
SCALABLE LEARNING APPROACHES FOR

SUM-PRODUCT-CUTSET NETWORKS

by

Tahrima Rahman

APPROVED BY SUPERVISORY COMMITTEE:

Vibhav Gogate, Chair

Latifur Khan

Vincent Ng

Nicholas Ruozzi

Copyright c© 2016

Tahrima Rahman

All rights reserved

To my mother.

SCALABLE LEARNING APPROACHES FOR

SUM-PRODUCT-CUTSET NETWORKS

by

TAHRIMA RAHMAN, BS, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

December 2016

ACKNOWLEDGMENTS

I would like to express my gratitude and thank a number of people in my academic, social and

family life who have contributed in numerous ways towards pursuing this degree. Vibhav Gogate,

my advisor, is the person I am the most indebted to for his valuable teachings, wisdom, continuous

support and guidance in conducting research throughout my PhD years. I deeply appreciate his

contributions towards developing a unique and collaborative research group among our fellow lab

mates. His patience, friendliness and trust towards his students have made all of us in his group

excel in our academic journeys and accomplishments.

I am grateful to David, Som, Li, Deepak, and Luis for being great friends. Next to my advisor’s

supervision, I have learned the most from them during our problem solving discussions. The team

and group has been a source of inspiration and friendship. I would also like to thank the newbies in

the group – Sara and Shasha – for their presence and encouraging compliments during my research

presentations.

I would like to thank my committee members Dr. Latifur Khan, Dr. Vincent Ng and Dr. Nicholas

Ruozzi for taking their time to evaluate my dissertation, for allowing me to audit their classes and

for training excellent and talented students who have become wonderful colleagues of mine over

the years.

I would like to thank my parents, my brother and his family and my husband for their encourage-

ment and enormous support during all these years. I cannot imagine this precious journey without

their help in every step.

v

I would like to thank NSF, DARPA, ARO and AFRL for providing all the financial support for

carrying out the research.

October 2016

vi

SCALABLE LEARNING APPROACHES FOR

SUM-PRODUCT-CUTSET NETWORKS

Publication No.

Tahrima Rahman, PhD
The University of Texas at Dallas, 2016

Supervising Professor: Vibhav Gogate

Probabilistic graphical models (PGMs) are widely used in practice to represent and reason about

uncertainty. However, inference – process used to answer queries – in them is NP-hard in general

and computationally intractable for most real-world models. To circumvent this problem, polyno-

mial time approximate inference algorithms are routinely used in practice. Unfortunately, they are

often unreliable and yield inaccurate query answers.

Therefore, recently there has been growing interest in learning tractable probabilistic models,

namely models which admit polynomial time exact inference, in order to address the intractability

and inaccuracy of probabilistic inference. Examples of tractable models include: thin junction

trees, mixtures of trees, arithmetic circuits and sum-product networks. Although, there has been

tremendous progress in algorithms that induce the structure and parameters of tractable models

from data, in many real-world domains, either the accuracy of the learned models is extremely low

or the computational complexity of the learning algorithms is too high, or both. Moreover, existing

tractable representations use naive approaches for modeling hybrid probability distributions having

both discrete and continuous variables, and as a result perform poorly in hybrid domains.

vii

In this dissertation, we remedy the aforementioned problems by making the following contribu-

tions:

• We propose a novel tractable probabilistic model called cutset networks (CNs), and show

that under certain restrictions optimal CNs can be efficiently learned from data, using only

polynomial time and space. We also develop fast heuristic algorithms for learning CNs and

their mixtures from data, and show that they are competitive with state-of-the-art algorithms.

• We develop novel (parallel) bagging and (sequential) boosting algorithms for learning en-

sembles of CNs and demonstrate via a large-scale experimental evaluation that they yield

models having high accuracy (measured using the test-set log-likelihood score) in practice.

• We show that the accuracy of CNs can be further improved by combining CNs with other

tractable models such as sum-product networks and arithmetic circuits yielding a new tractable

model called sum-product cutset networks (SPCNs).

• We develop novel algorithms for converting tree SPCNs to more compact graph SPCNs, and

show that the latter yield substantial improvements in accuracy and prediction time.

• We extend SPCNs to yield hybrid SPCNs so that they can better handle real-world domains

having both discrete and continuous variables, and develop novel algorithms for learning

them from data. We present results of a large empirical evaluation which show that hy-

brid SPCNs have substantially better predictive accuracy than existing approaches on a vast

majority of real-world datasets.

