bimodal distribution. The cap-
tion of Figure 6.1 explains its diagrams. The left-top diagram exhibits reciprocal of the
survival function G () by the solid line and its estimate 1/GX (X)) by crosses. Note that
x-coordinates of crosses indicate observed realizations of X, and we may note that while
the support is [0, 1], just a few of the observations are larger than 0.85. We also observe a
sharply increasing right tail of 1/ G’(m) for x > 0.7, and this indicates a reasonable upper
bound for intervals of estimation of the hazard rate.

Our next step is to look at two density E-estimates exhibited in the right-top diagram.
The solid line is the underlying Bimodal density. The dotted line is the E-estimate con-
structed for interval [a,a + b] = [0,0.6] and it is based on N = 211 observations from this
interval. The dashed line is the E-estimate based on all observations and it is constructed
for the interval [0, 1] (the support). The subtitle shows ISEs of the two estimates. Because
the sample size is relatively large, both estimates are good and have relatively small ISEs.
These estimates will be used by the ratio-estimator of the hazard rate.

Diagrams in the second row show us the same estimate d(a,z) of the coefficients of
difficulty for different intervals. This is done because the estimate has a sharply increasing
right tail. In the left diagram we observe the logarithm of J(O,Xl), [ =1,...,n, while
the right diagram allows us to zoom in on the coefficient of difficulty by considering only
X; € [al,al+b1]. Similarly to the left-top diagram, we conclude that interval [0, 0.6] may be
a good choice for estimation of the hazard rate, and we may try [0,0.7] as a more challenging
one.

Diagrams in the third (from the top) row exhibit performance of the ratio-estimator

WX (z) = g;((?) (6.1.19)

where fX is an E-estimate of the density. The ratio-estimate is a natural plug-in estimate
that should perform well as long as the empirical survival function is not too small. The
left diagram shows us the ratio-estimate based on all observations, that is, it is the ratio of
the dashed line in the right-top diagram over the estimated survival function shown in the
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Figure 6.1 Estimation of the hazard rate based on direct observations. The left-top diagram exhibits
reciprocals of the underlying survival function (the solid line) and the empirical one (the crosses
at n observed values). The right-top diagram shows the underlying density (the solid line), the E-
estimate over [a, a+b] based on observations from this interval (the dotted line), and the E-estimate
over the support based on all observations (the dashed line). The second row of diagrams exhibits
estimates ci(a, X1) over different intervals. In the third row of diagrams, the left diagram shows the
hazard rate (the solid line) and its ratio-estimate on [a,a + B], based on all observations, by the
dashed line, while the Tight diagram shows ratio-estimates based on the density estimates shown in
the right-top diagram. The left-bottom diagram shows the underlying hazard rate (the solid line)
and the E-estimate on [a,a + B] (the dashed line); it also shows the pointwise (the dotted lines)
and simultaneous (the dot-dashed lines) confidence bands with confidence level 1 — o, a = 0.05.
The right-bottom diagram is similar to the left one, only here estimation over interval [a,a + b] is
considered. [n = 400, corn = 3, a = 0, b = 0.6, B= 0.7, al= 0, bl = 0.7, alpha = 0.05, ¢JO = /,
cJ1 = 0.5, ¢cTH = }]

left-top diagram. The estimate is shown only over the interval [a,a + B] = [0,0.7] because
the reciprocal of the estimated survival function is too large beyond this interval. The solid
line shows the underlying hazard rate (it increases extremely fast beyond the point 0.7).
For this particular simulation the ISE=0.022 is truly impressive. The right diagram shows
us two ratio-estimates for the smaller interval [a,a + b] = [0.0.6]; the estimates correspond
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to the two density estimates shown in the top-right diagram. Note that the ratio-estimate
based on the density estimate for the interval [a,a + b] (the dotted line) is worse than
the ratio-estimate based on the density which uses all observations (the dashed line); also
compare the corresponding ISEs in the subtitle. This is clearly due to the boundary effect;
on the other hand, the dotted curve better fits the solid line on the inner interval [0,0.45].
It will be explained in Notes at the end of the chapter how to deal with severe boundary
effects.

The bottom row shows E-estimates of the underlying hazard rate for different intervals
of estimation. The estimates are complemented by pointwise and simultaneous confidence
variance-bands introduced in Section 2.6. The E-estimate over the larger interval [a, a+B] =
[0,0.7] is bad. We have predicted the possibility of such outcome based on the analysis of
the reciprocal of the survival function and the coefficient of difficulty. Estimation over the
smaller interval [a,a + b] = [0,0.6], shown in the right-bottom diagram, is much better.
Further, the E-estimate is better than the corresponding ratio-estimate (the dotted line
in the right diagram of the third row) based on the same N = 211 observations from this
interval. On the other hand, due to the boundary effect, the E-estimate performs worse than
the ratio-estimate based on all observations. Further, note that confidence bands present
another possibility to choose a feasible interval of estimation.

It is highly advisable to repeat Figure 6.1 with different corner distributions, sample
sizes and intervals to get used to the notion of hazard rate and its estimation. Hazard
rate is rarely studied in standard probability and statistical courses, but it is a pivotal
characteristic in understanding nonparametric E-estimation in survival analysis.

6.2 Censored Data and Hazard Rate Estimation

Censoring is a typical data modification that affects survival data. We begin with the model
of right censoring, which more often occurs in applications, and then explain the model of
left censoring.

Right censoring (RC) occurs when a case may be removed from a study at some stage
of its “natural” lifetime X and the censoring time C' of removal is known. It is a standard
assumption that both X and C' are nonnegative random variables (lifetimes). Under a right
censoring model, the smallest among the lifetime of interest X and the censoring time C'
is observed, and it is also known whether X or C'is observed. In other words, instead of a
direct sample from X, under the right censoring we observe a sample from a pair of random
variables

(V,A) := (min(X, C), I(X < (C)). (6.2.1)

Note that the indicator of censoring A tells us when V = X or V = C, and because the
indicator is always present in data, it is not difficult to realize that we are dealing with
data modified by censoring. (The latter is a nice feature of censoring, and in Section 6.3
we will explore another modification, called truncation, when survival data do not manifest
the modification.) In what follows we may use the term censoring in place of right censoring
whenever no confusion with left censoring occurs.

Let us present several examples that shed light on the right censoring. Suppose that
we study a time X from origination of a mortgage loan until the default on the payment;
the study is based on data obtained from a large mortgage company. For each originated
loan, we get either the time X of the default or the censoring time C' when the loan is paid
in full due to refinancing, selling a property, final payment, etc. Hence, in this study we
observe the default time X only if it is not larger than the censoring time C' and otherwise
we observe C. Note that we also know when we observe X or ', and hence the example fits
model (6.2.1). Another example is the lifetime of a light bulb that may accidentally break
at time C' before it burns out. But in no way the notion of censoring is restricted to event
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times. For instance, if an insurance policy has an upper limit C' on the payment and there
is a claim for a loss with X being the actual loss, then the payment will be the smaller of
the loss and the limit. Insurance data typically contain information about payments and
policy limits, and hence we are dealing with right censored losses. The latter is a classical
example of right-censored data in actuarial science. In a clinical study, typical reasons of
right censoring are end of study and withdrawal from study. Note that in all these examples
true survival times are equal or greater than observed survival times. As a result, observed
data are biased and skewed to the left. Further, estimation of the right tail of distribution
may be difficult if not impossible. This is a specific of right censoring that we are dealing
with.

Now we are in a position to explain how a hazard rate E-estimator, based on censored
data, can be constructed. As usual, the key element is to propose a sample mean estimator
for Fourier coefficients. From now on, we are assuming that X and C are independent and
continuous random variables. We begin with presenting formulas for the distributions of
interest. Because V' is the minimum of two independent random variables X and C, there
exists a nice formula for its survival function,

GV (v) :=P(min(X,C) > v) =P(X >v,C > v) = G*(v)G (v). (6.2.2)
Further, for the observed pair (V, A) we can write,

P(V <v,A=05)=PA =8PV >uv,A=0)

=P(A=4)— /OO[fX(x)GC(:c)P[fc(x)GX(x)}lféd% v>0,6¢€{0,1}. (6.2.3)

Differentiation of (6.2.3) with respect to v yields the following formula for the joint mixed
density of the observed pair,

P2 (0,6) = [FX )G @) )X @) I > 0,6 € {0,1}).  (6.2.4)

The formula exhibits a remarkable symmetry with respect to § which reflects the fact
that while C censors X on the right, we may also say that the random variable X also
censors C on the right whenever C is the lifetime of interest. In other words, the problem
of right censoring is symmetric with respect to the two underlying random variables X and
C'. This is an important observation because if a data-driven estimator for distribution of
X is proposed, it can be also used for estimation of the distribution of C' by changing A on
1-A.

Formula (6.2.4) implies that available observations of X (when A = 1) are biased with
the biasing function being the survival function G¢(x) of the censored random variable
(recall definitions of biased data and a biasing function in Section 3.1). Note that the
biasing function is decreasing in v because larger values of X are more likely to be censored.
As we know, in general the biasing function should be known for a consistent estimation of
an underlying distribution. As we will see shortly, because here we observe a sample from
a pair (V,A) of random variables, we can estimate the biasing function G¢(x) and hence
to estimate the distribution of X. Recall that knowing a distribution means knowing any
characteristic of a random variable like its cumulative distribution function, density, hazard
rate, survival function, etc. We will see shortly in Section 6.5 that estimation of the density
of X is a two-step procedure. The reason for that is that censored data are biased and hence
we first estimate the biasing function G, which is a complicated problem on its own, and
only then may proceed to estimation of the density of X.

Surprisingly, there is no need to estimate the biasing function if the hazard rate is the
function of interest (the estimand). This is a pivotal statistical fact to know about survival
data where the cumulative distribution function and/or probability density are no longer
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natural characteristics of a distribution to begin estimation with. The latter is an interesting
consequence of data modification caused by censoring.

Let us explain why hazard rate h”X () is a natural estimand in survival analysis. Using
(6.2.2) and (6.2.4) we may write,

X VA (y ] VA (1
O P O Al C8) B Ml U (6.2.5)
GX(v)  GY)GX(v)  GY(v)
This is a pivotal formula because (6.2.5) expresses the hazard rate of right censored X via
the density and survival function of directly observed variables.
Suppose that we observe a sample of size n from (V,A). Denote by 6, :=

faa+b hX(z);(z)dz the jth Fourier coefficient of the hazard rate h™(z), = € [a,a + b].
Here and in what follows, similarly to Section 6.1, the cosine basis {¢;(v)} on an interval
[a, a+b] is used and recall our discussion of why a hazard rate is estimated over an interval.
Assume that a + b < By (recall that By denotes the upper bound of the support of V),
and note that using (6.2.5) we can write down a Fourier coefficient as an expectation of a
function in V' and A,

0; = ]E{ ALV € [C‘;",‘z;)b])%(v) } (6.2.6)
This immediately yields the following plug-in sample mean Fourier estimator,
6, = zn: Arp;(V)I(Vi € [a,a + b])7 (6.2.7)
= Gv(Vi)
where .
GY(v) =n""Y I(Vi > v) (6.2.8)
=1

is the empirical survival function of V.
_In its turn, the Fourier estimator implies the corresponding hazard rate E-estimator
h* (x). Furthermore, the coefficient of difficulty is

d(a,a+b) := lim lim nV(4;)

n—00 j—00

-1 ath () ALV €fa,a+ b))
= / Trp =" E{ P } (6.2.9)
[T X (v o, [ott ¥ (v
=b 1/a GV((U))dv:b 1/a GX(U)(Gg(U)dU' (6.2.10)

Formula (6.2.10) clearly shows how an underlying hazard rate and a censoring variable affect
accuracy of estimation. Note that the new here, with respect to formula (6.1.12) for the
case of direct observations, is an extra survival function G%(v) in the denominator. This
is a mathematical description of the negative effect of censoring on estimation. Because
G%(v) < 1 and the survival function decreases in v, that effect may be dramatic. Further, if
Bo < Bx then the censoring implies a destructive modification of data when no consistent
estimation of the distribution of X is possible.

Formula (6.2.9) implies that the coefficient of difficulty may be estimated by a plug-in
sample mean estimator

d(a,a +b) :==n"1p"? En: AI(Vi € [a,a+B)[GY (V)] 72 (6.2.11)
=1
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Censored Data, n= 300, N = 192
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Figure 6.2 FEstimation of the hazard rate based on right censored observations. The top diagram
shows n = 300 observations of (V,A), among those N :=>_' | Ay = 192 uncensored ones. Second
from the top diagram shows us by crosses values of l/é(Vl) and by circles values of cZ(al,Vl) for
uncensored V; € [al,al 4 bl]; the corresponding scales are on the left and right vertical azes. Note
how fast the right tails increase. The third from the top diagram shows FE-estimate of the hazard
rate based on observations Vi € [a,a + B], while in the bottom diagram the E-estimate is based
on Vi € [a,a+b]. A corresponding N shows the number of uncensored observations within an
interval. The underlying hazard rate and its E-estimate are shown by the solid and dashed lines,
the pointwise and simultaneous 1 — a confidence bands are shown by dotted and dot-dashed lines.
{Censoring distribution is either the default Uniform(0,uc) with uc = 1.5, or Ezponential(Ac)
with the default \c = 1.5 where Ac is the mean. To choose an exponential censoring, set cens
= "Expon"”. Notation for arguments controlling the above-mentioned parameters is evident.} [n =
300, corn = 3, cens =" Unif", uC = 1.5, lambdaC = 1.5, a = 0, b = 0.55, B = 0.75, al = 0, bl
= 0.75, alpha = 0.05, ¢JO = 4, ¢J1 = 0.5, cTH = 4]

Note that the new in the estimator, with respect to the case of direct observations of Section
6.1, is that GX is replaced by GV. Because GV = G¥X for the case of direct observations,
this change is understandable.

The proposed estimator of Fourier coefficients allows us to construct the E-estimator of
the hazard rate.
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Figure 6.2 sheds light on right censoring, performance of the proposed E-estimator, and
the methodology of choosing a feasible interval of estimation explained in Section 6.1. In
the particular simulation X is the Bimodal and C' is the Uniform(0,1.5). The top diagram
shows the sample from (V,A) = (min(X,C),I(X < C)). The sample size n = 300 and
N := 3", Ay = 192 is the number of uncensored realizations of X. The latter indicates
a severe censoring. The second from the top diagram allows us to evaluate complexity of
the problem at hand and to choose a reasonable interval of estimation. Crosses (and the
corresponding scale is shown on the left vertical axis) show values of 1/GY (V;) for N = 192
uncensored observations over interval [al,al 4+ b1] = [0,0.75], while circles show values
of the estimated coefficient of difficulty (its scale is on the right-vertical axis). Here we
have an interesting outcome that the two functions look similar, and this is due to using
different scales and rapidly increasing right tails. The interested reader may decrease bl
and get a better visualization of the functions for moderate values of v. Analysis of the
two estimates indicates that it is better to avoid estimation of the hazard rate beyond
v = 0.75, and probably a conservative approach is to consider intervals with the upper
bound smaller than 0.6. Let us check this conclusion with the help of corresponding hazard
rate E-estimates and confidence bands. The two bottom diagrams allow us to do this, here
the chosen intervals are [a,a + B] = [0,0.75] and [a,a + b] = [0,0.55], respectively. At
first glance, the E-estimate for the larger interval (the third from the top diagram) and
its confidence bands may look attractive, but this conclusion is misleading. Indeed, please
look at the scale of the bands and realize that the bands are huge! Further, the large bands
“hide” the large deviation of the estimate (the dashed line) from the underlying hazard rate
(the solid line). Further, the ISE = 0.43, shown in the subtitle, tells us that the estimate is
far from the underlying hazard rate. The reason for this is large right tails of 1/ GV (v) and
J(O, v) that may be observed in the second from the top diagram. The outcome is much
better for the smaller interval of estimation considered in the bottom diagram, and this is
despite the smaller number N = 106 of available uncensored observations. Also note that
the ISE is dramatically smaller.

It is fair to conclude that: (i) The proposed in Section 6.1, for the case of direct ob-
servations, methodology of choosing a feasible interval of estimation is robust and can be
also recommended for censored data; (ii) The E-estimator performs well even for the case
of severe censoring.

Let us finish this section by a remark about left censoring. Under a left censoring,
the variable of interest X is censored on the left by a censoring variable C' if available
observations are from the pair (V,;A) := (max(X,C),I(X > (C)). For instance, when a
physician asks a patient about the onset of a particular disease, the answer may be either a
specific date or that the onset occurred prior to some specific date. In this case the variable
of interest is left censored. Left censoring may be “translated” into a right censoring. To
do this, choose a value A that is not less than all available left-censored observations and
then consider new observations that are A minus left-censored observations. Then the new
observations become right-censored. The latter is the reason why it is sufficient to learn
about estimation for right-censored data.

6.3 Truncated Data and Hazard Rate Estimation

It is import to begin this section with a warning. While censoring manifests itself via
indicators of censoring and missing manifests itself via empty cells in data, truncation is
a “silent” modification of data with no indicators of truncation. Further, truncation is
generated by a hidden sequential missing mechanism and we do not even know how many
observations were missed. Further, an underlying sequential missing mechanism is MNAR
(Missing Not At Random) and it creates biased data. The aim of this section is to explain
how to recognize that observations are truncated and then, if possible, to propose an E-
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estimator of an underlying hazard rate. Left truncation is the most frequently occurred type
of truncation, and in what follows we are concentrating on its discussion.

