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Abstract

We consider the following nearest assignment
problem (NAP): given a Bayesian network B and
probability value q, find a configuration ω of vari-
ables in B such that the difference between q and
probability of ω is minimized. NAP is much harder
than conventional inference problems such as find-
ing the most probable explanation in that it is
NP-hard even on independent Bayesian networks
(IBNs), which are networks having no edges. We
propose a two-way number partitioning encoding
of NAP on IBNs and then leverage poly-time ap-
proximation algorithms from the number partition-
ing literature to develop algorithms with guaran-
tees for solving NAP. We extend our basic algo-
rithm from IBNs to arbitrary probabilistic graph-
ical models by leveraging cutset-based condition-
ing, local search and (Rao-Blackwellised) sampling
algorithms. We derive approximation and complex-
ity guarantees for our new algorithms and show ex-
perimentally that they are quite accurate in practice.

1 INTRODUCTION

We focus on the following problem in probabilistic graphical
models (PGMs): given a real number q such that 0 ≤ q ≤ 1
and a PGM B, find a configuration ω of variables in B such

that
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is minimized where PB(ω) is the proba-

bility of ω according to B. We call this problem the near-
est assignment problem or NAP in short. NAP includes sev-
eral well-known tasks such as finding the most likely con-
figuration, also called the most probable explanation (MPE)
or maximum-a-posteriori (MAP) estimate, as a special case
(when q = 1) and is thus intractable or NP-hard in general.

A solution to NAP is desired in several real-world appli-
cations. For example, it is possible to construct a piece-wise
approximation of the CDF of a PGM, possibly conditioned
on evidence, by answering a few NAP queries (e.g., after
finding the min and max assignments, we can recursively
set q to midway between the probability of two known as-
signments). This approximation is useful in interactive ap-
plications [Kulesza et al., 2015], in particular, for explaining
the shape of the distribution to the user. CDFs can also be

used to check whether two probability distributions are simi-
lar subject to a known renaming of their variables, a key sub-
task in learning lifted probabilistic models such as Markov
logic [Richardson and Domingos, 2006]. Other applications
of NAP include (i) finding nearest neighbors when the dis-
tance distribution is compactly stored as a PGM for very
large datasets; (ii) hardware test case generation for local-
izing faults [Fournier et al., 1999; Dechter et al., 2002]; and
(iii) generating explanations that are close to a given explana-
tion in terms of probability (cf. the recent DARPA Explain-
able AI program).

NAP is closely related to the order statistics problem
[Smith et al., 2017] and similar to the latter is NP-hard even
on so-called independent PGMs – PGMs having only uni-
variate potentials/CPTs. Therefore, in order to facilitate the
development of non-trivial algorithms for NAP, we show how
to encode NAP on independent PGMs as a two-way number
partitioning problem. This encoding enables us to leverage
well-researched algorithms from the number partitioning lit-
erature and develop a greedy algorithm with guarantees on
approximation error for solving NAP on independent PGMs.
We call it Algorithm INAP.

We then use the concept of 0-cutset
[Bidyuk and Dechter, 2004], which is defined as a sub-
set of variables such that when the subset is removed,
the remaining PGM has no edges (and thus has zero
treewidth) to yield an algorithm with guarantees on
complexity and accuracy for arbitrary, high treewidth
PGMs. Similar to cutset conditioning [Pearl, 1988;
Dechter, 1990], the key idea in this algorithm is to enu-
merate all configurations to the 0-cutset variables and
then solve the sub-problem on each independent PGM
using INAP. To make the technique practical, we pro-
pose generating configurations of the 0-cutset variables
via random sampling and local search. This yields a
stochastic anytime version of our 0-cutset algorithm,
similar to cutset sampling and local search algorithms
proposed in previous work [Bidyuk and Dechter, 2007;
Kask and Dechter, 1996].

We empirically evaluate 0-cutset based sampling and local
search algorithms on various benchmark networks from the
2014 UAI competition [Gogate, 2014], comparing their per-
formance with conventional local search and random sam-
pling algorithms (that do not exploit cutsets). Our experi-



ments show that our new algorithms converge faster and are
often orders of magnitude better in terms of approximation er-
ror than random sampling and local search, especially when q
is closer to either the min or the max probability in the model.