viii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF FIGURES . xii

LIST OF TABLES . xiv

CHAPTER 1 INTRODUCTION . 1

1.1 Dissertation Outline . 3

CHAPTER 2 BACKGROUND . 6

2.1 Notation . 6

2.2 Probabilistic Graphical Models (PGMs) . 6

2.2.1 Inference . 8

2.3 Tractable PGMs . 11

2.3.1 Tree Structured PGMs . 12

2.3.2 Thin Junction Trees . 12

2.3.3 Mixtures of Trees . 13

2.3.4 Arithmetic Circuits . 14

2.3.5 Sum-Product Networks . 17

CHAPTER 3 CUTSET NETWORKS . 20

3.1 Introduction . 20

3.2 The Chow-Liu Algorithm for Learning Tree Distributions 21

3.3 OR Search Trees . 23

3.4 Cutset Networks . 24

3.5 Learning Cutset Networks . 26

3.5.1 Splitting Heuristics . 27

3.5.2 Termination Condition and Post-Pruning 28

3.6 Mixtures of Cutset Networks . 30

ix

3.7 Empirical Evaluation . 31

3.7.1 Methodology and Setup . 31

3.7.2 Learning Time . 32

3.7.3 Accuracy . 33

3.8 Chapter Summary . 35

CHAPTER 4 LEARNING ENSEMBLES OF CUTSET NETWORKS 37

4.1 Introduction . 37

4.2 Ensembles of Cutset Networks . 38

4.2.1 Boosting . 39

4.2.2 Bagging . 42

4.3 Experiments . 44

4.3.1 Boosting Performance . 45

4.3.2 Bagging Performance . 46

4.3.3 Comparison with State-of-the-art . 46

4.4 Chapter Summary . 51

CHAPTER 5 MERGING STRATEGIES FOR SUM-PRODUCT-CUTSET NETWORKS . 54

5.1 Introduction . 54

5.2 Top Down Learning of SPNs . 56

5.3 Sum-Product-Cutset Networks . 60

5.4 Merging Strategies: From Trees to Graphs . 61

5.4.1 Our Approach . 62

5.4.2 Practical Merging Strategies . 64

5.5 Experiments . 66

5.5.1 Setup . 66

5.5.2 Algorithms Evaluated . 66

5.5.3 Impact of Merging on Test Set Log-Likelihood 68

5.5.4 Comparison with State-Of-The-Art . 68

5.6 Chapter Summary . 71

CHAPTER 6 LEARNING HYBRID SUM-PRODUCT-CUTSET NETWORKS 73

6.1 Introduction . 73

x

6.2 Background . 74

6.3 Representation . 76

6.3.1 Hybrid Cutset Networks . 76

6.3.2 Hybrid Sum-Product Cutset Networks (HSPCNs) 78

6.4 Learning HSPCNs . 78

6.4.1 Learning Tree Structured CLGs . 79

6.4.2 Decomposition . 84

6.4.3 Splitting . 84

6.5 Experiments . 85

6.5.1 Density Estimation . 86

6.5.2 Classification . 87

6.6 Chapter Summary . 88

CHAPTER 7 CONCLUSION . 89

7.1 Contributions . 89

7.1.1 Proposed Tractable PGMs . 89

7.1.2 Proposed Learning Algorithms . 90

7.2 Future Work . 91

7.2.1 Discriminative Learning of CNs . 91

7.2.2 Dynamic Discritization of Continuous Variables in Hybrid Models 92

7.2.3 Learning More Expressive Base Models 93

7.2.4 Relational Merging . 93

REFERENCES . 95

VITA

xi

LIST OF FIGURES

2.1 (a) A Bayesian network and (b) a Markov network over four variables X = {A,B,C,D}.
The domain of each variable is {0, 1}. Each variable in the Bayesian network has an
associated CPT. The Markov network has two potentials, one defined over the scope
{A,B,C} and the second defined over the scope {A,B,D}. An example potential
φ(A,B,C) is shown. 8

2.2 A Markov network over variables {A,B,C,D,E} (left) and its junction tree (right),
JT = (CT ,ST). The width of the junction tree is 3 − 1 = 2. The reader can verify
that the treewidth of the model is 2. 11

2.3 A mixture of trees model with three tree Bayesian networks T1, T2 and T3 weighted
by ω1, ω2 and ω3 respectively over the set of variables {A,B,C,D}. Figure (a) is a
mixture with identically structured (shared structure) trees and Figure (b) is a mixture
with different structured trees. 14

2.4 (a)Bayesian network over binary variables X and Y. (b) An arithmetic circuit repre-
senting the joint distribution over variables X and Y in (a) and the network polynomial
function f . Each λ is an indicator variable taking values from {0, 1} and each real
value is a parameter in the distribution.. 15

2.5 Bottom-up computation performed by the AC in Figure 2.4 for evidence X=0. Blue
colored indicators have values set to 1 while red colored indicators have values set to 0. 16

2.6 An SPN over binary discrete variables X = {A,B,C}. Each variable in X is defined
over the domain {0, 1}. A + denotes a sum node while a × denotes a product node.
The leaves are the Bernoulli random variables with their parameters. 17

3.1 (a) A probability distribution, (b) An OR tree representing the distribution given in (a).
The left branch from a node represents conditioning by 0, whereas the right branch
represents conditioning by 1. 23

3.2 The OR tree in Figure 3.1 computing the probability (0.336) of the MAP tuple 〈b =

0, c = 1〉 given evidence a = 1. 24

3.3 A cutset network over binary random variables X = {a, b, c, d, e, f}. Left branches
in the OR tree represent conditioning by 0 while right branches represent conditioning
by 1. 25

xii

5.1 An SPCN rooted by a latent-sum node (denoted by a +) over discrete variables X =
{A,B,C,D,E}. All observed and latent variables are over binary domains and left
edges represent conditioning by value 0 or false and right edges represent conditioning
by value 1 or true. A and B are the only observed cutset variables. Product nodes
(denoted by ×) decompose the model differently and each leaf node (denoted by a
rectangle) is a cutset network (CN) over the remaining observed variables (appears in
the subscript as a comma separated list). 61

5.2 Three example SPNs over variables {V1, V2, V3, V4}. We are assuming that all vari-
ables are binary and take values from the domain {0, 1}. Leaf nodes express univari-
ate distributions. For example, the node V2 : 0.6 expresses the probability distribution
P (V2 = 1) = 0.6. Sum nodes are labeled either by a variable which denotes condi-
tioning over the variable or by a + sign which denotes that the sum node is latent. All
left (right) arcs emanating from a sum node correspond to an assignment of 1 (0) to
the labeled variable. Product nodes are labeled by ×. (a) Tree SPN (SPN which is
a rooted directed acyclic tree) that decomposes according to a tree Markov network
V4 − V3 − V1 − V2. (b) Graph SPN that is equivalent to the tree SPN given in (a) ob-
tained by merging identical sub-trees. (c) Graph SPCN over latent and observed sum
nodes. 62

5.3 Figure demonstrating how to simplify and thus reduce the size of the SPCN after merg-
ing. As before, sum nodes are labeled either by a variable which denotes conditioning
over the variable or by a + sign which denotes that the sum node is latent. All left
(right) arcs emanating from a sum node correspond to an assignment of 1 (0) to the
labeled variable. Product nodes are labeled by ×. S1,2 is an SPCN obtained by merg-
ing SPCNs S1 and S2. (a): shows how the SPCN can be reduced when the two child
nodes of an observed sum node are merged. The node Vi : 0.3 represents a univariate
probability distribution over Vi with P (Vi = 1) = 0.3. (b): shows how the SPCN can
be reduced when the two child nodes of a latent sum node are merged. 65

6.1 A tree CLG over discrete variable X1 ranging over domain {0, 1} and continuous
variables Y1 and Y2. 76

6.2 (a)Hybrid TAN and (b)Hybrid BMN and (c) Hybrid CN over discrete variables {X1, X2, Class}
and continuous variables {Y1, Y2} . 77

6.3 An HSPCN rooted by a latent-sum node over discrete variables {X1, X2, X3} and con-
tinuous variables {Y1, Y2, Y3, Y4, Y5}. X1 is the only observed sum node. Each product
node decomposes the model differently and each leaf is a tree CLG over remaining ob-
served variables. 78

xiii

LIST OF TABLES

3.1 Runtime Comparison (in seconds). Time-limit for each algorithm: 48 hours. †indicates
that the algorithm did not terminate in 48 hours. 33

3.2 Average test set log-likelihood. †indicates that the results of this algorithm are not
available. 34

3.3 Head-to-head comparison of the number of wins (in terms of average test set log-
likelihood score) achieved by one algorithm (row) over another (column), for all pairs
of the 6 best performing algorithms used in our experimental study. 35