Let us present several examples that shed light on truncation mechanism. Our first
example is a classical one in actuarial science. Suppose that we are interested in the dis-
tribution of losses incurred by policyholders of an insurance company. Also, suppose that
there is no limit on a payment. An insurance company can provide us with data for policies
where payments for insurable losses were made. On first glance, this may look like a clear
case of direct observations of losses incurred by policyholders, but this is not necessarily the
case because a typical insurance policy includes a deductible. The role of a deductible is
to decrease the payment (which is the incurred loss minus the deductible) and also to dis-
courage a policyholder from reporting small losses (note that there is no payment on a loss
smaller than the deductible, plus there is a possibility of increasing the insurance premium
for being a risky policyholder). As a result, smaller (with respect to deductible) incurred
losses are missed in the insurance database, and the recorded losses are biased (skewed to
the right) with respect to the distribution of underlying losses. Another interesting feature
of the MNAR truncation mechanism is that we do not know how many insurable losses
occurred. We may say that the underlying incurred loss (the random variable of interest)
is left truncated by the deductible (truncating random variable). Let us stress that per se
there is nothing in reported losses that manifests their truncated nature. It is up to us to
realize that available observations are truncated and that the left truncation causes data to
be right-skewed with respect to underlying data because larger realizations of the variable
of interest are observed (included in data) with larger likelihood. Further, it is up to us
to ask about corresponding observations of the truncating variable. From now on, when
the actuarial example is referred to, we are assuming that available data contains reported
losses and corresponding deductibles.

Our second example is more challenging. Suppose that we would like to know how long a
startup technology company survives until it files for bankruptcy. To study this problem, we
can look at all startups that exist at time 7', learn about times of their start, and then follow
them until their bankruptcy. This gives us data about lifetimes of the startups. Assuming
that the process is stationary, it looks like we have desired direct observations of the lifetime
of interest. Unfortunately, this is not the case because lifetimes are left truncated by time
T at which we search for functioning startup companies. Indeed, if a startup company is
bankrupt before time 7', it is not included in the study, and furthermore we do not even
know that it existed. The example looks more confusing than the actuarial one, but these
two examples are similar. Indeed, let us translate the startup example into the actuarial
example. We may say that an underlying lifetime of a company is an incurred loss, the
time from its start to time T is the deductible, and the observed lifetime of a company is
the reported loss. If we use this approach for understanding the startup data, then we may
realize that the two examples are similar.

Our third example is from biostatistics where truncation is a typical phenomenon in
clinical trials. Suppose that we got data from a study, conducted over the period of last 5
years, about the longevity of patients after a surgery. The data are left truncated because
only patients who were alive at the baseline (which is the time of beginning of the study
and in our case this was 5 years ago) can participate in the study. Please note how similar
this example to the second example with startups, and you may use the above-presented
methodology to “translate” it into the actuarial example.

Now, after presenting examples of left truncation, let us describe how truncation modifies
underlying data. There are a nonnegative random variable of interest (lifetime) X* and a
truncation random variable T*. Realizations of the pair (7™, X*) are not available directly
and are hidden. If the first hidden realization (T, X7) of (T, X*) satisfies the inequality
Xi > TY, that is the random variable of interest is not smaller than the truncation variable,
then the pair (Th, X1) := (15, X7) is observed, otherwise this hidden realization is skipped



194 SURVIVAL ANALYSIS

and we even do not know that it occurred. Then the underlying hidden sampling is continued
until n realizations of (T, X) are available. Let us look at the truncation one more time via
the actuarial example. In the actuarial example X* is the incurred loss and T* is the
deductible. The incurred loss X* is reported only if X* > T* (strictly speaking if X* > T*
but P(X* = T*) = 0 for a continuous X* and independent T%), and only then we may
observe the reported loss X = X™* and the corresponding deductible "= T*. On the other
hand, if X* < T%, then we do not even know that the loss occurred and also have no
information about a corresponding deductible (recall that we have only information about
policies with payments, and payments are triggered by reported losses).

The hidden mechanism of collecting data can be described via a negative binomial ex-
periment such that: the experiment stops as soon as nth “success” occurs, data is collected
only when a “success” occurs, there is no information on how many “failures” occurred be-
tween “successes.” Assuming that X* and T™ are independent, continuous and nonnegative
random variables, the probability of “success” can be defined as

p=PT* < X*)= /OO T ()GX (t)dt. (6.3.1)

Here f7°(t) and GX' (t) are the density of T* and the survival function of X*, respectively.
Further, while we do not know the total number N of hidden “failures”, the negative
binomial distribution sheds some light on it. In particular, the mean and variance of N are
calculated as

E{N}=n(1-p)p~", V(N)=n(-pp~> (6.3.2)

Let us make an important remark. If P(T™* < ¢) = 0 for some positive constant ¢ then all
hidden realizations of X* smaller than ¢ are truncated. As a result, we cannot restore the
distribution of X* for these small values. Hence in general the hazard rate may be estimated
only over an interval [a,a + b] with some a > 0, and the theory supports this conclusion.
Further, as we already know from Section 6.1, in general we cannot estimate the right tail
of a hazard rate, and now the left truncation may preclude us from estimating its left tail.
This phenomenon will be quantified shortly.

Now we are in a position to present useful probability formulas. For the joint cumulative
distribution function of the observed pair (T, X) we may write,

FTX(ta) =P(T <t,X <) =P(T* <t,X* <2|X*>T") =

=p 'P(T* <t,T* < X* <)

—_ltT*UxX*uuv x
= [Tl P e, o<t <a (6:3.3)

Here p is defined in (6.3.1). Then, taking partial derivatives with respect to x and t we get
the following expression for the bivariate density,

FIX ) =p T (@) X ()0 <t <z < ). (6.3.4)
This allows us to obtain, via integration, a formula for the marginal density of X,

X (z) = fX* (x)[p_lFT* (2)]. (6.3.5)

In its turn, for values of = such that F7 (z) > 0, (6.3.5) yields a formula for the density of
the random variable of interest X*,
(@)

fX*(Jf) = m whenever FT* (l‘) > 0. (636)
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Note that for values x such that FT (2) = 0 we cannot restore the density f* ()
because all observations of X* with such values are truncated. In other words, using our
notation az for a lower bound of the support of a continuous random variable Z, for
consistent estimation of the distribution of X* we need to assume that

Qx= 2 orx. (6.3.7)

Another useful remark is that formula (6.3.5) mathematically describes the biasing mech-
anism caused by the left truncation, and according to (3.1.2), the biasing function is F7" (x).
Note that the biasing function is increasing in x.

Let us also introduce a function, which is a probability, that plays a pivotal role in the
analysis of truncated data,

g(x) =P(T <z < X)=P(T* <z < X*IT* < X*)=p 'FT (2)G¥ (). (6.3.8)

In the last equality we used the assumed independence between T* and X*. Note that g(x)
is a functional of the distributions of available observations and hence can be estimated.
The latter will be used shortly.

Now we have all necessary formulas and notations to explain the method of constructing
an E-estimator of the hazard rate of X*.

Using (6.3.6) and (6.3.8), we conclude that the hazard rate of X* can be written as

A CO I S CO B S C))

W) = o T R 2 <)~ o)

whenever FT™ (2)GX " (z) > 0.  (6.3.9)

Note that h*X" (z) is expressed via distributions of available random variables (X,T) and
hence can be estimated. Further, note that the restriction F7 (2)GX" (x) > 0 is equivalent
to g(z) > 0.

Formula (6.3.9) for the hazard rate is the key for its estimation. Indeed, consider esti-
mation of the hazard rate over an interval [a,a + b] such that g(z) > 0 over this interval.
Similarly to the previous sections, {1;()} is the cosine basis on [a,a + b]. The proposed

sample mean estimator of Fourier coefficients 6; := f;er Vi (z)hX (z)da is
- v (X)X € [a,a + b))
0; :=n""! J . , (6.3.10)
! lz:; 9(X1)
where .
§@)=n"'Y I <2 < X)) (6.3.11)

1=1
is the sample mean estimator of function g(z) defined in (6.3.8). Note that §(X;) > n~!
and hence this estimator can be used in the denominator of (6.3.10).
The Fourier estimator (6.3.10) yields the corresponding E-estimator of the hazard rate.
Further, the corresponding coefficient of difficulty is
d(a,a+b):= lim nV(d;)

n,j—00

_ -1 ath hx*(x) _ g1 2
=b /a o) de=b""E{I(a< X <a+b)/g°(X)}. (6.3.12)

Further, the plug-in sample mean estimator of the coefficient of difficulty is

d(a,b) :=n"1p"" zn:I(a < X;<a+0)/i*(X)). (6.3.13)
I=1



196 SURVIVAL ANALYSIS

Truncated Data, n= 300
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Figure 6.3 Estimation of the hazard rate based on left truncated observations. The top diagram
shows a sample of left truncated observations, the sample size n = 300. In the simulation X™ is
the Bimodal and T is Uniform(0,0.5). Second from the top diagram shows by crosses the estimate
1/§(X:) and by circles the estimate d(al, X;), X; € [al,al + bl]. Note the different scales used for
these two estimates that are shown correspondingly on the left and right vertical axes. The third
from the top diagram shows E-estimate of the hazard rate on interval [A, A + B], while in the
bottom diagram the E-estimate is for interval [a,a+b]. N shows the number of observations within
a considered interval. The underlying hazard rate and its E-estimate are shown by the solid and
dashed lines, the pointwise and simultaneous 1 — a confidence bands are shown by dotted and dot-
dashed lines, respectively. { Distribution of T is either the default Uniform(0,ur) with up = 0.5,
or Ezponential(\r) with the default \r = 0.3 where At is the mean. Set trunc = " Expon” to
choose the exponential truncation. Parameter o is controlled by alpha.} [n = 300, corn = 3, trunc
="Unif", uT = 0.5, lambdaT = 0.3, a = 0, b = 0.55, A = 0.2, B = 0.75, al = 0.2, bl = 0.45,
alpha = 0.05, ¢JO = 4, ¢J1 = 0.5, ¢cTH = 4]

It is of interest to compare the proposed E-estimator with E-estimators of the pre-
vious sections. For the case of direct observations, we have P(T* > 0) = 0, this yields
g(x) = GX"(z) and hence the E-estimators coincide. For the case of censored observations,
the survival function GV (x) is used in place of g(x), and otherwise the E-estimators are
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identical. On the other hand, the important new feature of truncated data is that truncation
complicates estimation of the left tail of a hazard rate.

Let us look at a particular simulation and analysis of truncated data presented in Figure
6.3. Here X* is the Bimodal and T* is the Uniform(0,0.5). The top diagram shows by circles
the scattergram of n = 300 left-truncated observations of (X, T'). Note that all observations
are below the solid line 7' = X, this is what we must see in left-truncated observations.
Another useful observation is that there are no realizations of X smaller than 0.2. This
indicates that the left bound of reasonable intervals of estimation should be larger than
0.2. The second from the top diagram allows us to evaluate complexity of the problem at
hand. Crosses (and the corresponding scale is shown on the left vertical axis) show values
of the function 1/§(X;) for X; € [al,al + bl]. Note the increasing left and right tails of
the function. The coefficient of difficulty d(a,a 4 b) is now a function of two variables, and
the circles show us cZ(al,Xl), X, € [al,al 4 bl]. To see estimates for different intervals,
Figure 6.3 allows to change al and bl. Based on the analysis of this diagram, the right
side of a feasible interval of estimation should be smaller than 0.6. To test this conclusion,
let us choose a relatively large [4, A + B] = [0.2,0.75] and a smaller [a,a + b] = [0.2,0.65]
interval of estimation. Corresponding hazard rate E-estimates are shown in the two bottom
diagrams together with confidence bands. The quality of estimation over the smaller interval
is dramatically better, and the confidence bands support our preliminary conclusion about
a feasible interval of estimation.

The reader might notice that confidence bands take on negative values while a hazard
rate is nonnegative. It is not difficult to make them bona fide (nonnegative), but this will
complicate visualization of the left tail of the estimate. Furthermore, these “not bona fide
bands” help us to choose and/or justify a feasible interval of estimation.

It is highly recommended to repeat Figure 6.3 with different parameters and underlying
variables. Hazard rate is rarely studied in standard probability and statistical classes, and
the same can be said about truncation. Analysis of diagrams, generated by Figure 6.3, helps
to gain experience in dealing with hazard rate and truncated data.

6.4 LTRC Data and Hazard Rate Estimation

In the previous sections we considered data modified by two mechanisms: right censoring and
left truncation. Recall that both these mechanisms imply biased data, with right censoring
favoring smaller observations and left truncation favoring larger ones. In many applications
these two mechanisms act together. Let us present two examples. We begin with an actuarial
example. Suppose that we have data containing payments to policyholders, and the aim is to
estimate the distribution of losses incurred by policyholders. If the policies have deductibles
and limits on payments, then incurred losses are left truncated by deductibles and right
censored by limits on payments. In short, we may say that the available data are left
truncated and right censored (LTRC). Now let us consider a clinical trial example where
participants, who had a cancer surgery, are divided at the baseline into intervention group
(a new medication is given to these participants) and control group (a placebo is given) and
then observations of participants continue for a period of five years. The random variable
of interest is the lifetime from surgery to death. As we know from the previous sections, the
lifetimes in both groups are left truncated by the time from surgery to the baseline, and
they may be also right censored by a number of events like the time from surgery to the end
of the study, a possible moving to another area, etc. We again are dealing with the LTRC
modification.

Let us formally describe a LTRC mechanism of generating a sample of size n of left
truncated and right censored (LTRC) observations. There is a hidden sequential sampling
from a triplet of nonnegative random variables (7%, X* C*) whose joint distribution is
unknown. 7% is the truncation random variable, X* is the random variable (lifetime) of
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interest, and C* is the censoring random variable. Suppose that (T}, X}, C}) is the kth
realization of the hidden triplet and that at this moment there already exists a sample of
size | — 1, satisfying [ — 1 < min(k — 1,n — 1), of LTRC observations. If T}* > min(X}, C})
then the kth realization is left truncated meaning that: (i) The triplet (T}, X}, C}) is not
observed; (ii) The fact that the kth realization occurred is unknown; (iii) Next realization
of the triplet occurs. On the other hand, if 7} < min(X}, C}) then the LTRC observation
(T1, Vi, Ay) == (T, min(X}, CF), I(X; < Cf)) is added to the LTRC sample whose size
becomes equal to [. The hidden sequential sampling from the triplet (7, X*, C*) stops as
soon as | = n.

Let us stress two important facts about the model. The former is that the model includes
the case when the censoring variable may be smaller than the truncation one, that is it
includes the case P(C* < T*) > 0. Of course, it also includes the case P(C* > T*) = 1 with
an important example being C* := T™* 4+ U* where P(U* > 0) = 1. The latter is that the
LTRC mechanism of collecting data can be described via a negative binomial experiment
such that the “success” is the event T* < min(X™*, C*), the experiment stops as soon as nth
“success” occurs, data are collected only when a “success” occurs, there is no information
on how many “failures” occurred between “successes”, and the probability of “success” is

p:=P(T* < min(X*,C%)). (6.4.1)

Further, while we do not know the total number of hidden “failures”, the negative binomial
distribution sheds some light on the hidden number Ny of “failures”, and in particular the
mean and variance of N are calculated as E(Ny) = n(1—p)p~! and Var(Ny) = n(1—p)p~=2.

Now our aim is to understand how the distribution of LTRC observations is related to the
distribution of the hidden realizations of the triplet (T, X*, C*). Set V* := min(X*, C*).
Suppose that a hidden realization of the triplet is observed, meaning that it is given that
T* < V* and we observe (T, V,A) where T =T*, V =V* and A := A* ;= [(X* < C*).
Recall that T* is the underlying truncation random variable, X* is the lifetime (random
variable) of interest, C* is the underlying censoring random variable, and p, defined in
(6.4.1), is the probability of observing the hidden triplet (7, V*, A*). For the joint mixed
distribution function of the observed triplet of random variables we can write,

FTVA(0,8) :=P(T <t,V <v,A<§) =FT VATV (1 4 6)

=p 'P(T* <t,T* <V*<v,A*<§), t>0,0>0,6¢c{0,1}. (6.4.2)

Let us additionally assume that random variables T, X* and C* are independent and
continuous (this assumption will be relaxed later). Then, according to (6.4.1) we get p =
I T ()GX ()G (t)dt, and using (6.4.2) we can write for any 0 < t < v < oo and
0 €{0,1},

P(T <t,V<v,A=))

—p! /Ot 77 (7) {/TU X (@26 (x)dxr [/Tv £ (I)GX*(x)dx} 1_(Sd'r. (6.4.3)

Taking partial derivatives of both sides in (6.4.3) with respect to ¢ and v yields the following
mixed joint probability density,

VA, 8) = T OI¢ < o) [ 06 O] [0 @] . 64

Note that the density is “symmetric” with respect to X* and C* whenever ¢ is replaced on
1 — §; we have already observed this fact for censored data.
Formula (6.4.4) yields the following marginal joint density

P20, = p X ()G W FT @) = 1Y @) 6 W FT )G (). (6.45)
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In the last equality we used definition of the hazard rate hX (z) := fX (2)/GX ().
The first equality in (6.4.5) yields a nice formula for the density of the random variable
of interest,

fVA (e, 1)

X (x) = GO ) T (7) whenever G¢ (z)FT" (z) > 0. (6.4.6)

This formula quantifies the bias in available observations.
Now we are in a position to introduce the probability of an event for available variables
which plays a central role in statistical analysis of LTRC data,

g(z) =P(T <z <V)

=P(T* <z <V*T*<V*)
=[p G (2)FT (2))GX (z), z€]0,00). (6.4.7)

Note that the right side of (6.4.7) contains in the square brackets the denominator of
the ratio in (6.4.6). This fact, together with (6.4.6), yields two important formulae. The
first one is that the underlying density of X* may be written as

YA @GN (@)

c* T
BT <z<v) henever G (@)F (@) >0. (6.4.8)

X (@)

Next, if we divide both sides of the last equality by the survival function GX~ (z), then
we get the following expression for the hazard rate,

YA (@, 1)

W) = S <7

whenever G (2)FT (2)GX (z) > 0, (6.4.9)
or equivalently the formula holds whenever g(z) > 0 where g(x) is defined in (6.4.7).

The right side of equality (6.4.9) includes characteristics of observed (and not hidden)
variables that may be estimated, and this is why we can estimate the hazard rate for values
of z satisfying the inequality in (6.4.9). On the other hand, in (6.4.8) the right side of the
equality depends on survival function GX  of an underlying lifetime, and this is why the
problem of density estimation for the LTRC is more involved and will be considered later
in Section 6.7.