2 PRELIMINARIES and NOTATION

We focus on Bayesian networks [Pearl, 1988] having binary
variables noting that results presented in this paper can be
easily extended to Markov networks and multi-valued vari-
ables. Let X = {X1, . . . , Xn} denote a set of n Boolean
random variables, namely each variable Xi takes values from
the set {0, 1}. We denote the variable assignments Xi = 1
and Xi = 0 by xi and xi respectively.

A discrete Bayesian network B is a triple 〈X,P, G〉 where
P is a set of conditional probability tables (CPTs) and G is a
directed acyclic graph which has one node for each variable.
Edges in G define scopes of CPTs. In particular, each CPT
Pi ∈ P = {P1, . . . , Pn} has the form Pi(Xi|pa(Xi)) where
Xi ∈ X and pa(Xi) is the set of parents of Xi in G. Given
a CPT Pi, we will use the notation S(Pi) to denote the scope
of Pi, namely S(Pi) = {Xi} ∪ pa(Xi). B represents the
probability distribution: PB(ω) =

∏n

i=1 Pi(ωS(Pi)) where ω
is an assignment of values to all variables in X and ωS(Pi)

denotes the projection of ω on the scope of Pi. We will use
ω to denote the assignment in which all variable assignments
in ω are flipped. For example, if ω = (x1, x2, x3) then ω =
(x1, x2, x3).

A primal graph or a moral graph of a Bayesian network
B is an undirected graph D ≡ (V,E) which has one node
Vi ∈ V for each variable Xi in B and an edge between any
two variables that are in the scope of a CPT, namely E =
{(Vi, Vj)|∃Pk such that {Vi, Vj} ⊆ S(Pk)}.

An independent Bayesian Network (IBN) is a Bayesian
network having no edges. Thus, in an IBN the scope of each
CPT Pi equals {Xi} and its primal graph is empty. A 0-cutset
of an undirected graph is a subset of nodes C such that when
all nodes in C are removed, the remaining graph is empty.
This paper addresses the following inference task

Definition 1 (Nearest Assignment Problem (NAP)). Given
a Bayesian network B and a real number 0 ≤ q ≤ 1, find
an assignment ω of values to all variables of B such that
∣
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is minimized.

2.1 2-way Number Partitioning

Given a multi-set S of positive real numbers, the 2-way num-
ber partitioning problem is defined as finding a partition S1,
S2 of S, namely S1 ∪ S2 = S and S1 ∩ S2 = ∅, such that
|∑α∈S1

α−∑β∈S2
β| is minimized.

Popular approaches for solving number partitioning
include the greedy method, Karmarkar-Karp heuristic
[Karmarkar and Karp, 1983] and branch and bound algo-
rithms [Korf, 1998]. In this paper, we use the Karmarkar-
Karp heuristic because of its associated guarantees to yield
an algorithm for solving NAP, noting that sophisticated algo-
rithms from the number partitioning literature can be easily
employed to further improve our proposed method.

3 NAP on IBNs

In this section, we develop an algorithm with guaran-
tees for solving NAP over IBNs. As mentioned ear-
lier, NAP is closely related to the order-statistics problem
[Smith et al., 2017]. In particular, Smith et al. showed that
finding an assignment having the median rank in IBNs is
NP-hard via a reduction from the 2-way number partitioning
problem. Setting q = PB(ωm) where ωm is the assignment
having the median rank in B yields the following proposition:

Proposition 1. NAP on IBNs is NP-hard in general.

A key use of this NP-hardness reduction is that it en-
ables us to encode NAP on IBNs as a number partitioning
problem and thus leverage algorithms developed in the lit-
erature on number partitioning [Vazirani, 2001; Korf, 1998;
Karmarkar and Karp, 1983]. We describe a possible encod-
ing next. Without loss of generality, for each variable Xi, let
Pi(xi) ≥ Pi(xi) and q2 ≥ µ where µ =

∏

i Pi(xi)Pi(xi).
We claim that an assignment ω that minimizes | log(q) −
log(PB(ω))| can be recovered by solving the following 2-way
number partitioning problem:

Definition 2 (2-way Number Partitioning Encoding).
Given an independent Bayesian network B ≡ 〈X,P, G〉, we

construct a set S =
{

log
(

Pi(xi)
Pi(xi)

)

|Pi ∈ P

}

∪
{

log
(

q2

µ

)}

.