4.1 Test set log-likelihood scores of boosting algorithms. Winning scores are bolded and
underlines highlight GBDE over BDE. FD:= Fixed Depth and VD:=Variable Depth. . . 47

4.2 Learning time comparison of boosting methods. FD:= Fixed Depth and VD:=Variable
Depth. 48

4.3 Average test set log-likelihood scores and learning time (in seconds) of bagged ensem-
bles of cutset networks (CNs). FD:= Fixed Depth CNs (without randomized variable
selection), FDR:= Fixed Depth CNs with randomized variable selection, VD:= Vari-
able Depth CNs (without randomized variable selection) and VDR:= Variable Depth
CNs with randomized variable selection. Bold values indicate the best values achieved
for the dataset. 49

4.4 Average test set log-likelihood scores and learning time (in seconds) of bagged ensem-
bles of small mixtures of cutset networks (MCNs). FD:= Fixed Depth MCNs (without
randomized variable selection), FDR:= Fixed Depth MCNs with randomized variable
selection, VD:= Variable Depth MCNs (without randomized variable selection) and
VDR:= Variable Depth MCNs with randomized variable selection. Bold values indi-
cate the best values achieved for the dataset. 50

4.5 Test set log-likelihood comparison. (Ties are not bolded). 52

4.6 Runtime comparison (in seconds). †indicates that the algorithm did not terminate in
48 hrs. 53

5.1 Examples of SPN structure learning approaches in the literature that follow the pre-
scription given in Algorithm 4. Base case is the stopping criteria for the recursive
algorithm. 59

xiv

5.2 Table showing the impact of merging on the average test-set log likelihood, time com-
plexity and prediction time of L-SPCNs and O-SPCNs (all values rounded to two
decimal places). We use the following notation: (1) T-LL: Average test-set log like-
lihood for the tree SPCNs; (2) G-LL: average test-set log likelihood for the graph
SPCNs obtained from the tree SPCNs by merging similar sub-SPCNs; (3) |T|: number
of parameters in the tree SPCN; (4) |G|: number of parameters in the graph SPCN;
(5) CR:=Compression Ratio = |T |

|G| ; (6) T-Time: Tree SPCN learning time in seconds
and (7) G-Time: Time in seconds required by the merging algorithm (thus the total
learning time for graph SPCN is T-time+G-time seconds). In each row, bold values
indicate the best score for each of the two SPCN categories: L-SPCN and O-SPCN. . 69

5.3 Average test set log-likelihood comparison with state-of-the-art tractable model learn-
ers. Bold values indicate the winning score for the corresponding dataset. T-LL:
Bagged LL of tree SPCNs and G-LL: Bagged LL of graph SPCNs. Column “Best-
LL to date” gives the best log-likelihood score to date for each dataset obtained using
the following competing approaches: ID-SPN (Rooshenas and Lowd, 2014), ACMN
(Lowd and Rooshenas, 2013), MCN (Rahman et al., 2014), SPN-SVD (Adel et al.,
2015), and ECN (Rahman and Gogate, 2016a). 71

6.1 Structural comparison of various hybrid models. HNB:=Hybrid Naive Bayes, HBMN:=
Hybrid Bayesian Multinet, HCN:= Hybrid Cutset Network, HSPN:= Hybrid Sum-
Product Network, and HSPCN:= Hybrid Sum-Product-Cutset Network. 79

6.2 Comparison of average test set log-likelihood scores. Columns |Train|, |V alid| and
|Test| provides the number of samples for training, validation and test set respectively.
Columns labeled D and C indicate the number of discrete and continuous valued vari-
ables present in the domain respectively. Bold values indicate the highest average
score achieved by a model. 87

6.3 Comparison of classification accuracy evaluated on the test set. Bold values indicate
the best accuracy achieved by the model on the particular instance. 88

xv

CHAPTER 1

INTRODUCTION

Solving important tasks in real-world application domains such as computer vision and natural

language processing requires easy access to tools that can efficiently represent and reason about

uncertainty. For example, in topic modeling, in order to associate topics with a document, we need

to represent and reason about uncertainty in how various words in the document, either individually

or as a collection, influence the possible topics. Similarly, in order to automatically label images

(e.g., outdoor, indoor, etc.), we have to model the uncertainty in how various objects or pixels in

the image affect its possible labels.

Probability theory is a popular approach for representing and reasoning about uncertainty in a

mathematically precise manner. The main assumption is that the world consists of random vari-

ables and a probability distribution over them represents complete knowledge about the world.

Thus, in order to find the topics associated with a document, an approach based on probabil-

ity theory would represent words and topics as random variables, and then define a probability

distribution that models uncertainty in how words and topics affect other words and topics. Unfor-

tunately, the three main tasks in probabilistic modeling: (1) representing – storing the probability

distribution on a computer using only polynomial space, (2) inferring – answering queries de-

fined over the distribution, and (3) learning – inducing a probability distribution from data, are all

computationally hard.

Probabilistic graphical models (PGMs) such as Bayesian and Markov networks exploit, and in

many cases make conditional independence assumptions in order to yield a compact, polynomial

space representation of a joint probability distribution defined over a large number of random vari-

ables. In PGMs, conditional independence relations (assumptions) are compactly represented us-

ing a directed or an undirected graph; vertices in the graph represent random variables while edges

1

2

represent direct dependencies between corresponding variables (thus lack of edges denote condi-

tional independence). However, although PGMs require only polynomial space, inference over

them can be quite challenging. In particular, marginal inference, the task of computing the prob-

ability of a random variable given observations, is #P-hard, while maximum-a-posteriori (MAP)

inference, the task of finding an assignment of values to all variables where the maximum prob-

ability, is NP-hard. As a result, approximate inference methods such as loopy belief propagation

and Gibbs sampling are widely used in practice. Unfortunately, they often yield highly inaccurate

and high variance estimates, leading to poor predictive performance.

One approach to tackle the inaccuracy and unreliability of approximate inference is to use so-

called tractable models such as thin junction trees (Bach and Jordan, 2001), tractable arithmetic

circuits (ACs) (Darwiche, 2003), probabilistic sentential decision diagrams (Kisa et al., 2014),

AND/OR decision diagrams (Dechter and Mateescu, 2007; Mateescu et al., 2008), sum-product

networks (SPNs) (Poon and Domingos, 2011) and mixtures of trees (Meila and Jordan, 2000). Ex-

act inference in these models can be performed in time that scales polynomially (often linearly)

with the size of the model and therefore the complexity and accuracy of inference is no longer

an issue. Interestingly, experimental results in numerous recent studies have shown that the per-

formance of approaches that learn tractable models from data is similar or better than approaches

that learn Bayesian and Markov networks from data. These results suggest that controlling exact

inference complexity is the key to superior end-to-end performance.