Now we are ready to propose an E-estimator of the hazard rate based on LTRC data. Let
[a, a+b] be an interval of estimation where a and b are positive and finite constants. As usual,
we begin with a sample mean estimator for Fourier coefficients 0; := faa+b hX (x)ej () da
of the hazard rate hX" (z), = € [a, a+b]. Recall that {¢;(2)} is the cosine basis on [a, a + D]
introduced in Section 6.1. Using (6.4.9), together with notation (6.4.7), we may propose a
plug-in sample mean estimator of the Fourier coefficients,

) eyl — (V) wa
0 := l:zlAl ) I1(V; € [a,a + 1)), (6.4.10)
where .
§v) i=n"' Y I(T < v < V), (6.4.11)

=1

Statistic g(v) is the sample mean estimator of g(v) (see (6.4.7)) and §(V;) > 1/n.
Fourier estimator (6.4.10) allows us to construct a hazard rate E-estimator A% (z), and
recall that its construction is based on the assumption that hidden random variables 7%, X*
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and C* are continuous and mutually independent. The corresponding coefficient of difficulty
is b
d(a,b) :=b""! / X (2)g™ () de, (6.4.12)
a

and its plug-in sample mean estimator is
d(a,b) :=n"1p7" Z N2A (V€ [a,a+b)). (6.4.13)

Figure 6.4 allows us to gain experience in understanding LTRC data, choosing a feasible
interval of estimation, and E-estimation. The top diagram shows by circles and triangle
the scattergram of LTRC realizations of (T, V). Circles show uncensored observations, cor-
responding to A = 1, and triangles show censored observations corresponding to A = 0.
Note that all observations are below the solid line T' = V; this is what we expect from
left-truncated observations. The second from the top diagram allows us to evaluate com-
plexity of the problem at hand. Crosses (and the corresponding scale is shown on the left
vertical axis) show values of 1/§(V;) for uncensored (A; = 1) observations that are used
in estimation of Fourier coefficients; see (4.6.10). The estimated coefficient of difficulty is
exhibited by circles and its scale is shown on the right vertical axis. Both estimates are
shown for V; € [al, al 4 b1], and Figure 6.4 allows one to change the interval. For the data
at hand, function 1/g(v) has sharply increasing tails, and the same can be said about right
tail of the coefficient of difficulty. These two estimates can be used for choosing a feasible
interval of estimation for the E-estimator of the hazard rate. Two bottom diagrams show
us hazard rate E-estimates for different intervals of estimation. Note that the larger interval
includes areas with very large values of 1/g(v) and this dramatically increases the coefficient
of difficulty, the confidence bands, and the ISE. The “effective” number N of uncensored V]
fallen within an interval of estimation is indicated in a corresponding title. In the bottom
diagram N is almost twice smaller than in the third from the top diagram, and nonetheless
the estimation is dramatically better. This sheds another light on the effect of interval of
estimation and the complexity of estimating tails.

So far we have considered the case of continuous and independent underlying hidden
random variables. This may be not the case in some applications. For instance, in a clinical
trial we may have C* := T* + min(u, U*) where P(U* > 0) = 1 and u is a positive constant
that defines length of the trial. Let us consider a LTRC where a continuous lifetime X* is
independent of (T*,C*) while T* and C* may be dependent and have a mixed (continuous
and discrete) joint distribution.

We begin with formulas for involved distributions. Write,

P(V<v,A=1)=PX" <0, X" <C*T* <min(X",C"))
=p IP(X* <0, X* <C*,T" < X*) = / X (@)P(T* < 2 < C*)da (6.4.14)
Here (compare with identical (6.4.1))
p:=P(T* <min(X*,C")). (6.4.15)
Differentiation of (6.4.14) with respect to v yields a formula for the mixed density,
Y2 ,1) = p X (0)P(T <o < CF) =2 (0)[ptGX (0)P(T* < v < C¥)]. (6.4.16)
Further, we can write (compare with (6.4.7))

PT<z<V)=PT*"<z<VT*<V*)
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LTRC Data, n= 300, N = 202

© |
- °
o ]
o
\%
Estimates of 1/g(v) and d(a1,v), a1= 0.05,b1= 0.6
o — Sﬂ" E ©
. Ty OO0 CEDOEED CEIOD ©00 AW °°®M$ﬁ F o
N o © &!!4»9.3?_3’_20"@ 4_"+W+W Ew
noo ¢ HF: M bt et S . ; =
0.2 0.3 0.4 0.5 0.6
V[a==1]
E-Estimate on [A,A+B], A= 0.05, B= 0.7, N= 175
o
= - —
o -
ISE= 0.79
=
= o
o 7
o

ISE = 0.056

Figure 6.4 FEstimation of the hazard rate based on LTRC observations gemerated by independent
and continuous hidden variables. The top diagram shows a sample of size n = 300 from (T,V,A).
Uncensored (their number is N := % 1" | Ay =202) and censored observations are shown by circles
and triangles, respectively. The solid line is T = V. In the underlying hidden model, the random
variable of interest X* is the Bimodal, the truncating variable T* is Uniform(0,0.5), and the cen-
soring variable C* is Uniform(0,1.5). Second from the top diagram shows us by crosses and circles
estimates 1/§(Vi) and d(al,V;) for uncensored Vi € [al,al + bl]. Note the different scales for the
two estimates shown on the left and right vertical axes, respectively. Two bottom diagrams show
E-estimate (the dashed line), underlying hazard rate (the solid line) and pointwise and simultaneous
1 — a = 0.95 confidence bands by dotted and dot-dashed lines. The interval of estimation and the
number N of observations fallen within the interval are shown in the title, the subtitle shows the
ISE of E-estimate over the interval. {Distribution of T™ is either the default Uniform(0,ur) with
ur = 0.5, or Ezponential(Ar) with the default A\r=0.3 where A\r is the mean. Censoring distribu-
tion is either the default Uniform(0,uc) with uc = 1.5 or Exponential(Ac) with the default A\c =
1.5. For instance, to choose exponential truncation and censoring, set trunc =" Ezpon' and cens
="Ezpon".} [n = 800, corn = 3, trunc = " Unif ", uT = 0.5, lambdaT = 0.3, cens =" Unif ",
uC = 1.5, lambdaC = 1.5, a = 0.1, b = 0.5, A = 0.05, B = 0.7, al = 0.05, b1 = 0.6, alpha =
0.05, ¢JO = 4, ¢J1 = 0.5, cTH = 4]

:p_l]P’(T* <z, V*>a,Tr<V*) :p_l]P’(T* <z,C* >z, X*>1x)
= [p 'P(T* <z < CHGX (2), z€[0,00). (6.4.17)
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LTRC Data, n= 300,N= 184
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Figure 6.5 FEstimation of the hazard rate for LTRC data with C* = T + min(u,U™) and X™* being
independent of (T*,C™). The default U* is Uniform(0,uc) and independent of T*, and u = 0.5.
The structure of diagrams is identical to Figure 6.4, only in the top diagram the second solid line
is added to indicate largest possible censored observations. { Distribution of T is either the default
Uniform(0,ur ) with ur = 0.5, or Exponential(Ar) with the default A\r =0.8 where At is the mean.
Distribution of U™ is either the default Uniform(0,uc) with uc = 1.5 or Ezponential(Ac) with the
default \c = 1.5. To choose the exponential truncation and censoring, set trunc =" Expon” and
cens =" Ezpon”.} [n = 300, corn = 3, trunc =" Unif", uT = 0.5, lambdaT = 0.3, cens =" Unif ",
u = 0.5 uC = 1.5, lambdaC = 1.5, a = 0, b = 0.55, B = 0.75, al = 0, b1 = 0.75, alpha = 0.05,
cJ0 = 4, ¢J1 = 0.5, cTH = 4]

Combining the last two results we conclude that

Ve (@, 1)

W (@) = PT<z<V)

whenever P(T* < z < C*)GX " (z) > 0. (6.4.18)

Note that the inequality in (6.4.18) is equivalent to P(T < 2 < V) > 0. As a result, we
may conclude that (6.4.18) is the same formula as (6.4.9) that was established for the case
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of independent and continuous hidden random variables T* and C*. Hence the proposed
E-estimator, based on this formula, is robust toward the distribution of (T, C*).

Figure 6.5 allows us to look at LTRC data generated for the case C* = T* + min(u, U*)
and test performance of the hazard rate E-estimator. Please pay attention to the specific
shape of the LTRC data in the top diagram. To shed light on the shape, recall the clinical
trial example and note that all available observations in a scattergram should be between two
parallel lines 7=V and T' = V —u defined by the baseline and end of the trial, respectively.
The second diagram allows us to choose a feasible interval of estimation, and then we have
a good chance to obtain a fair hazard rate estimate. Overall, repeated simulations show
that the proposed E-estimator performs respectively well and it is robust.

It is highly recommended to repeat Figures 6.4 and 6.5 with different underlying corner
distributions and parameters to gain firsthand experience in understanding of and dealing
with LTRC data.

6.5 Estimation of Distributions for RC Data

In survival analysis right censoring is the most typical modification of data. For instance, if
we are interested in lifetime X of a light bulb that may accidentally break at time C' before
it burns out, then the lifetime of interest X is right censored by the time of the accident C.
Note that RC may be looked at as a missing mechanism when a missed realization of X is
substituted by a corresponding realization of C'. The missing mechanism is MNAR, because
the missing is defined by the value of X, and hence a destructive missing may be expected.
As we will see shortly, in some cases RC indeed precludes us from consistent estimation of
the distribution of X.

Our aim is to understand when, based on RC observations, a consistent estimation of
the distribution of random variables X and C'is possible or impossible, and in the former
case propose estimators for the survival functions and probability densities.

Statistical model considered in this section is as follows. The available data is a sample
from a pair of random variables (V,;A) where V' := min(X,C) and A := I(X < C). It
is assumed that X and C' are continuous and independent random variables. Introduce a
function

g(v) =PV >v) =GV (v) = R{I(V > v)}

=PV >v)=P(X >v,C >v) =G¥(v)G ), (6.5.1)
and note that the upper bound of the support of V is
Bv = min(Bx, Bc). (6.5.2)

We can make two important conclusions from (6.5.1) and (6.5.2). The first one is that
random variables X and C are absolutely symmetric in the sense that if C' is the random
variable of interest, then it is right censored by X and the corresponding indicator of
censoring is 1 — A. As a result, if we know how to estimate GX and f¥ then the same
estimators can be used for the censoring random variable C via using 1 — A in place of
A. Second, the distributions can be estimated only over the interval [0, 8y]. As a result, if
Bc < Bx then no consistent estimation of the distribution of X is possible, and if 8¢ > Bx
then no consistent estimation of the distribution of C' is possible. This is why RC may be
a destructive modification.

Before proceeding to exploring E-estimation for RC data, let us present a canonical in
survival analysis Kaplan—Meier estimator of the survival function,

GX(x) = 1, x < Vqyy; G’X(:E)Z:O, T > Vi

-1
G¥(@) = [in=/(n—i+ 120, Vg <a <V, (6.5.3)

i=1
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where (Viyy, A() are ordered V;’s with their corresponding A, I = 1,...,n. Kaplan-Meier
estimator for G¢ is obtained by replacing A on 1 — A.

This is not a simple task to explain the underlying idea of Kaplan—Meier estimator,
and it is even more difficult to infer about its statistical properties. Let us present one
possible explanation via a specific example. Consider a medical study on longevity of n
individuals. Denote by 4, < i, < ... observations of V;_ such that corresponding A; = 1.
In other words, ¢, is the sth time of death during the study, and note that because V'
is a continuous random variable, the probability of simultaneous deaths is zero. To shed
additional light on the notation, between times V;, and Vj,, ls — l; + 1 individuals left
the study (their survival times were censored), and after time V;_ only n — I, individuals
are left in the study. Suppose that we are interested in the survival function GX(z) at a
time = € [V,, V},). Using a probability formula P(AN BN C) = P(A)P(B|A)P(C|AN B),
which expresses the probability of intersection of events via conditional probabilities, we
may write,

G (z) :== P(X > z) = P(survive in [0, V},))P(survive in [V},, V;,)|survive in [0, V},))

xP(survive in [V, z]|survive in [0,V},)). (6.5.4)

For the first probability in the right side of (6.5.4) a natural estimate is 1 because no deaths
have been recorded prior to the moment V;,. For the second probability a natural estimate
is (n—11)/(n—11+1) because n —I; +1 is the number of individuals remaining in the study
before time V;, and then one individual died prior to moment V;,. Absolutely similarly, for
the third probability a natural estimate is (n —l2)/(n — Iz + 1). If we plug these estimators
in (6.5.4), then we get the Kaplan—Meier estimator

GX(x):=[n—1)/(n—1lL+1)] x[(n—1y)/(n— Iy +1)]. (6.5.5)

This explanation also sheds light on the notion of product-limit estimation often applied to
Kaplan—Meier estimator.

Kaplan—Meir estimator is the most popular estimator of survival function for RC data.
At the same time, it is not as simple as the classical empirical (sample mean) cumulative
distribution estimator FX(z) := n~' >}, I(X; < ) used for the case of direct observa-
tions. Can a sample mean method be used for estimation of the survival function and RC
data? The answer is “yes” and below it is explained how this estimator can be constructed.

Let us explain the proposed method of estimation of the survival function and density
of X based on RC data. As usual, we begin with formulas for the joint density of observed
variables,

U2, 1) = [ (2)G%(x) = [f¥(2) /G (2)]g(x) = B (2)g(), (6.5.6)
and
U2 (,0) = f9(2)G¥ (2) = [f€(2) /G (2)]g(x) = h® (x)g(x), (6.5.7)

where g(x) is defined in (6.5.1), h*X () and h®(x) are the hazard rates of X and C. Note
that (6.5.6) and (6.5.7) contain several useful expressions for the joint density that shed
extra light on RC. Further, please look again at the formulas and note the symmetry of the
RC with respect to the lifetime of interest and censoring variable.

We begin with the explanation of how the sample mean methodology can be used for
estimation of the survival function G¢(x) of the censoring random variable. Recall that it
can be estimated only for z € [0, 8] where § < Sy := min(Bx, S¢). The idea of estimation is
based on a formula which expresses the survival function via the corresponding cumulative
hazard HC (z),

GC(x) = exp{—H  (x)}. (6.5.8)
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Using (6.5.1) and (6.5.7), the cumulative hazard may be written as

HO(z) = /r hc(u)du:/Ox[fc(u)/GC(u)]du

0

= /Ox[fV’A(u’ 0)/g(w)]du = E{(1 = A)I(V € [0,z])/g(V)}. (6.5.9)

As a result, we can use a plug-in sample mean estimator for the cumulative hazard, then
plug it in (6.5.8) and get the following estimator of the survival function,

G (z) := exp{—n"" i(l —ANI(V, <x)/§(V))}. (6.5.10)
=1

Here
n

g(x) :=n"" > I(V; > x) (6.5.11)

=1

is the sample mean estimate of g(x) defined in (6.5.1). Note that §(V;) > n~! and hence
the estimator (6.5.10) is well defined.

The appealing feature of estimator (6.5.10) is its simple interpretation because we esti-
mate the logarithm of the survival function by a sample mean estimator. This is why we
may refer to the estimator as a sample mean estimator (it is also explained in the Notes
that this estimator, written as a product-limit, becomes a Nelson—Aalen—Breslow estimator
which is another canonical estimator in the survival analysis). Another important remark
is that G () also may be estimated by (6.5.10) with 1 — A; being replaced by A;.

Now let us consider estimation of the probability density fX(z), z € [0, 8]. We are using
notation {¢;(z)} for the cosine basis on [0, 3]. Fourier coefficients of fX (z) can be written,
using (6.5.6), as

B B
= [ ¥ @seie = [0/ 6 @)

=E{AI(V < B)y;(V)/GE(V)}. (6.5.12)
This implies a plug-in sample mean estimator
0 :=n"1>" AI(V; < By (Vi) /GE(Va). (6.5.13)
=1

In its turn, the Fourier estimator yields a corresponding density E-estimator fX (z),
x € [0, B]. Further, if 8 < B¢ then the corresponding coefficient of difficulty is

B X
d(0,8) == B E{I(V < BAIGE (V)] ) = ! / éc((x)) dr, (6.5.14)
and it can be estimated by a sample mean estimator
d(0,B8) :=n""B71 Y " AI(V; < By)[GY (V)] (6.5.15)

=1

Let us check how the estimator performs. Figure 6.6 exhibits a particular RC sample and
the suggested estimates. In the simulation o = 1.5 > Sx = 1, and hence the distribution
of X can be consistently estimated. Keeping this remark in mind, let us look at the data
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Censored Data, cens = Unif,n= 300,N = 185, uC= 1.5
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Figure 6.6 Right-censored data with B¢ > Bx and estimation of distributions. The top diagram
shows simulated data. The distribution of the censoring random variable C' is uniform on [0, uc]
and the lifetime of interest X is the Bimodal. The second from the top diagram shows by the
solid line the underlying GC, dashed and dotted lines show the sample mean and Kaplan—Meier
estimates, respectively. The third from the top diagram shows the underlying density (the solid
line), the E-estimate (the dashed line), and (1 — «) pointwise (the dotted lines) and simultaneous
(the dot-dashed lines) confidence bands. The estimate is for the interval [0,1]. The bottom diagram
is similar, only here the estimate is for the interval [0, V()] where Vi) := max(V1,...,Va). {For
exponential censoring set cens = " Expon”, and the mean of the exponential censoring variable is
controlled by argument lambdaC’}. [n = 300, corn = 3, cens =" Unif", uC = 1.5, lambdaC = 1.5,
alpha = 0.05, ¢JO = 4, ¢J1 = 0.5, cTH = 4]

and estimates. From the title for the top diagram we note that despite the relatively large
sample size n = 300, only N := >";" | A; = 185 observations of X are not censored; similarly
only n — N = 115 observations of C' are available. Note that observations of X are shown
by the horizontal coordinates of circles corresponding to A = 1 and observations of C' are
similarly shown via A = 0. Interestingly, the largest observations of X and C are far from
By = 1 despite the large sample size. Further, despite the fact that o > Sx, the largest
observed lifetime is larger than the largest observed censoring variable. The second from
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Censored Data, cens = Unif,n= 300,N = 101, uC= 0.7
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Figure 6.7 Right-censored data with fc < Bx and estimation of distributions. This figure is created
by Figure 6.6 using arguments uC = 0.7 and corn = 4. [n = 300, corn = 4, cens =" Unif", uC =
0.7, lambdaC = 1.5, alpha = 0.05, ¢JO = 4, ¢J1 = 0.5, ¢cTH = }]

the top diagram shows the underlying G, the proposed sample-mean and Kaplan—Meier
estimates (consult the caption about the corresponding curves). The estimates are close to
each other. Let us also stress that there is no chance to consistently estimate the right tail of
the distribution of C' due to the fact that Sx < S¢. The two bottom diagrams show how the
density E-estimator, constructed for intervals [0, 1] and [0, V{,,)], performs. The first interval
is of a special interest because [0, 1] is the true support of the density 1%, the second one
is a data-driven interval of estimation. Keeping in mind that only N = 185 uncensored
observations are available and the Bimodal is a difficult density for estimation even for the
case of direct observations, the particular density E-estimates are very good. Also look at
and compare the corresponding confidence bands and ISEs.