The 2-way number partitioning problem given S is to find a 2-
way partition S1 and S2 of S such that |∑α∈S1

α−∑β∈S2
β|

is minimized.

Theorem 1. Finding an assignment ω that minimizes
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is equivalent to solving the 2-way number par-

titioning problem described in Definition 2.

Proof. (Sketch)

argmin
ω
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ω
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ω
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Substituting µ = PB(ω)PB(ω) in Eq. (2), we get

= argmin
ω
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log
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q2

µ

PB(ω)

PB(ω)

)∣
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∣

∣

(3)

We will simplify log
(

PB(ω)
PB(ω)

)

using the following notation.

Let X1 and X2 denote the subsets of variables which are as-
signed to 1 and 0 respectively in ω.

log

(

PB(ω)

PB(ω)

)

= log

(

∏

Xi∈X2
Pi(xi)

∏

Xi∈X1
Pi(xi)

∏

Xi∈X1
Pi(xi)

∏

Xi∈X2
Pi(xi)

)

(4)

=
∑

Xi∈X2

log

(

Pi(xi)

Pi(xi)

)

−
∑

Xi∈X1

log

(

Pi(xi)

Pi(xi)

)

(5)



Algorithm 1 INAP: Greedy Algorithm for NAP over IBNs

Input: An Independent Bayesian networkB ≡ 〈X,P, G〉 and
a probability q
Output: Nearest assignment ω to q
Begin:

1: S = ∅; µ = 1
2: for each variable Xi in X do
3: µ = µ× Pi(xi)P (xi)

4: S = S
⋃

{

log
(

Pi(xi)
Pi(xi)

)}

5: S = S ∪
{

log
(

q2

µ

)}

6: Find a partition S1 and S2 of S using either
the greedy method or Karmarkar-Karp heuristic
[Karmarkar and Karp, 1983]

7: Construct ω from S1 and S2 using Corollary 1
8: return ω

End.

Without loss of generality, let

S1 = log

(

q2

µ

)

∪
{

log

(

Pi(xi)

Pi(xi)

)

|Xi ∈ X2

}

(6)

S2 =

{

log

(

Pi(xi)

Pi(xi)

)

|Xi ∈ X1

}

(7)

Combining Equations (3), (5), (6) and (7), we get:
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ω
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∑

α∈S1

α−
∑

β∈S2

β

∣

∣

∣

∣

∣

∣

Given a solution to the number partitioning problem de-
scribed in Definition 2, we can use Theorem 1 to construct
the nearest assignment as follows.

Corollary 1. Without loss of generality, let 1 ≤ k ≤ n be

an integer such that S1 =
{

log
(

Pi(xi)
Pi(xi)

)

|i = 1, . . . , k
}

∪
{

log
(

q2

µ

)}

and S2 =
{

log
(

Pj(xj)
Pj(xj)

)

|j = k + 1, . . . , n
}

.

Then, the assignment ω that minimizes

∣
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q
PB(ω)

)∣
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is

(x1, . . . , xk, xk+1, . . . , xn).

3.1 Poly-time Approximation Algorithm for
Solving NAP over IBNs

Theorem 1, Corollary 1 and the Karmarkar-Karp heuristic
yields Algorithm INAP (see Algorithm 1). The algorithm
first constructs the number partitioning problem using Defi-
nition 2 (lines 1-5). Then, it uses number partitioning algo-
rithms to construct the two subsets S1 and S2 (line 6). Finally,
it uses Corollary 1 to compute the nearest assignment from S1

and S2 (line 7). Note that Algorithm INAP assumes that for
each variable Xi, Pi(xi) ≥ Pi(xi) and q2 ≥ µ. The two as-
sumptions are required because the Karmarkar-Karp heuris-
tic has guarantees on the approximation error only when all

numbers are positive. When the first assumption is violated

we use log
(

Pi(xi)
Pi(xi)

)

instead of log
(

Pi(xi)
Pi(xi)

)

and then flip the

assignment to the corresponding variable (namely replace xi

by xi and vice versa) while constructing ω from S1 and S2.