Despite these promising results, a key bottleneck remains. Barring a few exceptions, algo-

rithms that learn the structure and parameters of tractable models from data are computationally

expensive, requiring several hours for even moderately sized problems. For instance, approaches

presented in (Gens and Domingos, 2013; Lowd and Rooshenas, 2013; Rooshenas and Lowd, 2014)

need more than “10 hours” of CPU time for datasets having 200 variables and 10, 000 examples.

There are several reasons for this, with the main reason being the high computational complexity

of conditional independence tests. For example, the LearnSPN algorithm of Gens and Domin-

gos (Gens and Domingos, 2013) and the ID-SPN algorithm of Rooshenas and Lowd (Rooshenas

3

and Lowd, 2014) for learning tractable sum-product networks, spend a substantial amount of their

execution time on partitioning the given set of variables into conditionally independent compo-

nents. Other algorithms with strong theoretical guarantees, such as learning efficient Markov net-

works (Gogate et al., 2010), and learning thin junction trees (Bach and Jordan, 2001; Chechetka

and Guestrin, 2008; Narasimhan and Bilmes, 2004) also suffer from the same problem.

In this dissertation, we propose a new tractable PGM, called cutset networks (CNs), which are

rooted OR search trees with tree Bayesian or Markov networks at the leaves. Cutset networks

derive their name from Pearl’s cutset conditioning method (Pearl, 1988). The key idea in cutset

conditioning is to condition on a subset of variables in the graphical model, called the cutset,

such that the remaining network has a tree structure. Since, exact probabilistic inference can be

performed in time that is linear in the size of the tree (using Belief propagation (Pearl, 1988)

for instance), the complexity of cutset conditioning is exponential in the cardinality (size) of the

cutset. If the cutset is bounded, then cutset conditioning is tractable. However, unlike classic

cutset conditioning, cutset networks can take advantage of determinism (Chavira and Darwiche,

2008; Gogate and Domingos, 2010b) and context-specific independence (Boutilier et al., 1996) by

allowing different variables to be conditioned on at the same level in the OR search tree. As a

result, these models can be very diverse and can yield a compact representation even if the size of

the cutset is arbitrarily large.

1.1 Dissertation Outline

The rest of the dissertation is organized as follows. We begin by conducting literature review on

several existing tractable PGMs in Chapter 2. Then in subsequent chapters we address each of the

following issues/questions related to learning CNs through contributions made to date:

• Why Cutset Networks and How to learn them from data?

The key advantage of cutset networks is that they admit efficient, polynomial time learning

4

algorithms. This is because only the leaf nodes, which represent tree distributions, take

advantage of conditional independence, while the OR search tree does not. As a result, to

learn cutset networks from data, we do not have to run expensive conditional independence

tests at any internal node in the OR tree. Moreover, the leaf distributions can be learned in

polynomial time, using the classic Chow-Liu algorithm (Chow and Liu, 1968). As a result, if

we assume that the size of the cutset (or the height of the OR tree) is bounded by k, and given

that the time complexity of the Chow-Liu algorithm is O(n2|D|), where n is the number of

variables and |D| is the number of training examples, the optimal cutset network with a static

ordering of the cutset variables can be learned in O(n(k+2)|D|) time.

In Chapter 3, we formally describe the semantics of CNs and propose our first algorithm to

learn these models from data. Experimental results on several real-world datasets show that

CNs can achieve state-of-the-art accuracy (measured by test data log-likelihood) orders of

magnitude faster than other algorithms.

• Learning ensembles of CNs to improve the accuracy

In Chapter 4, we consider generalized additive mixtures of cutset networks and develop se-

quential boosting-based and parallel bagging-based approaches for learning them from data

leveraging vast amount of previous work on boosting and bagging algorithms (cf. (Zhou,

2012)) as well as their generalizations for density estimation (Rosset and Segal, 2002; Ridge-

way, 2002; Welling et al., 2002). We perform and report on a comprehensive empirical eval-

uation, comparing our new algorithms with several state-of-the-art systems. Our empirical

evaluation clearly demonstrates the power of our new approaches.

• Learning graph structured sum-product-cutset networks

Sum-product networks (SPNs) are tractable PGMs with a rooted directed acyclic graph of

alternating levels of latent variable mixtures (latent sum nodes) and decompositions (prod-

uct nodes) with univariate distributions attached to the leaves. In Chapter 5, we propose

5

sum-product-cutset networks (SPCNs) which combine SPNs and CNs by introducing cutset

variables (observed sum nodes) in the latent sum-product space of SPNs and tree Bayesian

or Markov networks at the leaves. SPCNs have more representational power than CNs since

mixture models can better express complex distributions. We can learn SPCNs by combin-

ing the steps of CN and SPN learning algorithms. The structure learning algorithm for CNs,

SPNs or SPCNs induce tree structured models – a single conditioning path from the root

node to each leaf node. When learned from small number of training examples, trees suf-

fer from high variance and easily overfit. We propose to develop post-learning approaches

that induce graph structured models by merging similar sub structures. The key benefits of

graph representations over tree representations include (1) smaller computational complex-

ity which facilitates faster online inference, and (2) better generalization accuracy because

of reduced variance, at the cost of slight increase in the learning time.

• How can we extend these models to continuous domains?

In Chapter 6, we extend SPCNs to model joint probability distributions over both discrete

and continuous variables. Hybrid SPCNs have a sum-product space over a combination of a

subset of discrete observed and latent variables and tree structured conditional linear Gaus-

sian Bayesian networks (Murphy, 1998) at the leaves. We propose a generative algorithm

for learning the structure and parameters of these hybrid networks given data over a mixed

domain. The proposed algorithm is general enough to learn a variety of models including

hybrid tree-augmented naive Bayes, hybrid Bayesian multinets, hybrid cutset networks and

hybrid sum-product networks. Our experimental results show that hybrid SPCNs are sig-

nificantly better in modeling the underlying probability distribution as well as the decision

boundaries than other popular density estimators and classifiers.

In the final chapter, we summarize our research contributions mentioned in this dissertation

and propose several potential future work in the field of learning tractable sum-product-cutset

networks.

CHAPTER 2

BACKGROUND

In this chapter, we present background on probabilistic graphical models as well as their tractable

counterparts. We begin by formalizing the common notation used throughout this dissertation.

2.1 Notation

We use the following convention for denoting sets of variables and assignments of values to them.