What will be if 8¢ < Bx? Theoretically this precludes us from consistent estimation
of the right tail of f%(z), but still can we estimate the density over an interval [0, 3] with
B < By? The above-presented theory indicates that this is possible, and Figure 6.7 illustrates
the case. This figure is generated by Figure 6.6 using uc = 0.7, also note that the underlying
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density is the Strata. The title for the top diagram shows that only N = 101 uncensored
observations of the lifetime X are available, and hence we are dealing with a severe censoring.
Further, note that while the largest observation of C' is close to By = B¢ = 0.7, all but
one observations of X are smaller than 0.32. The second from the top diagram exhibits
very good estimates of the survival function G¢(x) over the interval [0,0.7], and this is not
a surprise due to the large number n — N = 199 of observed realizations of the censored
variable. Now let us look at the two bottom diagrams. As it could be predicted, the density
estimate in the second from the bottom diagram is not satisfactory because there are simply
no observations to estimate the right part of the density. The E-estimate for the interval
[0, Viny], shown in the bottom diagram, is better but still its right tail is poor because we
have just one observation of X which is larger than 0.32 and hence there is no way an
estimator may indicate the large underlying right stratum.

It is recommended to repeat Figures 6.6 and 6.7 with different corner functions, censoring
distributions and parameters to gain an experience in dealing with RC data.

6.6 Estimation of Distributions for LT Data

The aim is to understand how survival functions and probability densities for random vari-
ables, defining a left truncation (LT), may be estimated. Let us briefly recall the LT mecha-
nism and involved random variables (lifetimes), more can be found in Section 6.3. A hidden
random variable of interest X* is observed only if X* is not smaller than a hidden trunca-
tion random variable T%, otherwise it is not even known that the event X* < T™* occurred.
In what follows it is assumed that X* and T™* are independent, continuous and nonnegative
random variables (lifetimes). Recall notation az and Sz for the lower and upper bounds
of the support of a random variable Z. It is assumed that supports of the hidden variables
satisfy the following two relations,

axs > ar-, (6.6.1)

and
Bx+ > Br=. (6.6.2)

Let us comment on these two assumptions. If ax+ < a7+ then all observations of X*
less than ap- are truncated and not available. This precludes us from estimation of fX ()
for x < ap«. If Bx+ < B+ then the right tail of fT* (t) cannot be consistently estimated.
Let us also note that in what follows we are interested only in the case S+ > ax+ because
otherwise no truncation occurs. We will comment at the end of the section on estimation
when the assumptions are not valid.

Now let us present several useful probability formulas for the LT model. The joint
distribution function of the observed random variables (T,Y) is

FTX () = FTXTTSX0 (4 ) = p7 'P(T* < £, X* < 2,0 <T* < X* < x)

t max(x,T)
=p! T T X* T .0.
= [ (6.63)
where -
p=P(T*<X*)= / T )G* (t)at (6.6.4)
0

is the probability of X* to be observed (not truncated by T™*). Then, by taking partial
derivatives, we get the joint density of (T, X),

FEX(tz) =p T () () I(0 <t <2 < o0). (6.6.5)
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In its turn, (6.6.5) yields two marginal densities for T and X,

ST (t)g(t)

I =p T (OGY (1) = 7 OB (6.6.6)
and -
@) = p X (@) FT (2) = Jm, (6.6.7)
where
gu) =P(T <u<X)=p 'FT (u)G¥X (u). (6.6.8)

Now we are in a position to explain proposed estimators. We begin with estimators for
the boundary points of the supports,

dx = Xy = min(X1, ..., Xp), PBre =Ty = max(Th,...,Ty),

Bx- = Xn) 1= max(Xl, LX), (6.6.9)

Next we estimate the cumulative hazard HX = fo hX (u)du for x < Bx+. Using
(6.6.7) and (6.6.8) we may write,

X*—xa*xx*uu:xa*xx*u X (u))du
HY (1) = I(a > x>/0h (u)du = I(z > X>/O[f (w)/GX" (w))d

=I(x > ax~) /Ow[fx(u)/g(u)]du =I(x > ax-)E{I(X < x)g~ (X))} (6.6.10)

Note that the cumulative hazard is written as the expectation of a function of observed
variables. Hence we can estimate it by a plug-in sample mean estimator,

e I(X, <
—12 l x, (6.6.11)

where

g(a) =n"" iI(Tz <z <Xy, (6.6.12)

and this is a sample mean estimator of g(z) = E{I (T < z < X)}. Note that estimator
(6.6.11) is zero for x < X(1) and it is equal to HX (X(n)) for all # > X(,). In what follows
we may refer to estimator (6.6.11) as an empirical cumulative hazard.

Now we can explain how to estimate the survival function

GX (2) =P(X* > g) = e Jo " (wdu _ ~HY (2) (6.6.13)

We plug the empirical cumulative hazard (6.6.11) in the right side of (6.6.13) and get
GX () = e B @), (6.6.14)
The attractive feature of the estimator (6.6.14) is that its construction is simple and it
is easy for statistical analysis. For instance, suppose that its asymptotic (as the sample size
increases) variance is of interest. Then the asymptotic variance of the cumulative hazard is

calculated straightforwardly because it is a sample mean estimator, and then the variance
of the survival function is evaluated by the delta method. Let us follow these two steps and
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calculate the asymptotic variance. First, under the above-made assumptions the asymptotic
variance of the empirical cumulative hazard is

lim [nV(HX (z))] = B{I(X < 2)/¢*(X)} — [H* (z))% (6.6.15)

n— oo

Second, the delta method yields
lim [nV(GY (2)] =[G (@) (E{I(X < 2)/g*(X)} = [HY (2))])

n—oo

X*
-6t / FT"(u ! [G(Xz( - [HX*(’I))]Q)- (6.6.16)

There are two lines in (6.6.16) and both are of interest to us. The top line explains how
the variance may be estimated via a combination of plug-in and sample mean techniques.
Furthermore, for a sample mean estimator, under a mild assumption, the central limit
theorem yields asymptotic normality, then the delta method tells us that the asymptotic
normality is preserved by the exponential transformation (6.6.14), and hence we can use
this approach for obtaining confidence bands for the estimator (6.6.14). The bottom line
in (6.6.16) is important for our understanding conditions implying consistent estimation of
the survival function GX " (z). For instance, if az+ < ax-, then the integral in (6.6.16) is
finite. To see this, note that 0/0 = 0 and hence the integral over u € [0, z], x > ax~ is the
same as the integral over u € [ax~,z] where FT (u) > FT" (ax+) > 0 due to the assumed
ap« < ax«. The situation changes if a7« = ax~, and this is a case in many applications.
Depending on the ratio fX (u)/FT" (u) for u near ar-, the integral in (6.6.16) is either finite
or infinity. This is what makes the effect of the LT on estimation so unpredictable because
it may preclude us from consistent estimation of GX even if ap+ = ax-~. Recall that we
made a similar conclusion in Section 6.3 for estimation of the hazard rate. Furthermore, if
ap« > ax+ then no consistent estimation of the distribution of X* is possible, and it will
be explained shortly what may be estimated in this case.

Now we are developing an E-estimator of the probability density fX (). According to
(6.6.7) we have the following relation,

X () = fX(@)GX (2)/g(x) whenever g(z) > 0. (6.6.17)

Suppose that we are interested in estimation of the density over an interval [a,a + b] such
that g(z) is positive on the interval. Denote by {t;(z)} the cosine basis on [a, a + b]. Then
(6.6.17) allows us to write for a Fourier coefficient,

a+b
= [ £ @0y la)ds = BUIX € [e.a+ 0)0, (006K (CO/g(X)). (6615)

The expectation in (6.6.18) implies a plug-in sample mean Fourier estimator
n
0; :=n""> " I(X; € [a,a+ b)) (X)GX (X)) /9(X0), (6.6.19)

where GX and § are defined in (6.6.14) and (6.6.12), respectively.
In its turn, the Fourier estimator yields a density E-estimator fX (z), = € [a,a + b].
Further, the corresponding coefficient of difficulty and its estimator are

d(a,a +b) = b 'E{[G*"(X)/g9(X)]*}, (6.6.20)
and

d(a,a+b) :=b""n"" > [GF(X))/5(X))]. (6.6.21)
=1
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dg(X) and its Estimate, n= 200, uT= 0.7
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Figure 6.8 Estimation of the distribution of the lifetime of interest X™ in an LT sample. In the
hidden model X* is distributed according to the Strata (the choice is controlled by parameter corn)
and T is Uniform([0,ur]). The top diagram shows by circles and crosses g(X;) and §(X;), and
z-coordinates of triangles show observations of the truncating variable T'. In the middle diagram, the
wide solid, dotted and dashed lines show the underlying survival function, Kaplan—Meyer estimate
and sample mean estimate (6.6.14). The subtitle shows the underlying probability (6.6.4) and its
estimate (6.6.22). The bottom diagram shows the underlying density (the solid line), the E-estimate
(the dashed line), and (1 — «) pointwise (the dotted lines) and simultaneous (the dot-dashed lines)
confidence bands. [n = 200, corn = 4, uT = 0.7, alpha = 0.05, ¢JO = 4, ¢J1 = 0.5, ¢cTH = /]

There is one more interesting unknown parameter that may be estimated. Recall that
p = P(T* < X*) defines the probability of a hidden pair (T, X*) to be observed, or in
other words p defines the likelihood of X™* to be not truncated. Of course it is of interest to
know this parameter of the LT. Equality (6.6.8), together with FT° (Br+) = 1, implies that
g(Br-) = p~*GX"(Br~). This motivates the following estimator,

]5 = G’X* (T(n))/g(T(n))' (6622)

Note that any ¢ > T\, can be also used in (6.6.22) in place of T(,).
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Figure 6.8 allows us to look at a simulated LT sample and evaluate performance of
the proposed estimators, explanation of its three diagrams can be found in the caption.
The top diagram allows us to visualize realizations of X and T. Here we also can compare
the underlying function g(z) and its sample mean estimate (6.6.12). Note how fast the
right tail of g(z) vanishes. Nonetheless, as we shall see shortly, this does not preclude us
from estimation of the distribution of X*. The middle diagram indicates that the sample
mean and the Kaplan—Meyer estimators perform similarly. Its subtitle shows the underlying
parameter p and its estimate (6.6.22). As we see, we can get a relatively fair idea about
a hidden sampling which is governed by a negative binomial distribution with parameters
(n,p). Finally, the bottom diagram shows us the E-estimate of the density of X*. As we
know, the Strata is a difficult density to estimate even for the case of direct observations.
Here we are dealing with LT observations that are, as we know, biased. Overall the particular
outcome is good because we clearly observe the two strata. The confidence bands are also
reasonable, and the ISE, shown in the subtitle, is relatively small. Further, the subtitle
shows us the estimated coefficient of difficulty (6.6.21).

Now let us return to the middle diagram in Figure 6.8 where the survival function and
its estimates are shown. In many applications the right tail of the survival function is of
a special interest. Let us explore a new idea of the tail estimation. Note that F7 (z) = 1
whenever x > fr«. This allows us to write for x > B,

GX(z) =P(X* > 2|T* < X*)

=p 'P(X* > 2, T" < X*)=p 'G* (), > Br-. (6.6.23)

We conclude that GX (z) = pGX(z), © > Br-. The latter is easy to understand because
no truncation occurs whenever X* > (r+. As a result, for x > [+ the survival function
of the hidden variable of interest is proportional to the survival function of the observed
variable. Parameter p is estimated by (6.6.22), and G*(z) is estimated by the empirical
survival function GX (z) :==n"1'Y ., I(X; > z). This gives us an opportunity to propose a
new estimator of the tail of GX (),

GX(z) =p "0 (X > x), > Ty (6.6.24)
=1

Figure 6.9 allows us to look at the zoomed-in tails of estimates produced by estimators
(6.6.14) and (6.6.24). The two diagrams show results of different simulations for the same
LT model. The solid, dashed and dotted lines are the underlying survival function and
estimates (6.6.14) and (6.6.24). As we see, the top diagram depicts an outcome where the
new estimate is better, this is also stressed by the ratio between the empirical integrated
squared error (ISE) of the estimate (6.6.14) and the integrated squared error (ISEN) of
the new estimate (6.6.24). Note that there are just few large observations, and this is a
rather typical situation with tails. The sample size n = 75 is relatively small but it is chosen
for better visualization of the estimates. The bottom diagram exhibits results for another
simulation, and here the estimate (6.6.14) is better. This is a tie, and we may conclude that
in general two simulations are not enough to compare estimators. To resolve the issue, we
repeat the simulation 300 times and then statistically analyze ratios of the ISEs. Sample
mean and sample median of the ratios are shown in the subtitle, and they indicate better
performance of the estimator (6.6.24). Of course, the sample size is too small for estimation
of the tail, but the method of choosing between two estimators is statistically sound. The
reader is advised to repeat Figure 6.9 with different parameters, compare performance of
the two estimators, and gain experience in choosing between several estimators.
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Tail of Survival Function and its Estimates
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Figure 6.9 Estimation of the tail of survival function GX*(ﬂc). The underlying simulation is the
same as in Figure 6.8. The solid, dashed and dotted lines are the underlying survival function and
estimates (6.6.14) and (6.6.24), respectively. { Argument nsim controls the number of simulations.}
[n =75, corn = 2, uT = 0.7, nsim = 300]

So far we have discussed the problem of estimation of the distribution of a hidden lifetime
of interest X™*. It is also of interest to estimate the distribution of a hidden truncating
random variable T%*. We again begin with probability formulas. Using (6.6.6) we can write,

_ T )
TETW) g0

" (@) whenever g(t) > 0. (6.6.25)

Function ¢”" (t) can be estimated using the second equality in (6.6.25), and hence we need
to understand how the distribution of interest can be expressed via the function ¢(t). This
function resembles the hazard rate only now the denominator is the cumulative distribution
function instead of the survival function. A straightforward algebra implies that

FT* (1) :exp(—/t

= exp (= B{I(T > t)/g(T)}), t€ |ar-,Br]. (6.6.26)

The expectation in (6.6.26) allows us to propose the following plug-in sample mean
estimator of the cumulative distribution function (compare with (6.6.14))

Bre .
qr (u)du) =:exp ( -QT (t))

FT(t) := exp (- QT (t)) :=exp ( —nt ZI(T[ > t)/g(]})), (6.6.27)
=1
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LT Data, n= 100, uT= 0.7
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Figure 6.10 Estimation of the distribution of T* for LT data. Underlying simulation is the same
as in Figure 6.8. Observations are shown in the top diagram. In the middle diagram the solid and
dashed lines are the cumulative distribution function FT" and its estimate. The dotted lines show
the (1 — a) pointwise confidence band. Curves in the bottom diagram are the same as in the bottom
diagram of Figure 6.8. [n = 100, corn = 4, uT = 0.7, alpha = 0.05, ¢JO = 4, ¢J1 = 0.5, ¢cTH = }]

where §(t) is defined in (6.6.12).

Now let us propose an E-estimator of the density f7 () on an interval [a,a + b] such
that g(t) is positive on this interval. We are using our traditional notation v;(t) for elements
of the cosine basis on [a,a + b]. Formula

) = fROFT () /9(t) (6.6.28)

for the density of interest implies that its Fourier coefficients x; := faa+b ;) fT (t)dt can
be written as

atb T T T
t); () F* (t (T blv,; (T F* (T
= [ IOBOET 0, T et BUDETD) g
a g(t) 9(T)
The expectation in (6.6.29), together with (6.6.27), yields a plug-in sample mean Fourier
estimator (compare with (6.6.19))

fj =0~ Y (T € [a,a+ b)) (T)E™ (T1)/3(T)). (6.6.30)
=1

The Fourier estimator yields a density E-estimator f7 (), t € [a,a + b] with the corre-
sponding coefficient of difficulty

d(a,a+b) = b 'E{I(T € [a,a + b][FT (T)/g(T))*}. (6.6.31)
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g(X) and its Estimate, n= 200, ut= 0.2, uT = 0.7

©
3 poe
< *
<
S
& ¢
S od
2 <+ Rl
LRI PRI POOOMIN I\ 2NN (R NSRRI DON BB NN
T T
0.2 0.4 0.6 0.8 1.0
X
Survival Function and its Estimates
. \
3 \\‘A
T~
. \
o
< 4
A T T T T T
0.2 0.4 0.6 0.8 1.0

p =0.51, p=0.69

Density, E-estimate and Confidence Bands

12345

-1

ISE= 0.53,d=3.5

Figure 6.11 Estimation of the distribution of X* for the case ax+ < ar+. This figure is similar
to Figure 6.8 apart of two modifications. First, here T* is uniform on interval [us,ur] = [0.2,0.7].
Second, the narrow solid lines in the middle and bottom diagrams show the underlying conditional
survival function GX X% (1) and the underlying conditional density f~ X"t (), respectively.
[n = 200, corn = 4, ut = 0.2, T = 0.7, alpha = 0.05, ¢JO = 4, ¢J1 = 0.5, cTH = 4]

Further, typically [T(l), T(n))] may be recommended as the interval of estimation, and note
that P(T(n) < X(n)) =1.

Figure 6.10 shows us how the proposed estimators of the cumulative distribution function
and the density of the hidden truncation variable T* perform. For the particular simulation,
the estimates are good. Confidence bands for the density may look too wide, but this is only
because the E-estimate is good. The reader is advised to repeat Figure 6.10 with different
parameters and test performance of the estimator and confidence bands.