When the second assumption is violated, we use log
(

µ
q2

)

instead of log
(

q2

µ

)

and return ω instead of ω.

Since the Karmarkar-Karp algorithm outputs a 7/6 approx-
imation [Matteo and Silvano, 1987], we can prove that Algo-
rithm INAP has the following guarantees:

Theorem 2. Let ω∗ be the (optimal) nearest assignment to q,
ω be the assignment returned by Algorithm INAP and T =
∑

α∈S
α. Then,
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PB(ω
∗)

PB(ω)

)
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≤ 1

12
T

Proof. (Sketch) Without loss of generality, let q = PB(ω
∗)

and
∑

α∈S1
α >

∑

β∈S2
β. Since the greedy algorithm and

Karmarkar-Karp method yield a 7/6 approximation, we have
the following guarantees on the sets S1 and S2 computed in
Step 6 of Algorithm INAP:

∑

α∈S1

α ≤ 7

6

T

2
=

7

12
T (8)

∑

β∈S2

β ≥ 5

6

T

2
=

5

12
T (9)

From Eqs. (8) and (9), we get:

∑

α∈S1

α−
∑

β∈S2

β ≤ 7

12
T − 5

12
T =

T

6
(10)

We consider two cases.

• Case 1: log
(

q2

µ

)

is in set S1

• Case 2: log
(

q2

µ

)

is in set S2.

Let X1 and X2 be subsets of variables such that ∀Xi ∈ X1,

log
(

Pi(xi)
Pi(xi)

)

is in S1 and ∀Xj ∈ X2, log
(

Pj(xj)
Pj(xj)

)

is in S2.

For Case 1, we can rewrite Eq. (10) as

∑

Xi∈X1

log

(

Pi(xi)

Pi(xi)

)

+ log

(

q2

µ

)

−

∑

Xj∈X2

log

(

Pj(xj)

Pj(xj)

)

≤ T

6
(11)

Rearranging Eq. (11) and substituting q = PB(ω
∗),

PB(ω) =
∏

Xi∈X1
Pi(xi)

∏

Xj∈X2
Pj(xj), and µ =

∏

Xi∈X Pi(xi)Pi(xi), we get

log

(

PB(ω
∗)

PB(ω)

)

≤ 1

12
T (12)

For Case 2, performing similar analysis as above, we get:

log

(

PB(ω)

PB(ω∗)

)

≤ 1

12
T (13)



Combining Eqs. (12) and (13), we get the following result:
∣
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log
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PB(ω
∗)

PB(ω)

)∣
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∣

≤ 1

12
T

From Theorem 2, we can see that Algorithm INAP is accu-
rate when T is small. In turn, T is small when the following
two conditions are satisfied: (1) the difference between q and√
µ is small, namely q is close to the probability of the me-

dian assignment in the network, and (2) the log odds, namely

log
(

Pi(xi)
Pi(xi)

)

of all variables are small.

4 NAP on ARBITRARY BAYESIAN

NETWORKS

Algorithm 2 0CNAP 0-cutset based algorithm for solving
NAP on Arbitrary Bayesian networks

Input: Bayesian network B ≡ 〈X,P, G〉 and probability q
Output: Nearest assignment ω to q
Begin:

1: ωbest = a random assignment
2: C = A 0-cutset of B
3: for each assignment ωC to C do
4: Y = X \ C
5: U = {Pi(ωS(Pi))|S(Pi) 6⊂ C}
6: Bc ≡ 〈Y,U, Gc ≡ (Y, ∅)〉
7: qc =

q∏
i:S(Pi)⊆C Pi(ωS(Pi)

)

8: ωY = INAP(Bc, qc)
9: ω = (ωY, ωC)

10: if | log(PB(ω)
q

)| < | log(PB(ωbest)
q

)| then
11: ωbest = ω

12: return ωbest

End.

In this section, we extend Algorithm INAP from inde-
pendent Bayesian networks to arbitrary Bayesian networks,
yielding an algorithm with guarantees on approximation er-
ror as well as time and (linear) space complexity.