Let X denote a set of n discrete random variables where each variable v ∈ X takes a value from

a finite discrete domain ∆v. Let ∆ denote the set of all domains and ∆X denote the Cartesian

product of the domains of all variables in X , namely ∆X =
∏

v∈X ∆v. We will denote values in

∆v by xv, namely xv ∈ ∆v, and an assignment of values (full or complete assignment) to all n

variables in X by x, namely x ∈ ∆X . Let A ⊆ X , then xA denotes the projection of complete

assignment x onto A and ∆A denotes the Cartesian product of the domains of variables in A.

2.2 Probabilistic Graphical Models (PGMs)

Probabilistic graphical models (PGMs) (Koller and Friedman, 2009; Pearl, 1988; Darwiche, 2009)

combine graphs and probability theory to compactly encode a joint probability distribution over a

large number of random variables. A PGM G can be described by the tuple 〈X,∆, G,F〉 where

G=(X,E) is a graph and F is a set of real-valued functions defined over subsets of variables in

X . Each node inG represents a variable in X and each edge represents a direct probabilistic inter-

action between two variables, the parameters of which are quantitatively described by a function

in F that the two variables appear in. Each function f ∈ F is defined over a subset of variables

called the scope of f and maps each possible configuration of those variables to a non-negative

6

7

value i.e. f : xscope(f) → R+. A PGM G factorizes the joint probability distribution over X as a

product of the functions in F :

P (x) =
1

Z

∏
f∈F

f(xscope(f))

where Z =
∑

x∈∆X

∏
f∈F

f(xscope(f)) is the normalizing constant. Edges in G can be directed as in

Bayesian networks or undirected as in Markov networks.

Bayesian Networks

A Bayesian network (BN) is a PGM: GB = 〈X,∆, GB,P 〉 with the following two properties: (1)

GB = (X,EB) is a directed acyclic graph (DAG) with nodes labeled by variables in X; and (2) each

variable v ∈ X is associated with a function in P that defines the conditional probability θxv |xπ(v)

for each possible value xv of v given each possible assignment xπ(v) to its parents π(v) ⊆ X and

hence called the conditional probability table or CPT of v. Thus, the set P contains n CPTs that

describe the parameters of the Bayesian network. A Bayesian network factorizes the probability

distribution over X as:

P (x) =
∏
v∈X

θxv |xπ(v)

Figure 2.1(a) shows an example Bayesian network.

Markov Networks

A probabilistic graphical model GM = 〈X,∆, GM,F 〉 is called a Markov network (MN) when

GM = (X,EM) is an undirected graph with the set of nodes X and the set of undirected edges

EM. F = {φ1, ..., φm} is the set of potential functions where each function φi maps each instan-

tiation of the variables in its scope to a non-negative real number. Potential functions represent

the compatibility of the variables in the model. There exists an undirected edge in EM between

two variables u and v if they appear together in the scope of a function φi ∈ F . The probability

8

distribution represented by a Markov network is computed as:

P (x) =
1

Z

m∏
i=1

φi(xscope(φi))

Figure 2.1(b) shows an example Markov network.

A

B C

D

0 0.2

1 0.8

A P(A)

A C P(C|A)

0 0 0.1

0 1 0.9

1 0 0.3

1 1 0.7

A B P(B|A)

0 0 0.5

0 1 0.5

1 0 0.4

1 1 0.6

C D P(D|C)

0 0 0.8

0 1 0.2

1 0 0.66

1 1 0.34

P(A,B,C,D)=P(A)P(B|A)(C|A)P(D|C)

(a)

A

B C

D

A B C φ(A,B,C)

0 0 0 0

0 0 1 2.0

0 1 0 1.5

0 1 1 0.5

1 0 0 0.7

1 0 1 3.5

1 1 0 6.0

1 1 1 10.0

P (A,B,C,D) = 1
Z
φ(A,B,C)φ(A,B,D)

(b)

Figure 2.1. (a) A Bayesian network and (b) a Markov network over four variables X =
{A,B,C,D}. The domain of each variable is {0, 1}. Each variable in the Bayesian network has
an associated CPT. The Markov network has two potentials, one defined over the scope {A,B,C}
and the second defined over the scope {A,B,D}. An example potential φ(A,B,C) is shown.

2.2.1 Inference

Since Bayesian and Markov networks represent joint distributions over random variables, one

can perform various inference tasks over them which involve computing answers to probabilis-

tic queries. Let E ⊆ X be the set of observed or evidence variables and Q = X \ E be the set of

unobserved or non-evidence variables. Let e be a complete assignment to the evidence variables

and q ∈∆Q be a complete assignment to the non-evidence variables. We call e the evidence. The

9

composition of two or more partial assignments is performed by an operator κ() which basically

concatenates the assignments into a complete assignment. The various inference tasks that can be

performed using a Bayesian or Markov network are:

• Probability of Evidence (PE)

The PE task is to compute the probability of evidence, which is defined as:

P (e) =
1

Z

∑
q∈∆Q

P (κ(q, e))

Here Z = 1 for Bayesian networks. This task basically sums over all possible assignments

to the non-evidence variables Q from the joint probability distribution.

• Posterior Marginal Probability (MAR)

MAR is the task of finding the marginal probability distribution of a variable v ∈ Q given

e. It is defined as:

P (xv|e) =
P (κ(xv, e))

P (e)
∀xv ∈ ∆v (2.1)

Both the numerator and the denominator of equation 2.1 is a PE task. Therefore any algo-

rithm that can perform the PE task can also be used to perform the MAR task.

• Maximum-a-Posteriori (MAP)

The goal of MAP inference is to find an assignment to all the non-evidence variables that

has the highest probability given evidence e. Mathematically,

argmax
q∈∆Q

P (q|e) = argmax
q∈∆Q

P (κ(q, e))

P (e)
(2.2)

The denominator in 2.2 can be disregarded as a normalizing constant and hence the maxi-

mization problem becomes equivalent to argmax
q∈∆Q

P (κ(q, e)).

10

• Marginal Maximum-a-Posteriori (MMAP)

The goal of MMAP inference is to find an assignment to a subset A ⊂ Q of non-evidence

variables given evidence e. It is defined as:

argmax
a∈∆A

P (a|e) = argmax
a∈∆A

P (κ(a, e)) = argmax
a∈∆A

∑
b∈∆B

P (κ(a, b, e))

where B = Q \A.

All the above inference tasks involve a series of summations, multiplications and/or maximiza-

tion over an exponential number of states of some variables, and hence naively enumerating over

those states to compute an answer is intractable (Roth, 1996). In particular, PE and MAR tasks are

#P -hard in the worst case (Cooper, 1990), MAP is NP-complete, and MMAP isNP PP -complete

(Park, 2002).