Note that we have developed estimators for T from scratch. It was explained in the
previous sections that for RC data there is a symmetry between estimation of distributions
of the lifetime of interest X* and censoring variable C*, and if an estimator for X* is
proposed, then it also can be used for C*. Is there any type of a similar symmetry for LT
data? The answer is “yes.” Let v be a positive constant such that v > max(8x+«, Sr-), and
introduce two new random variables X’ := v —T* and T" := vy — X*. Then (X', T") can be
considered as underlying hidden variables for a corresponding LT data with X’ being the
lifetime of interest and 7" being the truncating variable. This is a type of symmetry that
allows us to estimate distributions of T using estimators developed for X*.

Finally, let us explain what may be expected when assumptions (6.6.1) and (6.6.2) are
violated. If ax+ < ap~ then the LT hides left tail of the distribution of X*, and we cannot
restore it. Violation of (6.6.2) hides right tail of the distribution of T™*.
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Figure 6.11 illustrates the case when ax« < ap« (note that the diagrams are similar to
the ones in Figure 6.8 whose caption explains the diagrams). First of all, let us look at the
top diagram which shows realizations of X and T'. If we compare them with those in Figure
6.8, then we may conclude that visualization of observations is unlikely to point upon the
violation of assumption (6.6.1). The reader is advised to repeat Figures 6.8 and 6.11 and
gain experience in assessing LT data. Further, it is clear from the two bottom diagrams that
the estimators are inconsistent, and this is what was predicted. Nonetheless, it looks like
the estimates mimic the underlying ones. Let us explore this issue and shed light on what
the estimators do when ax« < ap«.

We begin with the estimator (6.6.14) of the survival function. Recall that we are con-
sidering the case ax+ < ar+. Note that then P(X < ap+) = 0, and using (6.6.11) we can
write for x > ap-,

E{AX (2)} :E{I(X < x;(lj(())( > aT*)}

Iar- < X <) 1 1
—E{ =SS B (or < X <0) 555 — o) 6.6.32

9(X) ( 5~ o) (0:6:32)

The first term in (6.6.32) is what we are interested in because the second one, under a mild
assumption, vanishes as n increases. Using (6.6.7) we can express the first term via the

hazard rate of X*,
IHoar- < X <x)y  [" | x
E{T} - /QT* WX (w)du. (6.6.33)

In its turn, (6.6.33) implies the following relation,

e
o= Jo X (wdu X (z)
e= I X (wdu — GXT (ap-)

On the right side of (6.6.34) we see the conditional survival function of X* given X* > ap-,
and this is the characteristic that estimator (6.6.14) estimates.

We may conclude that it is more accurate to say that the survival function estimator
(as well as the Kaplan-Meier estimator) estimates the conditional density GX X >ar* (z)
because GX X" >+ (1) = GX" () whenever ax+ > ap-. This is a nice conclusion because,
regardless of the assumption (6.6.1), we estimate a meaningful characteristic of the random
variable of interest.

If we return to the middle diagram in Figure 6.11, then we can see that the survival
function estimate is above the underlying survival function (the wide solid line), and now we
know why. Further, the narrow solid line exhibits the underlying conditional survival func-
tion GX"1X">ar (), and we may note that the E-estimator does a good job in estimation
of the conditional survival function. Further, note that the estimated probability p = 0.69 of
avoiding the truncation is larger than the underlying p = 0.53. To understand why we need
to look at the estimator (6.6.22) and recall that for the considered setting the estimator
GX (T(n)) estimates the conditional density GX' X >ar=(31) = GX™(Br) /G (ar-). As a
result, we can expect that the estimate p will be larger than the underlying p by the factor
1/GX" (ar-). And indeed, p/p = 1.30 and this is fairly close to 1/GX" (az-) = 1.33.

Now let us turn our attention to the bottom diagram in Figure 6.11 which is devoted to
estimation of the density fX (z). The estimate (the dashed line) is far from the underlying
density (the wide solid line), and this supports the above-made conclusion that if (6.6.1)
is violated then consistent estimation of the density is impossible. Nonetheless, we may
notice that the estimate mimics the density’s shape. As a result, let us explore the density
estimator for the case when (6.6.1) does not hold.

= QX IX a4y, (6.6.34)
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g(X) and its Estimate, n= 200,uT= 1.5
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Figure 6.12 Estimation of the distribution of X™* for the case Br= > Bx~+. The figure is created by
Figure 6.8 by setting u1I' = 1.5 and corn = 2.

Consider the expectation of Fourier estimator (6.6.19) given ax- < ar-. Let [a,a + D]
be an interval such that g(z) > 0 for = € [a,a + b]. We may write using (6.6.7),

E{0;} = E{I(X € [a,a+])$;(X)GY (X)/§(X)}
= E{I(X € [a,a+0]);(X)G* 72017 (X) /(X)}
éX*(X) - GX X >ar- (X)]}
9(X) 9(X)
The first expectation on the right side of (6.6.35) is the term of interest because the second

one, under a mild assumption, vanishes as n increases. Using (6.6.17) and (6.6.34) we may
write,

+E{I(X € [a,a -+ b)u;(X)[ (6.6.35)

E{I(X € [a,a+ b))t (X)G* X> (X) /g(X)}

a+b atb ¢X*
_ X (Vb () QX IX > (o (o)~ L — f (@%(I) "
,/a [ (@) ()G (@)[g(x)]"d /a K (o) dz. (6.6.36)

Introduce the conditional density,

X+
fX*|X*>04T* (.23) = GJ;*(S:T)*)I@ > OéT*). (6637)

Combining (6.6.35)-(6.6.37) we conclude that the Fourier estimator (6.6.19) estimates
Fourier coefficients of the conditional density (6.6.37).
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Figure 6.13 Estimation of the distribution of T™ for the case Br+ > Bx=. The figure is created by
Figure 6.10 via setting uT' = 1.5.

If we now return to the bottom diagram in Figure 6.11, the narrow solid line shows
us the underlying conditional density. The E-estimate (the dashed line) is far from being
perfect but its shape correctly indicates the two strata in the underlying conditional density.

Now let us consider the case Sy~ > Bx~. Figures 6.12 and 6.13 shed light on this case.
Figure 6.12 indicates that this case does not preclude us from consistent estimation of the
distribution of X™*. In the top diagram x-coordinates of circles and triangles show us the
observed values of X and T, respectively. Our aim is to explore the possibility to realize
that S« > Bx+. As we discussed earlier, theoretically 7{,) should approach 7 = Bx- = 1.
Because X(,,) converges in probability to Sx = 1, it may be expected that T(,,) and X, are
close to each other. Unfortunately, even for the used relatively large sample size n = 200,
T(n) is significantly smaller than X(,) and the outcome resembles what we observed in
Figure 6.8. The explanation of this observation is based on formula (6.6.6) for the density
fT(t). Tt indicates that the density is proportional to the survival function G (t) which
vanishes (and in our case relatively fast) as ¢t — Sx = 1. This is what significantly slows
down the convergence of T{,) to X(;,). The lesson learned is that data alone may not allow
us to verify validity of (6.6.2). Further, we cannot consistently estimate p. At the same time,
as it could be expected, consistent estimation of the distribution of X* is possible and the
exhibited results support this conclusion.

The situation clearly changes when the aim is to estimate the distribution of T*. Figure
6.13 shows a particular outcome, and it clearly indicates our inability to estimate the dis-
tribution of T*. At the same time, as it follows from formulas, the shape of density f7 (t)
over interval [T(1)7T(n)] may be visualized, and the bottom diagram sheds light on this
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conclusion. The interested reader may theoretically establish what the proposed estimator
estimates for the considered case B+ > Bx~.

The reader is advised to repeat Figures 6.8-6.13 with different parameters, pay a special
attention to feasible intervals of estimation, and get used to statistical analysis of LT data.

6.7 Estimation of Distributions for LTRC Data

As we already know from Section 6.4, in many applications the LT and the RC occur
together, and then we are dealing with left truncated and right censored (LTRC) data. A
nice example of LTRC, discussed in Section 6.4, is the actuarial example where the random
variable of interest is the loss which is left truncated and right censored by the policy’s
deductible and limit on payment, respectively. Let us also recall several teachable moments
learned in that section. First, it is important to realize that data are modified. Second,
LTRC may preclude us from consistent estimation. In particular, LT may make impossible
estimation of the left tail of the distribution of an underlying lifetime of interest while
the RC may make impossible estimation of its right tail. Third, it is important to check
assumptions about underlying distributions. In particular, it may be possible to estimate
the distribution of the lifetime of interest but not the distribution of the censoring variable
and vise versa. Finally, choosing a feasible interval of estimation becomes a critical part of
an estimation procedure.

The aim of this section is to explore the problem of estimation of survival functions and
probability densities for variables hidden by LTRC modification.

Following Section 6.4, let us briefly recall the LTRC mechanism of generating a sample
of size n. There is a hidden sequential sampling from a triplet of nonnegative random
variables (T*, X* C*) whose joint distribution is unknown. T* is the truncation random
variable, X* is the random variable (lifetime) of interest, and C* is the censoring random
variable. Suppose that (T}, X}, C}) is the kth realization of the hidden triplet and before
this realization a sample of size [ — 1, I — 1 < min(k — 1,n — 1) of LTRC observations
is collected. Then if T} > min(X}, C}) then left truncation of the kth realization occurs
meaning that: (i) The kth triplet is not observed; (ii) The fact that the kth observation
occurred is unknown; (iii) Next realization of the triplet occurs. On the other hand, if
Ty < min(X},C}) then the observation (7, V;,4;) = (T}, min(X}, CY), I(X; < C))
is added to the observed LTRC sample. The hidden sequential sampling from the triplet
(T*,X*,C*) stops as soon as [ = n.

Now let us present basic probability formulas. The probability of observing a realization
of the hidden triplet is

p:=P(T" <min(X*,C")). (6.7.1)

The joint cumulative distribution function of the observed triplet of random variables is
FTVA(t 0, 8) :=P(T <t,V <v,A <9)

=p 'P(T* <t,T* <V* <v,A* <96). (6.7.2)

If we additionally assume that hidden random variables T*, X* and C* are independent
and continuous, then (6.7.2) yields the following joint mixed density,

" . - 4 . -
FEVA @ 0.8) = p7 ST 01 <o) [ 06 W] [T me W] (67
In its turn, (6.7.3) yields a marginal density

FU20,1) =p T ()G () FT (0) = KX (0)[p G () FT (0)GX (v)], (6.7.4)
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where hX" (x) := fX ()/GX () is the hazard rate of X*. Further, using formula GV (t) =
GX"(1)GC" (t) and (6.7.2) we get

@) =p TG ()G (1) (6.7.5)
Further, (6.7.4) yields

ARG
PG (@) FT (x)

X (2) = whenever G (z)FT" () > 0. (6.7.6)

Finally, we introduce a probability that plays a key role in the analysis of LTRC data,
g@) =P(T <z <V)=p 'FI (2)G* ()G (). (6.7.7)

Now let us formulate assumptions motivated by previous sections. Recall notations ay
and [z for the lower and upper bounds of the support of a variable Z. In what follows it is
assumed, in addition to the mutual independence of continuous variables 7%, X* and C*,
that

min(ax-,acs) > ars, Bx= > PBre, Box > Px-. (6.7.8)

Now we are in a position to propose estimators for the survival function and density
of the lifetime of interest X*. We begin with estimation of the survival function GX" (z).
Using (6.7.6) and (6.7.7) we conclude that the density of X* can be written as

SVR (2, 1)GX (x)
g()

X (2) = , xel0,Bx-). (6.7.9)

Formula (6.7.9) allows us to obtain a simple formula for the cumulative hazard of X*,

X*I:: IX*U X*UU
HY (2) /O[f (w)/GX" (u)]d

= /z[fV’A(w 1)/g(u)]du = E{ALI(V < z)g~ " (V)}, x € [0, Bx~). (6.7.10)

0

Recall that GX” () = exp{—H* ()}, and then the expectation on the right side of (6.7.10)
implies the following plug-in sample mean estimator of the survival function,

X (z) —exp{—n_lz lI( } (6.7.11)
=1

Here
g(x) :==n"t ZI(TI <z <V) (6.7.12)
=1
is the sample mean estimator of the probability g(x) defined in (6.7.7). Further, it is a

straightforward calculation to find an asymptotic expression for the variance of empirical
survival function (6.7.11),

lim nV(GY(2)) = [GF (@)P[E{ALV < 0)lg(V)] 7} = (HY (2))°]. (6.7.13)

n—oo

This result, together with the central limit theorem and delta method, allows us to get a
pointwise confidence band for the empirical survival function.
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To use our E-estimation methodology for estimation of the density fX (z) over an
interval [a,a+b] C [ax+, Bx+), we need to understand how to express its Fourier coefficients
as expectations. Recall our notation {¢;(z)} for the cosine basis on [a,a + b]. We can write
with the help of (6.7.6) and (6.7.7) that

Ty (@) VA (@, DG (2)

g9(z) o

a-+b
= [ @ @yde =

i AI(V € [a,a +B)e;(V)GX (V) 3 (6.7.14)

g(V)

The expectation in (6.7.14) yields the following plug-in sample mean Fourier estimator,

0 :=n"" " AI(Vi € [a,a+ b))y (V)GX (V) /g(Vh). (6.7.15)
=1

Fourier estimator (6.7.15) yields a density E-estimator fX"(z) with the coefficient of
difficulty
d(a,a+b) = b 'E{AI(V € [a,a + W)[G* (V)/g(V)]*}

_ -1 ath fX*(x)
=pb /a mdw (6.7.16)

The coefficient of difficulty is of a special interest to us because it sheds light on a
feasible interval of estimation. Namely, we know that F” (z) vanishes as * — ap- and
GC" (z) vanishes as x — Bc~, and this is what may make the integral in (6.7.16) large. The
made assumption (6.7.8) allows us to avoid the case of infinite coefficient of difficulty by
choosing an interval of estimation satisfying [a,a + b] C [V(1), V{;,)], but still the coefficient
of difficulty may be prohibitively large. At the same time, vanishing tails of an underlying
density fX° may help in keeping the coefficient of difficulty reasonable, while an increasing
tail makes estimation more complicated.

Now let us stress that if ap« > ax« then, as it was explained in Section 6.6, the proposed
estimators estimate the conditional survival function GX X >7* () and the conditional
density fX 1X">ar+(z). Of course, these conditional characteristics coincide with GX" ()
and X" (z) whenever ap- < ax-, and hence we may say that in general we estimate those
conditional characteristics. Statistical analysis of this setting is left as an exercise.

Figure 6.14 illustrates performance of the proposed estimators of the conditional survival
function and the conditional density of the lifetime of interest. Its caption explains the sim-
ulation and diagrams. Note that the assumption (6.7.8) holds for the particular simulation,
and choosing parameter u; > 0 allows us to consider the case ap~ > ax~ and then test
estimation of the conditional characteristics.

The top diagram in Figure 6.14 shows us simulated LTRC data generated by the Normal
lifetime and uniformly distributed truncating and censoring random variables. These three
variables are mutually independent. The good news here is that the number N = 230 of
available uncensored observations of the lifetime of interest is relatively large with respect
to the sample size n = 300. If we look at the smallest observations, we may observe that
ars is close to zero, and this implies a chance for a good estimation of the left tail of the
distribution of X*. We may also conclude that it is likely that Sx« < B¢+ because a relatively
large number of uncensored observations are available to the right of the largest observation
of the censoring variable. The middle diagram shows us the proposed plug-in sample mean
estimate (6.7.11) of GX (z), the Kaplan Meier estimate, and the above-explained 95%
confidence band for the plug-in sample mean estimate. The two estimates are practically
the same. Despite a relatively large sample size n = 300, we see a pronounced deviation of
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LTRC Data, n= 300,N= 230,ut= 0, uT= 0.5, uc= 0, uC= 1.5
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Figure 6.14 Estimation of the conditional survival function GXTIXT>ars (z) and the conditional
density fX*|X*>O‘T* (z) for the case of LTRC observations generated by independent and continu-
ous hidden variables. In the used simulation T* is Uniform(us,ur), X* is the Normal and C* is
Uniform(uc,uc ); the used parameters are shown in the main title. The top diagram shows a sample
of size n = 300 from (T,V,A). Observations of (V,A) are shown by circles, N := > ' | Ay = 230
is the number of uncensored observations. Observations of the truncation variable T are shown via
horizontal coordinates of crosses. In the middle diagram, the solid line is the underlying condi-
tional survival function GX"1X">T* () shown for x € Vi, Vimyl, the dashed and dot-dashed lines
are the sample-mean and Kaplan-Meier estimates (they are close to each other), and the dotted
lines show the (1 — «) pointwise confidence band. The bottom diagram shows the underlying con-
ditional density (the solid line), its E-estimate (the dashed line), and the pointwise (dotted lines)
and simultaneous (dot-dashed lines) 1 — a confidence bands. The E-estimate is for interval [a, a4+ b]
with default values a = V(qy and a + b = V() shown in the subtitle. { Distribution of T™ is either
the Uniform(us,ur) or Ezponential(Ar) where Ar is the mean. Censoring distribution is either
Uniform(uc,uc) or Ezponential(Ac ). Parameters of underlying distributions are shown in the ti-
tle of the top diagram. To choose, for instance, exponential truncation and censoring, set trunc =
" Expon”, cens =" Expon’ and then either use default parameters or assign wished ones. To choose
a manual interval [a,a +b], assign wished values to arguments a and b.} [n = 300, corn = 2, trunc
="Unif", ut = 0, uT = 0.5, lambdaT = 0.3, cens =" Unif", uc = 0, uC = 1.5, lambdaC = 1.5,
a = NA, b = NA, alpha = 0.05, ¢JO = 4, ¢cJ1 = 0.5, cTH = /]

the estimates from the underlying survival function, and we can also see the relatively large
width of the band which predicts such a possibility. In the bottom diagram, despite the
skewed LTRC observations, the density E-estimate correctly shows the unimodal shape of
the underlying Normal density. The estimated coefficient of difficulty, shown in the subtitle,
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is equal to 1.7. The latter implies that, with respect to the case of direct observations of
X*, we need 70% more LTRC observations to get the same MISE. Figure 6.14 is a good
learning tool to explore LRTC data and estimators. It also allows a user to manually choose
an interval of estimation [a, a + b], and this will be a valuable lesson on its own.