The key idea in our proposed method is the following: (1)
find a 0-cutset, namely remove a subset of variables from the
primal graph of the Bayesian network until no edges remain,
and (2) for each possible assignment to the 0-cutset variables,
solve the sub-problem defined over an independent Bayesian
network using Algorithm INAP and (3) return the assignment
whose probability is closest to q over all sub-problems. Our
proposed method is described in Algorithm 0CNAP (see Al-
gorithm 2). The algorithm takes as input a Bayesian network
B and a probability q and returns the nearest assignment to
q in B (line 12). It begins by finding a zero cutset (line 2).
Then, for all configurations ωC to the 0-cutset variables, it
executes the following steps. First, it creates an independent
Bayesian network Bc given ωC (lines 4-6). The variables of
Bc are all variables in B minus the variables included in the
0-cutset. Note that once the 0-cutset variables are assigned
a value, each CPT will be in one the two following states:

(1) all variables of the CPT are assigned a value (fully in-
stantiated CPTs); and (2) exactly one variable of the CPT is
uninstantiated. The latter CPTs form the CPTs of Bc (line 5).
Second, it computes qc, the remaining value of q that is rel-
evant to the sub-problem over Bc. qc is obtained by dividing
q by the product of CPTs that are fully instantiated (line 7).
Third, it runs Algorithm INAP on the sub-problem defined
on Bc and qc (line 8) and constructs a full assignment over all
variables of B by concatenating the assignment returned by
Algorithm INAP and ωC (line 9). Finally, it updates the best
assignment if the full assignment defined in line 9 is better
than the best assignment so far (lines 10-11).

4.1 Theoretical Guarantees

We can use Theorem 2 to yield the following guarantees on
Algorithm 0CNAP (see Theorem 3). The key idea is that
only bounds for the independent sub-problems are relevant
and thus 0-cutset allows us to derive stronger guarantees.

More formally, in Algorithm 0CNAP, let J = {1, . . . , 2|C|}
index the iterations of the for loop of Algorithm 0CNAP.

Also, let ω(k) = (ω
(k)
C , ω

(k)
Y ) denote the assignment gener-

ated in the k-th iteration (line 9) and let T (k) denote the sum
of elements of set S constructed by Algorithm INAP in the
k-iteration (line 8). We can prove that

Theorem 3. Let ω∗ be the (optimal) nearest assignment to
q, and ω be the assignment returned by Algorithm 0CNAP.
Then,
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PB(ω
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PB(ω)

)
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≤ 1

12
max
k∈J

T (k)

Proof. (Sketch) Let i be the index such that ω
(i)
C = ω∗

C. Using
Theorem 2, we have:
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Y|ω∗

C)

PB(ω
(i)
Y |ω(i)

C )

)
∣
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≤ 1

12
T (i) (14)

Left hand side of Eq. (14) can be simplified as follows:
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PB(ω
(i)
Y |ω(i)
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=

∣
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log

(

PB(ω
∗
Y|ω∗

C)PB(ω
∗
C)

PB(ω
(i)
Y |ω(i)

C )PB(ω∗
C)

)∣

∣
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(16)

=

∣

∣

∣
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log

(

PB(ω
∗)

PB(ω(i))

)
∣

∣

∣

∣

(since ω
(i)
C = ω∗

C) (17)

Substituting Eq. (17) in Eq. (14), we get:
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PB(ω
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PB(ω(i))
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≤ 1

12
T (i) (18)

However, since ω is the best assignment, we have
∣
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log
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PB(ω
∗)

PB(ω)
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≤
∣

∣

∣

∣

log
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PB(ω
∗)

PB(ω(i)

)∣

∣

∣
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(19)

Combining Eqs. (18) and (19), we get:
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≤ 1

12
T (i) ≤ 1

12
max
k∈J

T (k) (20)



Notice that since the error maxk∈J T
(k) of Algorithm

0CNAP is bounded by the sum over log odds of a subset of
variables plus a constant term, it is superior to INAP, whose
error is bounded by the sum over log odds of all variables.
Moreover Theorem 3 suggests that in order to improve the ac-
curacy (bounds), it is beneficial to select 0-cutset variables in
such a way that the remaining variables have small log odds.
In other words, Theorem 3 helps provide heuristic guidance
for selecting good 0-cutsets.