Using certain compiled representations of the PGM, inference can be carried out in a more

efficient manner. These representations exploit structural properties of the PGM to reduce the

exponential time and space overhead of inference. Junction trees (Lauritzen and Spiegelhalter,

1988), also known as join-trees or cluster-trees are one such representation and are constructed

from a given ordering of the variables. Nodes in a junction tree are called clusters and edges

are called separators. Both the clusters and separators are labeled with variables; the labels are

such that they satisfy the following running intersection property: for each variable v, the set of

clusters and separators that mention v form a connected sub-tree of the junction tree. Any arbitrary

distribution P(X) can be represented using a junction tree JT = (CT , ST), where CT is the set

of clusters and ST is the set of separators (see Figure 2.2). Let V (c) where c ∈ CT be the label

of cluster c (namely V (c) ⊆ X) and V (s) where s ∈ ST be the label of separator s. Then, the

junction tree represents the following probability distribution:

P (x) =

∏
c∈CT

P (xV (c))∏
s∈ST

P (xV (s))

11

Once a junction tree is constructed, either from a PGM or learned directly from data, PE, MAR,

and MAP inference tasks can be solved in time that is bounded exponentially by the maximum

cluster size, defined as maxc∈CT
V (c). Thus, the largest cluster in the junction tree dominates the

complexity of inference. This gives rise to an important measure of the complexity of inference,

called the treewidth, defined as follows. Given a PGM G and an ordering of its variables o, the size

of the largest cluster minus one of G’s junction tree along o is called the width of o and treewidth

is the smallest width over all such orderings. The complexity of inference is exponential in the

treewidth plus one of the model.

A

B C

D E

ABD

ACD

DE

AD

D
CT = {{A,B,D}, {A,C,D}, {D,E}}
ST = {{A,D}, {D}}

Figure 2.2. A Markov network over variables {A,B,C,D,E} (left) and its junction tree (right),
JT = (CT ,ST). The width of the junction tree is 3 − 1 = 2. The reader can verify that the
treewidth of the model is 2.

2.3 Tractable PGMs

Tractable probabilistic graphical models comprise a restricted subclass of probabilistic models

which admit polynomial time exact inference. From an inference point of view, tractable models

are preferred because they obviate the need for approximate inference methods, which are often

inaccurate and unreliable. From a learning point of view, tractable models are preferred because

they are less prone to overfitting. In the next five subsections, we briefly review several popular

tractable probabilistic models relevant to our research.

12

2.3.1 Tree Structured PGMs

A tree Bayesian network is a Bayesian network in which each variable has at most one parent

while a tree Markov network is a Markov network whose primal (or interaction) graph is a tree.

The primal graph of graphical model is an undirected graph which has a vertex for each variable

in the model and an edge between any two vertices that appear together in the scope of a function.

It is known that both tree Bayesian and Markov networks have the same representation power and

therefore can be used interchangeably. The treewidth of a tree Bayesian or Markov network is

1 or equivalently the size of the largest cluster of its junction tree is 2 leading to exact inference

complexity to be O(nd2) where d is the maximum domain size. Tree distributions can be learned

efficiently using the Chow-Liu algorithm (Chow and Liu, 1968). The algorithm will be discussed

in detail in Section 3.2.

2.3.2 Thin Junction Trees

As mentioned earlier, junction trees are representations for efficiently carrying out inference tasks.

Unfortunately, learning optimal junction trees, even under the restriction that their width is bounded

by two is an NP-hard task (Srebro, 2003). Therefore, we have to settle for approximate methods.

(Bach and Jordan, 2001) propose an approximate algorithm that is generalization of the Chow-

Liu algorithm for learning junction trees that have treewidth larger than one but still small enough

to be tractable for exact inference (such low treewidth models ensure that inference will be com-

putationally feasible in practice). The learned models are called thin junction trees. (Chechetka

and Guestrin, 2008; Narasimhan and Bilmes, 2004) proposed algorithms having probably approx-

imately correct (PAC) guarantees for learning thin junction trees. However, these algorithms have

high polynomial complexity and are practical only when the treewidth is bounded by 4. Because

of this, they often yield highly biased models having low accuracy and are seldom used in practical

applications as a result.

13

2.3.3 Mixtures of Trees

(Meila and Jordan, 2000) proposed mixtures of trees models which represent the joint probability

distributions over a set of discrete variables by weighted collections of tree structured PGMs e.g.

tree Bayesian or Markov networks. A mixture of treesM is represented by a tuple 〈T, ω〉, where

T = {T1, ...,TK} is a collection of K tree Bayesian (Markov) networks and ω = {ω1, ..., ωK} is

a set of K real valued normalized weights i.e.
∑
k

ωk = 1. Each tree Ti ∈ T is called a mixture

component and is associated with weight ωi ∈ ω called the mixture coefficient.

Given a mixtures of treesM = 〈T, ω〉, the probability of a full assignment x is given by:

P (x;M) =
K∑
i=1

ωkTk(x)

where Tk(x) is the probability of x computed by the kth tree. As shown in Figure 2.3, a mixture

of trees can be understood as a model having a single discrete latent (unobserved) variable h with

domain values {1, ..., K} such that the probability of h taking on a value k is ωk. Conditioned on

h, the resulting model is a tree Bayesian (Markov) network over the observed variables. Hence,

the posterior marginal probability of h = k given evidence x is:

P (h = k|x) =
ωkTk(x)
K∑
i=1

ωiTi(x)

Mixture components can share the same structure (Figure 2.3 (a)) or have different structures

(Figure 2.3 (b)).

PE, MAR and MAP inference tasks can be solved in polynomial time on mixtures of trees.

However, since the latent variable h is typically uninterpretable, a more relevant task is a type of

MMAP inference, in which we seek the most likely assignment to the interpretable variables Q

given evidence on E where X = Q ∪ E. Unfortunately, this MMAP inference query is at least

NP-hard in mixtures of trees and we have to resort to approximate inference algorithms such as

variational approximations (Liu and Ihler, 2013) for answering it.

14

h

A

B

C

D

A

B

C

D

A

B

C

D
T1 T2 T3

ω3ω2ω1

h

A

B

C

D

A

B C D

A

B CD

ω1 ω2 ω3

T1

(a) (b)

T2 T3

Figure 2.3. A mixture of trees model with three tree Bayesian networks T1, T2 and T3 weighted
by ω1, ω2 and ω3 respectively over the set of variables {A,B,C,D}. Figure (a) is a mixture with
identically structured (shared structure) trees and Figure (b) is a mixture with different structured
trees.