What can be said about estimation of the distribution of C* and T* as well as the
parameter p? Recall our discussion in Section 6.5 that X* and C* are “symmetric” random
variables in the sense that if we consider 1 — A instead of A, then formally C* becomes the
random variable of interest and X™* becomes the censoring random variable. As a result,
we can use the proposed estimators for estimation of the distribution of C*, only by doing
so we need to keep in mind the assumptions and then correspondingly choose a feasible
interval of estimation. The problem of estimation of the distribution of T* and parameter
p is not new for us because we can consider (T, V) as an LT realization of an underlying
pair (T*,V*). Then Section 6.6 explains how the distribution of T* and parameter p can
be estimated.

We finish the section by considering a case where the main assumption about mutual
independence and continuity of the triplet of hidden random variables is no longer valid. In
some applications it is known that the censoring random variable is not smaller than the
truncating variable, and the censoring random variable may have a mixed distribution. As
an example, we may consider the model of a clinical trial where

uc is a positive constant, U’ is a nonnegative continuous random variable with the support
[te, uc], and B* is a Bernoulli random variable with P(B* = 1) = P(U* = u¢) being the
probability that X™* is censored by the end of a clinical trial.

Assume that X* is continuous and independent from (7%, C*), while truncation and
censoring variables may be dependent and have a mixed (continuous and discrete) joint dis-
tribution. Can our estimators for the distribution of X* be used in this case? In other words,
are the estimators robust? To answer this question theoretically, we need to understand if
formula (6.7.9), which was used to propose the estimators, still holds for the considered
setting. We begin with a formula for the probability g(x). Write,

gx) =PT <z <V)=PT*" <z <V*T*<V¥)

P <z <VETT <V P(T*<a<VY)
- P(T* < V*) o P

=p 'P(T* <2, X*>x,C*>x)=p 'G¥ (2)P(T* <z < C¥). (6.7.18)
In the last equality the independence of X* and (7™, C*) was used. Next, we can write,

PV<z,A=1)=P(X* <z, X" <C*T*<V¥)

=p 'P(X* <2, T"<X*<C*) = *1/ X (W)P(T* < u < C*)du. (6.7.19)

Differentiation of (6.7.19) with respect to x and then using (6.7.18) allows us to write,

5+
fv,A( 1) = —1fX (2)P(T* <x<C*) = fG)((*)(i()> (6.7.20)

In its turn, (6.7.20) implies that the density of interest can be written as

SVR (@, 1)GX (x)
g()

X () = , 0< < fx-. (6.7.21)
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LTRC Data, n= 300,N= 222 ,ut= 0.2, uT= 0.7, uc= 0, uC= 0.6, censp= 0.2
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Figure 6.15 Estimation of the conditional survival function and the conditional density of a lifetime
of interest for LTRC data when C* :=T* + U™ as in (6.7.17). Variables in the triplet (X*,T*,U")
are mutually independent. Variable U™ is the mizture of Uniform(uc,uc) random variable with the
constant uc, and the probability P(U* = uc) is controlled by the argument censp. Otherwise the
underlying simulation and the structure of diagrams are as in Figure 6.14. [n = 300, corn = 2,
trunc =" Unif", ut = 0.2, uT = 0.7, lambdaT = 0.3, cens =" Unif"”, uc = 0, uC = 0.6, lambdaC
= 1.5, censp = 0.2, a = NA, b = NA, alpha = 0.05, ¢JO = 4, ¢J1 = 0.5, ¢cTH = }]

This is the same formula as (6.7.9) which was established for the case of independent and
continuous hidden random variables. Hence an estimator, motivated by that formula, can
be used for the studied case as well. Further, if ax+« > ap+ then we estimate conditional
characteristics GX 15X > (z) and fX X >ar (z),

Figure 6.15 allows us to test the made conclusion for the model (6.7.17). Its structure
is similar to Figure 6.14 and the caption explains the underlying LTRC mechanism where
the parameter censp controls the choice of P(U* = u¢). In the considered simulation this
parameter is equal to 0.2, meaning that in the example of a clinical trial 20% of participants
are right censored by the end of the trial. The used LTRC mechanism creates challenges
for the estimators because o, = u; = 0.2 > ax- = 0. As a result, theoretically we may
estimate only the underlying conditional survival function and the conditional density given
X* > uy = 0.2. The top diagram indicates that the truncation variable is separated from
zero and it is likely that ap« is close to 0.2. Further, note that there are just few observations
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in the tails. The middle diagram shows that despite these challenges, the conditional survival
function is estimated relatively well. The conditional density E-estimate is very good and
correctly indicates the underlying conditional density fX X >ar= (z) despite the heavily
skewed LTRC observations. The estimated coefficient of difficulty is equal to 2.1, and this,
together with the large confidence bands, sheds light on the complexity of the problem and
the possibility of poor estimates in other simulations. Nonetheless, it is fair to conclude that
the estimators are robust to the above-discussed deviations from the basic LTRC model.

LRTC is one of the most complicated modifications of data, and it is highly recommended
to use Figures 6.14 and 6.15 to learn more about this important statistical problem. Explor-
ing different underlying distributions and parameters will help to gain necessary experience
in dealing with LTRC data.

6.8 Nonparametric Regression with RC Responses

A classical regression problem, discussed in Section 2.3, is to estimate a regression function
m(x) = E{Y|X = z}, (6.8.1)

based on a sample of size n from a pair of random variables (X,Y"). Here X is the predictor
and Y is the response. Recall that m(x) is used to predict the response given X = x, and
also the regression is a useful tool to describe a relationship between the two variables.

We already know how regression E-estimator is constructed and how it performs for the
case of direct observations from (X,Y"). In survival analysis it is often the case that one of
the variables is modified by censoring. In this section we are considering the case of right
censored (RC) responses, and the next one explores the case of right censored predictors.

The following regression model is considered. Response Y is a lifetime (nonnegative
random variable) which is right censored by a censoring random variable C. Predictor X
is observed directly. As a result, we observe a sample of size n from the triplet (X,V,A)
where V := min(Y,C) and A := I(Y < (). Note that the predictor is not censored and
observed directly. In what follows we assume that the pair (X,Y") and the censoring variable
C' are independent, the three underlying random variables X, Y and C' are continuous, and
as usual we are assuming that X is supported on [0, 1] according to a continuous and
positive design density (the latter yields that min,eo 1) f* () > 0 and hence the reciprocal
of design density is finite). The problem is to propose, if possible, a consistent estimator of
the regression function (6.8.1).

In previous sections a number of classical actuarial, medical and engineering examples of
right censoring were presented. Let us add one more example from economics. Consider an
observed purchase V' which is right censored by rationing C', and Y is the underlying hidden
demand that would be equal to the purchase except for the rationing. The rationing means
the controlled distribution of scarce resources, goods, or services, or an artificial restriction
of demand. We would like to know a relationship between the underlying demand and a
predictor of interest, which may be level of inflation, income or unemployment. Note that
ignoring censoring would yield a decreased demand, and it is also natural to expect that a
severe censoring may preclude us from consistent estimation of the regression.

Now let us present a key probability formula. Following Section 6.5, we can write that

FEVA @y 1) = F @) Y (]2 G ). (6.8.2)

We also know from Section 6.5 that the distribution of Y cannot be estimated beyond the
value By = min(By, B¢) (recall our notation 5z for the upper bound of the support of a
random variable Z). Hence, if

By < Bc, (6.8.3)

then the distribution of Y and the regression function (6.8.1) may be consistently estimated,
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otherwise the distribution of Y may be recovered only up to value Sy = S¢. As a result,
let us introduce a censored (or we may say trimmed) regression function

m(x, By) = E(YI(Y < By)|X = o}

_ /ﬁv v () /BV yf V2 @y, 1)

0 [ (@) o fX@)G%y) 7

In what follows our aim is to estimate the censored regression function (6.8.4) because in
general we cannot estimate the regression function (6.8.1).

Note that m(z, fv) = m(z) whenever (6.8.3) holds. In other words, given the assumption
(6.8.3), the two characteristics of the relationship between X and Y coincide. But in general
m(z, Bv) is smaller or equal to m(x), and this is a remark that bears important practical
consequences. Indeed, in applications we know neither 8y nor By, and instead are dealing
with an empirical ﬁv := V() which may be significantly smaller than By even if (6.8.3)
holds. To understand why note that GV (v) = G¥ (v)G®(v) and hence the survival function
of V decreases faster than the survival function of Y. As a result, even if assumption (6.8.3)
holds, for small samples and depending on severity of censoring, a regression estimate may
be significantly smaller than an underlying m(x), and the latter is important to keep in
mind when regression with RC response is analyzed. We will complement this discussion
shortly by simulated examples.

Now let us explain how to construct E-estimator of the censored regression (6.8.4).
Consider the cosine basis {¢;(x), 7 =0,1,...} on [0,1]. The jth Fourier coefficient of the
censored regression is

/mxﬁv w;(x dx—/ /ﬁv fXVAxé}CI()) 210 )dvda:

(6.8.4)

AVp;(X)
- E{ m} (6.8.5)

The expectation in (6.8.5) implies that we can use a plug-in sample mean estimator.
In the expectation, the design density f*(r) can be estimated by the density E-estimator
fX(2) of Section 2.2 (recall that the predictor is observed directly), and the survival function
G%(v) can be estimated by the sample mean estimator (6.5.10),

G(v) = exp{—n 12 (1= ANI(V <) /§(Vi)}, (6.8.6)
=1

where

Q>

—n! Zn:l(vl > ). (6.8.7)

Combining the results, the proposed Fourier estimator is

! zn: AVip; (Xi)

_ I (6.8.8)
max(fX(X;),c/In(n))G (V)

=1

In its turn, this Fourier estimator allows us to construct the regression E-estimator
m(z, Bv). Further, given (6.8.3) this estimator consistently estimates m(zx).

Figure 6.16 allows us to understand the model, observations, and a possible estimation
of the regression function. The underlying simulation and diagrams are explained in the
caption. The top diagram shows us the available sample from (X, V,A) where uncensored
cases (when A = 1) are shown by circles and censored cases by crosses. The underlying
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Censored Data, n= 300,N = 199, lambdaC = 2
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Figure 6.16 Regression with heavily censored responses. The responses are independent exponential
random variables with mean a + f(X) where f is a corner function, here it is the Normal. The
predictor is the Uniform. The censoring variable is exponential with the mean Ac. The top diagram
shows by circles observations with uncensored responses and by crosses observations with censored
ones, N := 3" | A;. Underlying scattergram of the hidden sample from (X,Y) is shown in the
middle diagram, and it is overlaid by the underlying regression function (the solid line) and its
E-estimate based on this sample (the dot-dashed line). The bottom diagram shows the underlying
regression (the solid line), the E-estimate based on RC data shown in the top diagram (the dashed
line), the E-estimate based solely on cases with uncensored responses shown by circles in the top
diagram (the dotted line), and the dot-dashed line is the estimate shown in the middle diagram.
{Parameter Ac 1is controlled by argument lambdaC, function f is chosen by argument corn.} [n =
300, corn = 2, a = 0.3, lambdaC = 2, lambdaC = 2, ¢JO = 4, ¢J1 = 0.5, ¢cTH = 4, ¢ = 1.]

sample from (X,Y") is shown in the middle diagram. It is generated by the Uniform predictor
X and Y being exponential variable with the mean equal to 0.3 4+ f(X) where f(z) is the
Normal corner function. Note that the mean is the regression function and it is shown by
the solid line. Pay attention to the large volatility of the exponential regression and the
range of underlying responses. The dot-dashed line is the E-estimate based on the hidden
sample, and it may be better visualized in the bottom diagram. The E-estimate is good,
and also the scattergram corresponds to a unimodal and symmetric regression function.
Now let us return to the top diagram which shows available data and compare them with
the underlying ones shown in the middle diagram. First of all, let us compare the scales.



228 SURVIVAL ANALYSIS

Censored Data, n= 200,N = 155, lambdaC = 5
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Figure 6.17 Regression with mildly censored responses. The simulation and diagrams are the same
as in Figure 6.16, only here the smaller sample size n = 200 and larger mean A\c¢ = 5 of the
exponential censoring variable are used. [n = 200, corn = 2, a = 0.3, lambdaC = 5, ¢JO = 4, ¢J1
=05 ¢cTH=/4,c=1]

Value of the largest observed V/,, is close to 6 while value of the largest Y(, is close to 14.
This is a sign of severe censoring. Further, practically all larger underlying responses are
censored, with just few uncensored responses being larger than 3. Further, among n = 300
underlying responses, only N = 199 are uncensored, that is every third response is censored.
If we return to our discussion of the assumption (6.8.3) and the censored regression, we may
expect here that a regression estimate, based on the censored data, may be significantly
smaller than the underlying regression. The bottom diagram supports this prediction. The
dashed line is the E-estimate, and it indeed significantly underestimates the underlying
regression function shown by the solid line. Nonetheless, the proposed estimator does a
better job than a complete-case approach which yields an estimate shown by the dotted
line. Recall that a complete-case approach simply ignores cases with censored responses.
What we see is that despite a relatively large sample size, the observed V() is too small
and this explains the underperformance of the E-estimator.

Of course, the simulation of Figure 6.16 implies a severe censoring. Let us relax it a bit
by considering a censoring variable with exponential distribution only now with a larger
mean A¢ = 5. This should produce more uncensored observations and a better regression
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estimation. A particular outcome is shown in Figure 6.17 where also a reduced sample size
n = 200 is chosen for better visualization of scattergrams. Otherwise, the simulation and
diagrams are the same as in Figure 6.16.

Let us begin with comparison of observations in the top and middle diagrams. First of
all, note that the scales are about the same, and V|, is close to Y(,). Further, now less than
a quarter of responses is censored. This is still a significant proportion but dramatically
smaller than in Figure 6.16. Now let us look at the estimates. The E-estimates based on
the underlying and censored data are close to each other (compare dot-dashed and dashed
curves), and they are much better than the E-estimate based on complete cases (the dotted
line).

It is highly recommended to repeat these two figures with different parameters and gain
experience in dealing with censored responses. It is useful to manually analyze scattergrams
and try to draw a reasonable regression which takes into account the nature of data. Fur-
ther, use different regression functions and realize whether the E-estimator allows us to
make correct conclusions about modes, namely about their number, locations and relative
magnitudes.

6.9 Nonparametric Regression with RC Predictors

Consider a regression problem where the predictor X is right censored by a censoring
variable C' and the response Y is observed directly. In this case we observe a sample from
the triplet (U,Y, A) where U := min(X, C) and A = I(X < (). The aim is to estimate an
underlying regression

m(z) = E{Y|X = «}. (6.9.1)

This is an interesting and possibly complicated setting because we are dealing with a modi-
fied predictor, and we know from Chapter 4 that typically this implies serious complications.
And indeed, as we will see shortly, right censored predictors may preclude us from consistent
estimation. At the same time, if possible a consistent estimation is surprisingly simple.

We begin our analysis of the problem with probability formulas. Assume that the pair
(X,Y) and C are independent, the three variables are continuous and nonnegative, and as
usual the predictor X has a continuous and positive density on the support [0, 1].

Then we can write that

POV @y 1) = X (@) (4l0) G (@), (6.9:2)

This formula allows us to get the joint density of (U,Y) given A = 1, that is the joint
density of observations for uncensored (complete) cases. Write,

_ @)X ()G (=)

fU’YIA(xﬂyH) - P(A — 1)

- FX ()G (x) ]
Jo FX(w)GE (u)du

Here fZ(x) is the density of uncensored predictors, that is fZ(z) := fU1%(z|1).

Relation (6.9.3) is the key for understanding the data and proposed regression E-
estimator. The relation tells us that, whenever fZ(z) is positive, the conditional density
of Y given U = z in an uncensored case, that is given A = 1, is the same as the under-
lying conditional density of Y given X = z. As a result, for those x the uncensored-case
approach is consistent. Further, even estimation of the conditional density may be based
on that approach. On the other hand, if Bc < Bx, then f%(z) = 0 for x € [B¢, Bx] and
we cannot consistently estimate a regression function over that interval. The latter is the

FIX ) = f2 () F ¥ (ylo). (6.9.3)
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Censored Data, n= 300,N = 166 ,sigma= 1, uC= 1.1
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Figure 6.18 Regression with censored predictors. The underlying predictors have the Uniform dis-
tribution, the responses are m(X) + oe where m(zx) is the Strata and € is standard normal, and the
censoring variable is Uniform(0,uc ). The top diagram shows by circles observations with uncen-
sored predictors and by crosses observations with censored predictors, N := "' | A; is the number
of uncensored predictors. Underlying scattergram of the hidden sample from (X,Y) is shown in the
middle diagram, and it is overlaid by the underlying regression function (the solid line) and its
E-estimate based on this sample (the dotted line). The bottom diagram shows data and curves over
an interval [0,U,]. Circles show observations with uncensored predictors (they are identical to
circles in the top diagram). These observations are overlaid by the underlying regression (the solid
line), the E-estimate based on uncensored-case observations (the dashed line), and the E-estimate
based on underlying observations (the dotted line) and it is the same as in the middle diagram.
{The regression function is chosen by argument corn, parameter uc is controlled by the argument
uC.} [n = 300, corn = 4, sigma = 1, uC = 1.1, ¢JO = 4, ¢J1 = 0.5, cTH = 4]

familiar curse of severe censoring. On the other hand, we may always consistently estimate
left tail of regression.

Let us compare our conclusions for regressions with MAR data (recall that the latter
was discussed in Chapter 4). For the setting of MAR responses a complete-case approach
is optimal, and for the setting of MAR predictors a special estimator, which uses all obser-
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Censored Data, n= 300,N = 105, sigma= 1, uC= 0.9
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Figure 6.19 Regression with heavily censored predictors. The simulation and the diagrams are the
same as in Figure 6.18 only here uc = 0.9. [n = 300, corn = 4, sigma = 1, uC = 0.9, ¢JO = 4,
cJ1 = 0.5, ¢cTH = ]

vations, is needed. As we now know, for regression with RC data the outcome is different.
Here a complete-case approach is optimal for the setting of censored predictors and a special
estimator, based on all observations, is needed for the setting of censored responses. This is
a teachable moment because each modification of data has its own specifics and requires a
careful statistical analysis.