4.2 Practical Considerations

A key issue with Algorithm OCNAP is that it has exponential
computational complexity. Formally,

Proposition 2. The time complexity of Algorithm OCNAP is
O(2cr log(r)) where c is the size of the 0-cutset C and r is
the number of variables in the set X \ C.

To make the algorithm practical, we propose to either sam-
ple or perform local search over the assignments to the 0-
cutset variables rather than iterating over all possible assign-
ments. Our proposed method belongs to the class of cut-
set sampling algorithms [Bidyuk and Dechter, 2007] which
achieve variance reduction using the Rao-Blackwell Theo-
rem. The key idea is that combining methods that have guar-
antees with sampling improves the quality of estimates output
by the latter.

5 EXPERIMENTS

In this section, we describe results of our extensive empirical
investigation on a large number of benchmark problems from
the UAI 2014 probabilistic inference competition. Our hy-
pothesis is that given a time bound, cutset based local search
and random sampling algorithms are more accurate than their
conventional counterparts (that do not exploit cutsets).

Algorithms. We implemented four algorithms: (a) Ran-
dom Sampling (RS): We generate assignments ω uni-
formly at random and output the one having the smallest
∣

∣

∣
log
(

q
PB(ω)

)∣

∣

∣
. (b) 0-cutset Random Sampling (CRS):

Given a cutset C, we generate assignments ωC to the cutset
variables uniformly at random and then use the Karmarkar-
Karp heuristic to compute the assignment ωY to the remain-
ing variables given ωC. As before, we choose the assignment

ω = (ωC, ωY) having the smallest

∣

∣

∣
log
(

q
PB(ω)

)∣

∣

∣
. (c) Lo-

cal search (LS): Starting with a random assignment ω, we
evaluate all neighbors of ω (set of assignments in which ex-
actly one variable in ω is flipped) and choose the neighbor ω′

having the smallest

∣

∣

∣
log
(

q
PB(ω′)

)∣

∣

∣
. We randomly restart the

search if the local minima is reached or 10000 moves have
been made, which ever is earlier. (d) Cutset Local search
(CLS): We perform local search over the cutset variables
only, namely we evaluate only those assignments in which
one of the cutset variables is flipped and choose the neigh-

bor ω′
C having the smallest

∣

∣

∣
log
(

q
PB(ω′

C
,ω′

Y
)

)∣

∣

∣
where ω′

Y is

computed using the Karmarkar-Karp heuristic given ω′
C. As

before, we randomly restart the search if the local minima is

reached or 1000 moves have been made which ever is ear-
lier. It is easy to see that each move of cutset local search
(cutset random sampling) has higher computationally com-
plexity than local search (random sampling). However, we
expect the cutset algorithms to be more accurate because they
explore the search space more efficiently.

Benchmark Networks. We compared our algorithms on the
following four types of benchmark Bayesian and Markov net-
works: (1) Noisy OR Bayesian networks (BN20), (2) Ising
Models, (3) Relational Markov Networks, and (4) Image Seg-
mentation. These networks were used in the UAI 2014 and
2016 inference competitions (see [Gogate, 2014]).

Methodology. We randomly generated 20 q values for
each network as follows. We generated 10 million ran-
dom samples, sorted them according to their probability
(or weight), and chose every 500 thousandth sample. We
evaluated the performance using the following error mea-
sure. Let ω be the assignment output by the sampling al-
gorithm. Then, for Bayesian networks, we use the quan-

tity Error =
∣

∣

∣
log
(

q
PB(ω)

)
∣

∣

∣
to measure performance. For

Markov networks or log-linear models, we use Error =
∣

∣

∣
log
(

q
exp(

∑
i
fi(ω)θi)

)
∣

∣

∣
where fi is a feature, θi ∈ R is its

weight and fi(ω) is 1 if fi is true in ω and 0 otherwise. We
constructed the 0-cutset as follows. We recursively delete a
variable having the highest degree until the graph is empty,
breaking ties using average log odds (see Theorem 3).