2.3.4 Arithmetic Circuits

Arithmetic circuits (ACs) (Darwiche, 2001, 2003) are compiled representations of PGMs. These

circuits are rooted directed acyclic graphs with internal nodes representing arithmetic operations

like sums and products and leaf nodes representing states of variables (indicators) and parameters

in the model. ACs can be viewed as machines for computing the network polynomial – function

that represents the probability distribution induced by the PGM (Figure 2.4). The network polyno-

mial has a term for each possible configuration of the variables and hence is exponential in size.

But ACs can take advantage of symmetries like context-specific independence and determinism to

compactly represent the network polynomial. The advantage of compiling a Bayesian or a Markov

network into an arithmetic circuit is that once it is compiled it can be used repeatedly for different

inference tasks.

Inference in ACs

During probabilistic inference using an AC, indicators at the leaves are set according to the evi-

dence and computation is performed in a bottom-up fashion from these inputs to the output at the

15

X P(X)

0 0.2

1 0.8

X Y P(Y|X)
00 0.1

0 1 0.9

0

1

0.31

1 0.7

X Y P(X,Y)

0 0 0.02
0 1 0.18

1 0 0.24

1 1 0.56

X Y

(a)

λx̄0.02 λȳ 0.18 λy 0.24 λx 0.56

× × × ×

+

Network Polynomial:f = 0.02λx̄λȳ + 0.18λx̄λy + 0.24λxλȳ + 0.56λxλy

(b)

Figure 2.4. (a)Bayesian network over binary variables X and Y. (b) An arithmetic circuit repre-
senting the joint distribution over variables X and Y in (a) and the network polynomial function f .
Each λ is an indicator variable taking values from {0, 1} and each real value is a parameter in the
distribution..

root as shown in Figure 2.5. Each sum node computes the summation of the values from its chil-

dren while each product node computes the product of the values of its children. The presence of

multiple paths from the root to a node allows an AC to take advantage of caching by computing the

sub-circuits only once and then using its results many times. ACs can compute MAP values and

MAP assignments by converting each internal sum node into a max node. The size of an AC is the

number of edges it contains and this defines a measure of its complexity and also the complexity

16

λx̄0.02 λȳ 0.18 λy 0.24 λx 0.56

× × × ×

+

0.02 0.18 0.0 0.0

Pr(X=0)=0.2

f=0.02× 1× 1 + 0.18× 1× 1 + 0.24× 0× 1 + 0.56× 0× 1

Figure 2.5. Bottom-up computation performed by the AC in Figure 2.4 for evidence X=0. Blue
colored indicators have values set to 1 while red colored indicators have values set to 0.

of performing inference using it – the time and space complexity of performing inference is thus

linear in the size of the AC.

Learning Tractable Models Using ACs

Lowd and Domingos (Lowd and Domingos, 2008) proposed to learn ACs over observed variables

by using the AC size as a learning (inductive) bias within a Bayesian network structure learn-

ing algorithm, and then compiling the induced Bayesian network to an AC. Lowd and Rooshenas

(Rooshenas and Lowd, 2013) extended this algorithm to learn Markov networks having small

AC size. The latter performs much better in terms of test set log likelihood score than the for-

mer because of the increased flexibility afforded by the undirected Markov network structure.

(Rooshenas and Lowd, 2013) improved upon their work by learning mixtures of small ACs. Re-

cently Rooshenas and Lowd (Rooshenas and Lowd, 2016) proposed a discriminative structure

learning algorithm for ACs which generates more compact structures than generatively learned

ACs.

17

2.3.5 Sum-Product Networks

Sum-product networks (SPNs) (Poon and Domingos, 2011) are recently proposed deep probabilis-

tic architectures. Similar to ACs, SPNs are rooted directed acyclic graphs with alternating levels

of sum and product nodes and univariate distributions at the leaves (see Figure 2.6 for example).

Sum nodes are equivalent to latent variables representing mixtures of two or more sub-SPNs while

product nodes represent decomposition of the model. The set of variables appearing in an SPN

defines its scope. Each child of a sum node is defined over the same scope while children of a

product node have disjoint scopes. Formally an SPN can be recursively defined as follows (Gens

and Domingos, 2012).

• A tractable univariate distribution is an SPN.

• A product of SPNs with disjoint scopes is an SPN.

• A weighted sum of SPNs with the same scope is an SPN.

• Nothing else is an SPN.

+

+ +

×

P (B) = 0.3 P (C) = 0.4 P (A) = 0.45 P (C) = 0.5

×

P (A) = 0.7 P (B) = 0.9

0.4 0.6

0.1 0.9 0.55 0.45

Figure 2.6. An SPN over binary discrete variables X = {A,B,C}. Each variable in X is defined
over the domain {0, 1}. A + denotes a sum node while a × denotes a product node. The leaves
are the Bernoulli random variables with their parameters.

An SPN represents a (normalized) probability distribution when the weights attached to each

sum node sum to one. Any unnormalized SPN can be normalized in linear time.

18

Inference in SPNs

Similar to ACs, variables are instantiated according to the evidence e in an SPN during probabilis-

tic inference. Each sum node S computes the probability of evidence as the weighted summation

of the probabilities computed by its children (product nodes) as follows.

S(e) =
∑

Pi∈Ch(S)

ω(S,Pi)Pi(e)

where Ch(S) is the children of S, each of which is a product node Pi and ω(S,Pi) is the weight

attached to the ith child of S. Each product node P computes the probability of evidence as the

unweighted product of the probabilities of its children (sum nodes).

P(e) =
∏

Si∈Ch(P)

Si(e)

The complexity of computing probability of evidence using an SPN is linear in the size (number

of edges) of the SPN.

Learning SPNs

There has been intensive research in learning the structure and parameters of SPNs from data.

(Poon and Domingos, 2011) proposed a generative parameter learning algorithm for SPNs under

the assumption that the structure of the SPN, namely a deep architecture having alternating levels

of latent sum and product nodes, is given. (Gens and Domingos, 2012) extended this approach to

yield a discriminative parameter learning algorithm.

Recently, (Gens and Domingos, 2013) proposed a top-down recursive algorithm that alternates

between partitioning the set of training instances and the set of variables to learn both the structure

and parameters of SPNs. (Peharz et al., 2013) proposed to learn SPNs by clustering variables in a

greedy bottom-up manner. (Rooshenas and Lowd, 2014) proposed to learn SPNs with ACs repre-

senting tractable markov networks at the leaves while (Vergari et al., 2015) proposed to learn SPNs

with tree structured PGMs at the leaves. (Adel et al., 2015) proposed a faster learning algorithm

19

for SPNs by extracting rank-1 sub-matrices. Their proposed method works for both generative and

discriminative settings. (Nath and Domingos, 2015) generalized SPN to the relational framework

and proposed the first algorithm for learning tractable statistical relational models.