Figure 6.18 allows us to understand the discussed regression with right censored predictor
and the proposed solution. Its caption explains the simulation and the diagrams. The top
diagram shows the scattergram of censored observations with circles indicating cases with
uncensored predictors and crosses indicating cases with censored predictors. Note that the
largest available predictor is near 1, and this hints that the censoring variable may take
even larger values. And indeed, the censoring variable is supported on [0, uc| with uc = 1.1.
Further, while the underlying predictor X has the Uniform distribution, the observed U is
left skewed. We see this in the diagram, and this also follows from the relation GU(x) =
GX(2)GC(z). The latter allows us to conclude that RC predictors may create problems for
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estimation of a right tail of the regression. Further, note that 45% of predictors are censored,
and this is a significant loss of data.

The middle diagram shows us the underlying (hidden) scattergram, the regression func-
tion and its E-estimate. The estimate is not perfect, but note the large standard deviation
o=1 of the regression error (controlled by the argument sigma) and recall that the Strata
is a difficult function for a perfect estimation. The bottom diagram sheds light on the pro-
posed uncensored-case approach. If we look at the exhibited uncensored cases, shown by
circles, then we may visualize the underlying Strata regression. Of course, just few obser-
vations in the right tail complicate the visualization, but the E-estimator does a good job
and the E-estimate (the dashed line) is comparable with the estimate based on all hidden
observations (the dotted line).

What will be if we use a more severe censoring, for instance one with uc = 0.97 A
corresponding outcome is shown in Figure 6.19. The top diagram shows that the largest
uncensored predictor is about 0.85, while the largest observation of the censoring variable
is near 0.9. This tells us that it is likely that the support of U is defined by the censoring
variable C, and this is indeed the case here. Further, note that we have just few uncensored
predictors with values larger than 0.75. Further, note that only N = 105 predictors from
underlying n = 300 are uncensored and they are heavily left skewed. What we see is an
example of a severe censoring.

The middle diagram shows that the sample of underlying hidden observations is rea-
sonable and, keeping in mind the large regression noise (it is possible to reduce or increase
it using the argument sigma), the E-estimate is fair. The bottom diagram shows us the
E-estimate based on uncensored cases (the dashed line) which can be compared with the
underlying regression (the solid line) and the E-estimate of the middle diagram (the dotted
line). As we see, despite the small sample size N = 105 of uncensored cases and the large
regression noise, the uncensored-case E-estimate is relatively good. Let us stress that it is
calculated for the interval [0, U(,], and that we have no information about the underlying
regression beyond this interval.

Repeated simulations of Figure 6.18, using different parameters and underlying regres-
sions, may help to shed a new light on the interesting and important statistical problem of
regression with censored predictor.

6.10 Exercises

6.1.1 Verify (6.1.4).

6.1.2 Prove that if the hazard rate is known, then the survival function can be calculated
according to formula (6.1.3).

6.1.3 Verify (6.1.5).

6.1.4 Consider the Weibull distribution with the shape parameter k defined below line
(6.1.7). Prove that if k& < 1 then the hazard rate is decreasing and if k¥ > 1 then it is
increasing.

6.1.5* Suppose that X and Y are two independent lifetimes with known hazard rates and
Z = min(X,Y). Find the hazard rate of Z.

6.1.6 Propose a hazard rate whose shape resembles a bathtub.

6.1.7* Prove that for any hazard rate hY the relation fooo hY (y)dy = oo holds. Furthermore,
if S is the support of Y then fS hY (y)dy = oo.

6.1.8 Prove that GY (y) = G¥ (a)e™ /< W (du for any a € [0,y].

6.1.9 Verify (6.1.6) and (6.1.7). Hint: Here the scale-location transformation is considered.
Begin with the cumulative distribution function and then take the derivative to get the
corresponding density.
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6.1.10" Propose a series estimator of the hazard rate which uses the idea of transformed
Z=(X—-a)/b.

6.1.11 Verify expression (6.1.8) for Fourier coefficients of the hazard rate.

6.1.12 Prove that the oracle-estimator é; defined in (6.1.10), is unbiased estimator of 6;.
6.1.13 Find variance of the estimator (6.1.10). Hint: Note that the oracle is a classical
sample mean estimate, and then use formula for the variance of the sum of independent
random variables.

6.1.14 Find the mean and variance of the empirical survival function (6.1.14). Hint: Note
that this estimate is the sample mean of independent and identically distributed Bernoulli
random variables. Furthermore, the sum has a Binomial distribution.

6.1.15" Use Hoeffding’s inequality for the analysis of large deviations of the empirical
survival function (6.1.14).

6.1.16* Evaluate the mean and variance of the Fourier estimator (6.1.15). Hint: Begin with
the case of known nuisance functions, consider the asymptotic as n and j increase, and then
show that the plug-in methodology is valid.

6.1.17* Explain why (6.1.17) is a reasonable estimator of the coefficient of difficulty. Hint:
Replace the estimated survival function by an underlying survival function GY', and then
calculate the mean and variance of this oracle-estimator.

6.1.18" Explain why the ratio-estimator (6.1.19) may be a good estimator of the hazard
rate. What are possible drawbacks of the estimator?

6.1.19 Repeat Figure 6.1 for sample sizes n =100, 200, 300, 400, 500 and make your con-
clusion about corresponding feasible intervals of estimation. Comment about your method
of choosing an interval. Does a sample size affect the choice of interval?

6.1.20 Repeat Figure 6.1 twenty times, write down ISEs for the estimates, and then rank
the estimates based on results of this numerical study.

6.1.21 Repeat Figure 6.1 for different underlying distributions. Choose largest feasible
intervals of estimation for each distribution.

6.1.22 What are the optimal parameters of the E-estimator for the experiment considered
in Figure 6.17

6.1.23 Explain underlying simulations and all histograms in Figure 6.1.

6.1.24* Write down the hazard rate E-estimator and explain parameters and statistics used.

6.2.1 Give several examples of right censoring. Further, present an example of left censoring
and explain the difference.

6.2.2 Explain the mechanism of right censoring. How are available observations in right-
censored data related to underlying random variables? Hint: Check (6.2.1).

6.2.3 Are random variables V' and A dependent, independent or is there not enough infor-
mation to answer?

6.2.4 Explain formula (6.2.2). Why is its last equality valid?

6.2.5 Prove (6.2.3). Formulate assumptions needed for its validity.

6.2.6 Formulate assumptions and verify (6.2.4). Describe the support of the density. Is this
a mixed density? What is the definition of a mixed density?

6.2.7 Are censored observations biased? If the answer is “yes,” then what is the biasing
function?

6.2.8 Explain formula (6.2.5). Does it express the hazard rate via functions that can be
estimated?

6.2.9 What is the motivation behind expression (6.2.6) for Fourier coefficients?

6.2.10* Explain the Fourier estimator (6.2.7) and then describe its statistical properties.
Hint: Find the mean, the variance and the probability of large deviations using the Hoeffding
inequality.

6.2.11* What is the coefficient of difficulty? What is its role in nonparametric estimation?
6.2.12* Verify (6.2.9) and (6.2.10).
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6.2.13 Explain the simulation used to create Figure 6.2.

6.2.14 Repeat Figure 6.2 and write down analysis of its diagrams.

6.2.15 Describe all parameters/arguments of Figure 6.2. What do they affect?

6.2.16 Repeat Figure 6.2 about 20 times and make your own conclusion about the effect
of estimator GV on the hazard rate E-estimator.

6.2.17 Explain how the interval of estimation affects the hazard estimator. Support your
conclusion using Figure 6.2.

6.2.18 Consider different distributions of the censoring variable. Then, using Figure 6.2,
present a report on how those distributions affect a reasonable interval of estimation and
the quality of E-estimator.

6.2.19* Explain formula (6.2.11) for the empirical coefficient of difficulty. Then calculate
its mean and variance.

6.2.20* Propose a hazard rate E-estimator for left censored data.

6.3.1 Give an example of left truncated data.

6.3.2 Describe an underlying stochastic mechanism of left truncation. Is it a missing mech-
anism?

6.3.3 Formulate the probabilistic model of truncation.

6.3.4 Assume that the sample size of a hidden sample is n. Is the sample size of a corre-
sponding truncated sample deterministic or stochastic? Explain your answer.

6.3.5 What are the mean and variance of the sample size of a truncated sample given that
n is the size of an underlying hidden sample?

6.3.6 Explain and verify (6.3.3). What are the used assumptions?

6.3.7 Explain and verify (6.3.4). Hint: Pay attention to the support of this bivariate density.
6.3.8* Assume that T is a discrete random variable. How will (6.3.3) and (6.3.4) change?
6.3.9 Verify (6.3.5).

6.3.10* Explain and verify (6.3.6). Pay attention to the conditions when the equality holds.
Will the equality be valid for points z < ap-?

6.3.11 Does truncation imply biasing? If the answer is “yes,” then what is the biasing
function?

6.3.12 Does left truncation skew a hidden sample of interest to the left or the right?
6.3.13* Explain the motivation of introducing the probability g(z) in (6.3.8). Hint: Can
this function be estimated based on a truncated sample? Then look at (6.3.9).

6.3.14* Verify relations in (6.3.8).

6.3.15 Verify (6.3.9).

6.3.16* How can (6.3.9) be used for estimation of the hazard rate of interest?

6.3.17 Explain the underlying idea of Fourier estimator (6.3.10). Hint: Replace the estimate
g by g and show that this is a sample mean estimator.

6.3.18" What is the mean of the estimator (6.3.10)7 Is it unbiased or asymptotically unbi-
ased? Calculate the variance.

6.3.19 Explain the motivation behind the estimator (6.3.11).

6.3.20 What is the mean and variance of the estimator (6.3.11)7

6.3.21* Use Hoeffding’s inequality for the analysis of the estimator (6.3.11). Then explain
why this estimator may be used in the denominator of (6.3.10).

6.3.22* Verify (6.3.12).

6.3.23 Explain the motivation behind the estimator (6.3.13).

6.3.24* What are the mean and the variance of the estimator (6.3.13).

6.3.25" Explain how an E-estimator of the hazard rate is constructed.

6.3.26 Describe the underlying simulation that creates data in Figure 6.3.

6.3.27 Repeat Figure 6.3 a number of times and recommend a feasible interval of estimation.
6.3.28 Using Figure 6.3, propose “good” values for parameters of the E-estimator.
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6.3.29 Using Figure 6.3, explore the issue of how truncating variables affect quality of
estimation of an underlying hazard function.

6.3.30 Can Figure 6.3 be used for statistical analysis of the used confidence bands? Test
your suggestion.

6.3.31 Rank corner distributions according to difficulty in estimation of their hazard rates.
Then check your conclusion using Figure 6.3.

6.3.32 Confidence bands may take on negative values. How can they be modified to take
into account that a hazard rate is nonnegative?

6.3.33* Consider three presented examples of left censoring (actuarial, startups and clinical
trials), and explain how each may be “translated” into another.

6.3.34* Write down the hazard rate E-estimator and explain parameters and statistics used.

6.4.1 Give several examples of LTRC data.

6.4.2 Explain an underlying stochastic mechanism of creating LTRC data.

6.4.3 Present examples when the LT is followed by the RC and vice versa.

6.4.4 Explain formula (6.4.1). Can the probability be estimated?

6.4.5 Suppose that the sample size of an underlying hidden sample of interest is n. What
is the distribution of the sample size of a LTRC sample? What are its mean and variance?
6.4.6 Present examples when truncating and censoring variables are dependent and inde-
pendent.

6.4.7* Explain formula (6.4.2) for the cumulative distribution function of the triplet of
random variables observed in a LTRC sample. Comment on the support. What does the
formula tell us about a possibility of consistent estimation of the distributions of X™*, T
and C*?

6.4.8 Verify formula (6.4.3) and explain assumptions under which it is correct.

6.4.9 Prove validity of (6.4.4).

6.4.10 What is the meaning of the joint density (6.4.4)7 Hint: note that one of the variables
is discrete.

6.4.11 Verify expression (6.4.5) for the marginal mixed density of (V, A).

6.4.12* Verify validity of formula (6.4.6) for the density of the variable of interest X*.
Explain the assumptions when it is valid. Can this formula be used for construction of a
consistent E-estimator and what are the assumptions?

6.4.13* Why is probability (6.4.7) a pivotal step in constructing an E-estimator?

6.4.14 Explain formula (6.4.7).

6.4.15 Can the function g(z) be estimated based on LTRC data?

6.4.16 Verify formulas (6.4.8) and (6.4.9). Explain the assumptions.

6.4.17* Suggest an estimator for A% (z). Hint: Use (6.4.9).

6.4.18 Is the Fourier estimator (6.4.10) a sample mean estimator?

6.4.19 Why can g(z), defined in (6.4.11), be used in the denominator of (6.4.10)?

6.4.20" Present a theoretical statistical analysis of estimators (6.4.10) and (6.4.11). Hint:
Begin with the distribution and then write down the mean, the variance, and for estimator
(6.4.11) use the Hoeffding inequality to describe large deviations.

6.4.21 Verify (6.4.12).

6.4.22 Explain the estimator (6.4.13). Is it asymptotically unbiased?

6.4.23 Conduct a series of simulations, using Figure 6.4, and explore the effect of estimate
g on the E-estimate of the hazard rate.

6.4.24 Choose a set of sample sizes, truncated and censoring distributions, and then try to
determine a feasible interval of estimation for each underlying model. Explain your choice.
6.4.25 Suggest better values of parameters of the E-estimator. Does your recommendation
depend on distributions of truncating and censoring variables?

6.4.26 What is the main difference between simulations in Figures 6.4 and 6.57

6.4.27 Present several examples where T* and C* are related.
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6.4.28 Present several examples where P(C* > T*) = 1 and C* has a mixed distribution.
6.4.29* Verify each equality in (6.4.14). Explain the used assumptions.

6.4.30 Establish validity of (6.4.16). What are the used assumptions?

6.4.31 Prove (6.4.17).

6.4.32 Explain (6.4.18) and the underlying assumptions.

6.4.33 Describe the underlying simulation of Figure 6.5.

6.4.34 Explain diagrams in Figure 6.5.

6.4.35 For estimation of the hazard rate, is the model of Figure 6.5 more challenging than
of Figure 6.47

6.4.36 Using Figure 6.5, suggest better parameters of the E-estimator.

6.4.37 Using Figure 6.5, infer about performance of the confidence bands.

6.4.38" Consider a setting where the made assumptions are violated. Then propose a con-
sistent hazard rate estimator or explain why this is impossible.

6.5.1 Present several examples of RC observations.

6.5.2 Is there something in common between RC and MNAR? If the answer is “yes,” then
why does MNAR typically preclude us from a consistent estimation and RC not?

6.5.3 Explain validity of (6.5.1) and the underlying assumption.

6.5.4 Prove (6.5.2).

6.5.5 Under RC, over what interval may the distribution of interest be estimated?

6.5.6 Describe assumptions that are sufficient for consistent estimation of the distribution
of X.

6.5.7 Explain how the Kaplan—Meier estimator is constructed.

6.5.8" What is the underlying motivation of the Kaplan—Meier estimator? Why is it called
a product limit estimator? Evaluate its mean and variance.

6.5.9 Explain formulae (6.5.6) and (6.5.7). Under what assumptions are they valid?
6.5.10 Explain how to estimate the survival function of the censoring random variable C.
6.5.11 Verify (6.5.9).

6.5.12* Find the mean and variance of the estimator (6.5.10).

6.5.13 Explain and then verify (6.5.12).

6.5.14 What is the motivation behind the Fourier estimator (6.5.13)?

6.5.15* Find the mean and variance of the estimator (6.5.13).

6.5.16 Using (6.5.14) explain how the estimator (6.5.15) is constructed.

6.5.17 Explain the simulation of Figure 6.6.

6.5.18 Explain the simulation of Figure 6.7.

6.5.19 What is the difference between simulations in Figures 6.6 and 6.77

6.5.20 Propose better values of parameters for E-estimators used in Figures 6.6 and 6.7.
Are they different? Explain your findings.

6.5.21* Consider a setting where some of the made assumptions are no longer valid. Then
explore a possibility of consistent estimation.

6.6.1 Describe the model of LT.

6.6.2 Present several examples of LT observations. Based solely on LT observations, can
one conclude that the observations are LT?

6.6.3 Is LT based on a missing? Is the missing MNAR? Typically MNAR precludes us from
consistent estimation. Is the latter also the case for LT?

6.6.4 Explain the assumption (6.6.1) and its importance.

6.6.5 Why is the assumption (6.6.2) important?

6.6.6 Verify each equality in (6.6.3) and explain used assumptions.

6.6.7 Verify (6.6.5) and explain the used assumption.

6.6.8 Establish (6.6.6) and (6.6.7).

6.6.9* Explain the underlying idea of estimators defined in (6.6.9). Find their expectations.
Can these estimators be improved?
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6.6.10 Verify all relations in (6.6.10).

6.6.11* Explain construction of the estimator (6.6.11). Find its mean and variance.
6.6.12* Conduct a statistical analysis of the estimator (6.6.12). Hint: Describe the distri-
bution and its properties.

6.6.13* Explain the motivation behind the estimator (6.6.14). Evaluate its mean and vari-
ance.

6.6.14 Verify (6.6.16).

6.6.15" Suggest an E-estimator of the density ¥ .

6.6.16* Find the mean and variance of Fourier estimator (6.6.19).

6.6.17 What is the motivation behind the estimator (6.6.21)7 Can you propose another
feasible estimator?

6.6.18 Explain the simulation used by Figure 6.8.

6.6.19 Repeat Figure 6.8 and analyze diagrams.

6.6.20 Use Figure 6.8 and compare performance of the Kaplan—Meier estimator with the
sample mean estimator.

6.6.21 Explain the underlying idea of estimator (6.6.22).

6.6.22 Use Figure 6.9 to compare performance of the two estimators.

6.6.23 Explain all relations in (6.6.23).

6.6.24 Explain diagrams in Figure 6.10. Then use it for statistical analysis of the proposed
density estimator.

6.6.25 Explain the underlying simulation in Figure 6.11.

6.6.26 Repeat Figure 6.11 for different sample sizes. Write a report about your findings.
6.6.27 Suggest better values for parameters of the E-estimator used in Figure 6.11. Is your
recommendation robust to changes in other arguments of the figure?