5.1 Results

We compare the impact of changing q as well as increasing
time on the performance of various algorithms. We ran each
algorithm for 20 minutes. Figures 1-4 show the results. For
each benchmark type, due to lack of space, we report results
for a randomly chosen network. For each chosen network,
we report three plots showing the impact of varying the time
bound for a given q and of varying q for a given time bound.
The first two plots show the Error as a function of time for
two q values, one near the median and one close to the MAP
assignment. The third plot shows Error as a function q after
1200 seconds, the time bound. In general, we found that cut-
set based algorithms are superior to their conventional coun-
terparts in resource-limited settings.

BN20 networks

BN20 networks [Henrion et al., 1992] are two level Bayesian
networks in which parent interactions are modeled using the
noisy-or interaction model. These networks are used for med-
ical diagnosis in which the top level (parents) has Boolean
variables which model the diseases and the bottom level has
variables modeling the symptoms. Exact inference using con-
ventional algorithms such as variable elimination and cutset
conditioning is known to be intractable in these networks.
Figure 1 shows the results for BN20 networks. We find that
CRS and CLS are the best performing algorithms and domi-
nate both LS and RS. For values of q close to the probability
of the MAP assignment, LS is slightly better than CRS. How-
ever, in such cases, CLS is better than LS by an order of mag-
nitude (notice the log-scale on the Y-axis). Finally, we find



(a) log(q) =-90.18 (b) log(q) =-27.94 (c) Time = 1200 seconds

Figure 1: Results on bn2o-30-25-250-3b Bayesian network. The network has 55 variables.

(a) log(q) =-4.17 (b) log(q) =173.36 (c) Time = 1200 seconds

Figure 2: Results on Grids 15 Markov network. The network has 400 variables and 1160 potentials.

that unlike other algorithms, RS tends to have larger error at
the extremes than the median values (see Fig. 1(c)).

Ising Models

Fig. 2 shows performance of various algorithms on an Ising
model having 400 variables. We see that CLS and CRS are
the best performing schemes and dominate LS and RS by sev-
eral orders of magnitude. LS outperforms random sampling.

Relational Markov Networks (RMNs)

Relational Markov networks are obtained by ground-
ing the friends and smokers Markov logic networks
[Domingos and Lowd, 2009]. Fig. 3 shows performance of
various algorithms on a relational network for two values of q
and time bound 1200 seconds. Results on these networks are
similar to those obtained over Ising models in that CRS and
CLS as the best performing schemes. However, unlike other
networks CRS dominates CLS. This is because RMNs have
tied parameters and as a result a large number of assignments
have the same probability. Thus, there is a higher chance of
hitting the correct answer via random sampling.

Image Segmentation

The goal of image segmentation is to extract objects from
an image which allows us to separate the image into several
meaningful regions. Graphical models in which variables
correspond to regions and edges which model relationships
between adjacent regions are often used for performing im-
age segmentation. Results for a benchmark image segmenta-
tion network are shown in Fig. 4. We see a similar picture to

other benchmark networks: CLS and CRS outperform both
LS and RS.

6 CONCLUSION AND FUTURE WORK

In this paper, we considered the nearest assignment problem
(NAP) which is the problem of finding an assignment ω in a
graphical model such that the difference between the proba-
bility of ω and a given value q is minimized. We introduced
novel techniques that combine 0-cutset conditioning, sam-
pling and local search algorithms with algorithms from the
number partitioning literature for solving NAP. Theoretically,
we showed that our new techniques have bounded approxima-
tion error and are likely to be accurate when the distribution
is not skewed and q is not extreme. Via a detailed experimen-
tal evaluation, we showed that our new techniques are quite
accurate and much superior to baseline sampling and local
search algorithms.

Future work includes: developing branch and bound al-
gorithms for NAP; investigating incremental versions of
Karmarkar-Karp and greedy algorithms and combining them
with local search techniques; using algorithms for NAP to
solve the rank estimation problem; using NAP to generate
human understandable explanations; etc.

Acknowledgements

This work was supported in part by the DARPA Explainable
Artificial Intelligence (XAI) Program under contract number
N66001-17-2-4032, and by the National Science Foundation
grants IIS-1652835 and IIS-1528037. Any opinions, findings,
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