6.6.28 Explain how the cumulative distribution function of T can be estimated.

6.6.29 Explain how the probability density of T* can be estimated.

6.6.30 Describe the underlying simulation in Figure 6.12.

6.6.31 Explain diagrams in Figure 6.12.

6.6.32 Describe E-estimators used in Figure 6.12.

6.6.33 Explain formula (6.6.29).

6.6.34* Evaluate the mean and variance of Fourier estimator (6.6.30).

6.6.35 Prove (6.6.31).

6.6.36 Verify (6.6.32), and then explain why we are interested in the analysis of E{ X" (z)}.
6.6.37* Show that the second expectation in the right side of (6.6.32) vanishes as n increases.
Hint: Propose any needed assumptions.

6.6.38 Verify (6.6.33).

6.6.39 Prove (6.6.34). Then explain meaning of the conditional survival function.

6.6.40 Given ax- < a7, explain why the distribution of X* cannot be consistently esti-
mated, and then explain what may be estimated.

6.6.41 Explain all curves in the middle diagram of Figure 6.11. Then repeat it and analyze
the results. Is estimation of the conditional survival function robust?

6.6.42 What does p estimate in Figure 6.117

6.6.43 Explain each relation in (6.6.35).

6.6.44* Show that the second expectation on the right side of (6.6.35) vanishes as n in-
creases. Hint: Make a reasonable assumption.

6.6.45 Verify (6.6.36).

6.6.46 Explain the definition of conditional density (6.6.37). Then comment on what can
and cannot be estimated given ap« > ax«.

6.6.47 Consider the bottom diagram in Figure 6.11 and explain the curves. Then repeat
Figure 6.11 with different parameters and explore robustness of the proposed estimators.
6.6.48* Explain all steps in construction of the E-estimator fT* (t). Formulate necessary
assumptions.
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6.6.49 Use Figure 6.13 and analyze statistical properties of the confidence bands.
6.6.50 Is the relation P(T,) < X(,)) = 1 valid?
6.6.51 Is there any relationship between Xy and T{1)?

6.6.52* Relax one of the used assumptions and propose a consistent estimator of fX (x)
or prove that the latter is impossible.

6.7.1 Present examples of left truncated, right censored and LTRC data.

6.7.2 What is the difference (if any) between truncated and censored data.

6.7.3 Explain how LTRC data may be generated.

6.7.4 Find a formula for the probability of an observation in a LTRC simulation.

6.7.5 Explain each equality in (6.7.2).

6.7.6* Using (6.7.3), obtain formulas for corresponding marginal densities.

6.7.7 Can the probability (6.7.7) be estimated based on LTRC data?

6.7.8* Explain assumptions (6.7.8). What will be if they do not hold?

6.7.9 Why is formula (6.7.9) critical for suggesting a density E-estimator?

6.7.10 Explain how formula (6.7.10) is obtained.

6.7.11* What is the motivation behind the estimator (6.7.11)7 Find its mean and variance.
6.7.12* Present statistical analysis of the estimator §. Hint: Think about its distribution.

6.7.13 Verify (6.7.13).

6.7.14 Explain all relations in (6.7.14).

6.7.15* Is (6.7.15) a sample mean Fourier estimator? Find its mean and variance.

6.7.16* Verify (6.7.16).

6.7.17 Explain how underlying distributions of the truncating and censoring random vari-
ables affect the coefficient of difficulty of the density E-estimator.

6.7.18 Explain the underlying simulation used in Figure 6.14.

6.7.19 Explain diagrams in Figure 6.14.

6.7.20 Using Figure 6.14, present statistical analysis of the E-estimator.

6.7.21 How well do the confidence bands perform? Hint: Use repeated simulations of Figure
6.14.

6.7.22 Explain every argument of Figure 6.14.

6.7.23* Write down a report about the effect of distributions of the truncated and censoring
variable on quality of E-estimate. Hint: Begin with the theory based on the coefficient of
difficulty and then complement your conclusion by empirical evidence created with the help
of Figure 6.14.

6.7.24 What parameters of the E-estimator, used in Figure 6.14, would you recommend for
sample sizes n = 100 and n = 3007

6.7.25 Use Figure 6.15 and explain how the dependence between truncated and censored
variables affects the estimation.

6.7.26 Explain the motivation behind the model (6.7.17). Present several corresponding
examples.

6.7.27 Explain and verify each equality in (6.7.18).

6.7.28 Verify every equality in (6.7.19).

6.7.29 Explain how formula (6.7.21) for the density of interest is obtained.

6.7.30" Using (6.7.21), suggest an E-estimator of the density. Hint: Describe all steps and
assumptions.

6.7.31" Consider the case ax~ < ap+~ and develop the theory of estimation of the condi-
tional survival function GX X" >ar= (1),

6.7.32" Consider the case ax~ < ap+ and develop the theory of estimation of the condi-
tional density fX X >ar*(z),

6.7.33 Using Figure 6.14, explore the proposed E-estimators for the case ax+ < ap-.
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6.8.1 Present an example of a regression problem with direct observations. Then describe
a situation when response may be censored.

6.8.2 Explain (6.8.2).

6.8.3* What is the implication, if any, of assumption (6.8.3)? What can be done, if any, if
(6.8.3) does not hold?

6.8.4 What is the meaning of the censored regression function (6.8.4)7 Verify each equality
in (6.8.4).

6.8.5* Explain the underlying idea of consistent estimation of the regression.

6.8.6 Verify relations in (6.8.5).

6.8.7* Explain the estimator (6.8.6). Evaluate its mean and variance.

6.8.8 What is the distribution of estimator (6.8.7)7

6.8.9 Consider a RC data with Y being the random variable of interest and C' being the
censoring random variable. If GY (y) is an estimator of the survival function of Y, how can
this estimator be used for estimation of G (2)?

6.8.10 Explain the estimator (6.8.8).

6.8.11* What is the mean and variance of the Fourier estimator (6.8.8)7

6.8.12* Consider a setting where the made assumptions do not hold. Then explore a pos-
sibility of consistent regression estimation.

6.8.13 Consider diagrams in Figure 6.16 and explain the underlying simulation.

6.8.14 What are the four curves in the bottom diagram of Figure 6.167 Why are they all
below the underlying regression? Is this always the case?

6.8.15" Explain theoretically how the parameter \¢ affects the regression estimation, and
then compare your conclusion with empirical results using Figure 6.16.

6.8.16 Suggest better parameters of the E-estimator for Figure 6.16.

6.8.17 Conduct several simulations similar to Figures 6.16 and 6.17, and then explain the
results.

6.8.18 Do you believe that values of parameters of the E-estimator should be different for
simulations shown in Figures 6.16 and 6.177 If the answer is “yes,” then develop a general
recommendation for choosing better values of the parameters.

6.9.1 Explain the mechanism of RC modification. Does this modification involve a missing
mechanism? If “yes,” then is it MAR or MNAR?

6.9.2 Present several examples of a regression with RC predictor.

6.9.3 What complications in regression estimation may be expected from RC predictor?
6.9.4* Write down probability formulas for all random variables involved in regression with
RC predictor.

6.9.5 Can RC predictor imply a destructive modification when a consistent regression es-
timation is impossible?

6.9.6 For the case of RC response, the notion of a censored regression was introduced. Is
there a need to use this notion for the case of RC predictor?

6.9.7 Explain a difference (if any) between regressions with censored predictor and response.
6.9.8 Is expression (6.9.2) correct? Do you need any assumptions? Prove your assertion.
6.9.9 Verify every equality in (6.9.3). Do you need any assumptions for its validity?
6.9.10* Explain why the relation (6.9.3) is the key in regression estimation.

6.9.11* Describe the random variable Z defined in (6.9.3). Propose an estimator of its
density.

6.9.12* Propose an E-estimator of the conditional density fY1¥(y|z).

6.9.13 What are the assumptions for consistent estimation of the regression?

6.9.14 Explain the underlying simulation used in Figure 6.18.

6.9.15" Explain, step by step, how the regression E-estimator, used in Figure 6.18, is
constructed.
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6.9.16" Explore theoretically and empirically, using Figure 6.18, the effect of parameter uc
on estimation.

6.9.17 In your opinion, which of the corner functions are less and more difficult for estima-
tion? Hint: Use Figure 6.18.

6.9.18 Repeat Figure 6.19. Comment on scattergrams and estimates.

6.9.19 Propose better values for parameters of the estimators used in Figures 6.18 and 6.19.
Explain your recommendation. Is it robust toward different regression functions?

6.9.20* Propose E-estimator for regression of Y on C. Explain its motivation, used proba-
bility formulas and assumptions.

6.11 Notes

Survival analysis is concerned with the inference about lifetimes, that is times to an event.
The corresponding problems occur in practically all applied fields ranging from medicine,
biology and public health to actuarial science, engineering and economics. A common feature
of available data is that observations are modified by either censoring, or truncation, or both.

There is a vast array of books devoted to this topic, ranging from those using a math-
ematically nonrigorous approach to mathematically rigorous books using a wide range of
theories including empirical processes, martingales in continuous time and stochastic inte-
gration among others. The literature is primarily devoted to parametric and semiparametric
inference as well as nonparametric estimation of the survival function, and the interested
reader can find many interesting examples, ad hoc procedures, advanced theoretical results
and a discussion of using different software packages in the following books: Kalbfleisch and
Prentice (2002), Klein and Moeschberger (2003), Martinussen and Scheike (2006), Aalen,
Borgan and Gjessing (2008), Hosmer et al. (2008), Kosorok (2008), Allison (2010, 2014),
Guo (2010), Fleming and Harrington (2011), Mills (2011), Royston and Lambert (2011),
van Houwelingen and Putter (2011), Wienke (2011), Chen, Sun and Peace (2012), Crowder
(2012), Kleinbaum and Klein (2012), Klugman, Panjer and Willmot (2012), Liu (2012), Lee
and Wang (2013), Li and Ma (2013), Allison (2014), Collett (2014), Klein et al. (2014),
Harrell (2015), Zhou (2015), Moore (2016), Tutz and Schmid (2016), and Ghosal and van
der Vaart (2017).

6.1 Nonparametric estimation of the hazard rate is a familiar topic in the literature.
Different type of estimators, including kernel, spline, classical orthogonal series and modern
wavelet methods, have been proposed. A number of adaptive, to smoothness of an underlying
hazard rate function, procedures motivated by known ones for the probability density, have
been developed. A relevant discussion and thorough reviews may be found in a number of
classical and more recent publications including Prakasa Rao (1983), Cox and Oakes (1984),
Silverman (1986), Patil (1997), Wu and Wells (2003), Wang (2005), Gill (2006), Miiller and
Wang (2007), Fleming and Harrington (2011), Patil and Bagkavos (2012), Lu and Min
(2014) and Daepp et al. (2015) where further references may be found. Interesting results,
including both estimation and testing, have been obtained for the case of known restrictions
on the shape of hazard rate, see a discussion in Jankowski and Wellner (2009). The plug-in
estimation approach goes back to Watson and Leadbetter (1964), and see a discussion in
Bickel and Doksum (2007). Boundary effect is a serious problem in nonparametric curve
estimation. Complementing a trigonometric basis by polynomial functions is a standard
method of dealing with boundary effects, and it is discussed in Efromovich (1999a, 2001a,
2018a,b).

The estimator G (z), defined in (6.1.14), is not equal to 1 — FX () where FX(z) :=
n~t Y, I(X; < ) is the classical empirical cumulative distribution function. The reason
for this is that we use reciprocal of GX (X;).

Efficient estimation of the hazard rate and the effect of the interval of estimation on
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the MISE is discussed in Efromovich (2016a, 2017). It is proved that the E-estimation
methodology yields asymptotically sharp minimax estimation.

6.2—6.4 The topic of estimation of the hazard rate from indirect observations, created
by left truncation and right censoring (LTRC), as well as estimation of the distribution,
have received a great deal of attention in the statistical literature with the main emphasis
on parametric models and the case of RC. See, for example, books by Cox and Oakes (1984),
Cohen (1991), Anderson et al. (1993), Efromovich (1999a), Klein and Moeschberger (2003),
Fleming and Harrington (2011), Lee and Wang (2013), Collet (2014), Harrell (2015), as well
as papers by Uzunogullari and Wang (1992), Cao, Janssen and Veraverbeke (2005), Brunel
and Comte (2008), Qian and Betensky (2014), Hagar and Dukic (2015), Shi, Chen and Zhou
(2015), Bremhorsta and Lamberta (2016), Dai, Restaino and Wang (2016), Talamakrouni,
Van Keilegom and El Ghouch (2016), and Wang et al. (2017), where further references may
be found. Estimation of the change point is an interesting and related problem in survival
analysis, see a review and discussion in Rabhi and Asgharian (2017). Bayesian approach is
discussed in Ghosal and van der Vaart (2017) where further references may be found.

Efficiency of the proposed E-estimation methodology is established in Efromovich and
Chu (2018a,b) where a numerical study and practical examples of the analysis of cancer
data and the longevity in a retirement community may be found.

6.5 Nelson—Aalen estimator of the cumulative hazard is a popular choice in survival
analysis. The estimator is defined as follows. Suppose that we observe right censored survival
times of n patients meaning that for some patients we only know that their true survival
times exceed certain censoring times. Let us denote by X; < X5 < ... the times when
deaths are observed. Then the Nelson—Aalen estimator for the cumulative hazard of X is

A¥(z):= Y (1/Ry), (6.11.1)

I: X; <z

where R; is the number of patients at risk of death (that is alive and not censored) just
prior to time X;. Note that the estimator is nonparametric.

If we plug the Nelson-Aalen estimator in the formula G* (z) = exp(—H™*(z)) for the
survival function, then the obtained estimator is referred to as Nelson-Aalen-Breslow es-
timator. The interested reader may compare this estimator with Kaplan-Meier estimator
(6.5.3) and realize their similarity, the latter is also supported by asymptotic results. Fur-
ther, estimator (6.5.10) is formally identical to the Nelson—Aalen—Breslow estimator while
the underlying idea of its construction is based on the sample mean methodology. This
remark sheds additional light on similar performance in the simulations of the sample mean
and Kaplan—Meier estimators of survival function. Of course, there is a vast variety of dif-
ferent ideas and methods proposed in the literature, see the above-cited books as well as
Woodroofe (1985), Dabrowska (1989), Antoniadis, Gregoire and Nason (1999), Efromovich
(1999a, 2001a), De Una-Alvarez (2004), Wang (2005), Brunel and Comte (2008) and Wang
et al. (2017).

Estimation under shape restrictions is an important part of survival analysis and special
procedures are suggested for taking the restrictions into consideration, see a discussion
in Groeneboom and Jongbloed (2014). See also Srivastava and Klassen (2016). For the
E-estimation, there is no need to make any adjustment, instead, after calculating an E-
estimate, it is sufficient to take a projection on the class of assumed functions and make the
estimate bona fide. A theoretical justification of this approach can be found in Efromovich
(2001a).

6.6 Numerical simulation is a popular statistical tool for a simultaneous analysis of sev-
eral estimators, see a discussion in Efromovich (2001a) and Efromovich and Chu (2018a,b).
A discussion of dependent data and further references may be found in El Ghouch and
Van Keilegom (2008, 2009), Liang and de Una-Alvarez (2011) and De Una-Alvarez and
Veraverbeke (2017).
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6.7 An interesting extension of the discussed topic is to develop oracle inequalities
for estimators under different loss functions. Here the approaches of Efromovich (2004e,f;
2007a,b) may be instrumental. Sequential estimation is another interesting topic, see Efro-
movich (2004d) where the case of direct observations is considered. See also Su and Wang
(2012).

It is an interesting and open problem to develop a second-order efficient estimator of
the survival function. Here the approach of Efromovich (2001b, 2004c) may be instrumen-
tal. Another area of developing is the efficient multivariate estimation, see a discussion in
Harrell (2015) as well as corresponding results for direct observations in Efromovich (1999a,
2000b, 2010c). Specifically, an interesting approach would be to exploit the possibility of
different smoothness of the density in variables. The latter is referred to as the case of an
anisotropic distribution. Further, some of the variables may be discrete (the case of a mixed
distribution), and this also may attenuate the curse of multidimensionality, see a discussion
of the corresponding E-estmation methodology in Efromovich (2011c).

Bayesian approach may be also useful in the analysis of multivariate distributions, see
Ghosal and van der Vaart (2017).

6.8-6.9 There is a number of interesting and practically important extensions of the
considered problem. The first and natural one is to consider LTRC modifications. Sequential
estimation with assigned risk is another natural setting, where similarly to Efromovich
(2007d,e; 2008a,c) it is possible to consider estimation with assigned risk. Specific of the
problem is that now censoring affects the risk, and the latter should be taken into account.
Estimation of the conditional density is another important topic, here results of Efromovich
(2007g, 2010b) can be helpful. See also Wang (1996), Delecroix, Lopez and Patilea (2008),
Zhang and Zhou (2013), and Wang and Chan (2017).

Wavelet estimation is a popular choice for the nonparametric estimation, see a discus-
sion in Wang (1995), Hérdle et al. (1998), Mallat (1998), Efromovich (1999a), Vidakovic
(1999), Nason (2008), Addison (2017), as well as an introductory text on wavelets by Nick-
olas (2017). The E-estimation methodology for wavelets and multiwavelets is justified in
Efromovich (1999b, 2000a, 2001c, 2004e, 2007b), Tymes, Pereyra and Efromovich (2000),
and Efromovich and Smirnova (2014a). Practical applications of the wavelet E-estimation
are discussed in Efromovich et al. (2004), Efromovich et al. (2008), Efromovich (2009b),
Efromovich and Smirnova (2014b).

Quantile regression is another traditionally studied statistical problem, see a discussion
in Efromovich (1999a). Frumento and Bottai (2017) consider the problem of quantile re-
gression under the LTRC where further references may be found. A tutorial on regression
models for the analysis of multilevel survival data can be found in Austin (2017). Another
related topic is the regression models for the restricted residual mean life, see a discussion
in Cortese, Holmboe and Scheike (2017).