The key advantage of SPNs and other equivalent representations such as ACs over thin-junction

trees is that they can be much compact and never larger than the latter. This is because they take

advantage of various fine-grained structural properties such as determinism, context-specific inde-

pendence, dynamic variable orderings and caching (cf. (Darwiche, 2003; Chavira and Darwiche,

2007; Dechter and Mateescu, 2007; Gogate and Domingos, 2010b)). For instance, in some cases,

they can represent high-treewidth junction trees using only a handful of sum and product nodes

(Poon and Domingos, 2011).

CHAPTER 3

CUTSET NETWORKS1

3.1 Introduction

In this chapter, we introduce cutset networks (CNs) – a new tractable probabilistic model for rep-

resenting a joint probability distribution, defined over a large set of discrete random variables. We

describe the semantics of CNs and propose an efficient polynomial time algorithm for learning

their structure and parameters from data. We also present a method for learning mixtures of CNs,

which significantly improves the accuracy of CNs on datasets having a large number of variables

(high-dimensional data) but relatively few examples.

The rest of the chapter is organized as follows. In Section 3.2, we review the classic Chow-Liu

algorithm (Chow and Liu, 1968) for inducing optimal tree structured PGMs from data. Section 3.3

discusses OR search trees, which graphically describe the search space explored during probabilis-

tic inference by conditioning. Both tree PGMs and OR search trees are the basic building blocks of

CNs. We formally introduce CNs in Section 3.4 and then describe a simple and efficient recursive

algorithm for learning their structure and parameters from data in Section 3.5. Section 3.6 presents

a method for learning mixtures of CNs. In Section 3.7, we present experimental results on learning

CNs from several real-world high-dimensional datasets and compare their performance to other

state-of-the-art tractable model learners. We conclude in Section 3.8.

The research in this chapter is based on (Rahman et al., 2014).

1We acknowledge the contribution of Prasanna P. Kothalkar in running, collecting and formatting the experimental
results presented in this chapter.

20

21

3.2 The Chow-Liu Algorithm for Learning Tree Distributions

The Chow-Liu algorithm (Chow and Liu, 1968) is a classic algorithm for learning optimal tree

structured discrete probabilistic graphical models from data. Specifically, if P (X) is an arbitrary

joint probability distribution over a set of variables X , then the Chow-Liu algorithm approximates

P (X) by a tree distribution T (X) such that T is optimal, namely there does not exist a tree

distribution T ′ that has smaller approximation error (measured using the KL-divergence) than T .

A tree distribution can be specified using an undirected tree GT = (X,ET), namely a Markov

network, with the following parameters: (1) each edge (u, v) ∈ ET is associated with the joint

probability distribution over {u, v}, namely T (xu,xv); and (2) each vertex v ∈ X is associated

with the marginal probability distribution over the corresponding variable v, namely T (xv). The

(tree) Markov network represents the following probability distribution:

T (x) =

∏
(u,v)∈ET

T (xu,xv)∏
v∈X

T (xv)deg(v)−1

where deg(v) is the degree of vertex v or the number of incident edges to v. If GT is a directed

model such as a Bayesian network, then

T (x) =
∏
v∈X

T (xv|xπ(v))

where T (xv|xπ(v)) is the conditional probability of v given its parents π(v) such that |π(v)| ≤

1. The Kullback-Leibler divergence (Kullback and Leibler, 1951) KL(P, T) between P (X) and

T (X) is defined as:

KL(P, T) =
∑
x

P (x)log

(
P (x)

T (x)

)
In order to minimize KL(P, T), Chow and Liu proved that each selected edge (u, v) ∈ ET has

to maximize the total mutual information,
∑

(u,v)∈ET
I(u, v). Mutual information, denoted by

I(u, v), is a measure of mutual dependence between two random variables u and v and is given by:

I(u, v) =
∑
xu∈∆u

∑
xv∈∆v

P (xu, xv) log

(
P (xu, xv)

P (xu)P (xv)

)
(3.1)

22

To maximize
∑

(u,v)∈ET
I(u, v), the Chow-Liu procedure computes the mutual information I(u, v)

for all possible pairs of variables in X and then finds the maximum weighted spanning tree (Cor-

men, 2009) GT = (X,ET) such that each edge (u, v) ∈ ET is weighted by I(u, v). The marginal

distribution T (u, v) of a pair of variables (u, v) connected by an edge is the same as P (u, v).

Let δmax be the largest domain size. Then the time complexity of computing the n(n−1)
2

pairwise

mutual information values is O(n2δ2
max) and the complexity of finding the maximum weighted

spanning tree (by Kruskal’s algorithm for example) is O(n2 log n). Therefore, the time complexity

of approximating a tree distribution T (X) from P (X) is O(n2δ2
max + n2 log n).

The task of learning the maximum-likelihood tree distribution from data D = {x1, ...,xN}

can be defined as follows:

T ∗ = argmax
T

∑
xi∈D

log T (xi)

which is maximized when KL(P̂ ||T) is minimized where P̂ is the empirical distribution. As be-

fore, the Chow-Liu procedure weighs edges between each pair of variables (u, v) by the empirical

mutual information Î(u, v) computed as:

Î(u, v) =
∑
xu∈∆u

∑
xv∈∆v

P̂ (xu, xv) log
P̂ (xu, xv)

P̂ (xu)P̂ (xv)

which is maximized when the marginals P̂ (xu, xv), P̂ (xu) and P̂ (xv) are estimated by the standard

maximum-likelihood technique that requires a single pass over the N samples. The complexity

of estimating the empirical mutual information values between all pairs of variables is O(n2N).

Therefore, the time complexity of estimating the structure and parameters of a tree distribution

from data using the Chow-Liu algorithm isO(n2δ2
max+n2 log(n)+n2N). In practice, N > log(n)

and N > δ2
max, and therefore the practical time complexity of the Chow-Liu algorithm is O(n2N).

Tree distributions are attractive because: (1) learning both the structure and parameters of the

distribution are tractable; (2) several probabilistic inference tasks can be solved in linear time ; and

(3) they have intuitive interpretations.

23

a b c P(a,b,c)

0 0 0 0.030

0 0 1 0.144

0 1 0 0.030

0 1 1 0.096

1 0 0 0.224

1 0 1 0.336

1 1 0 0.042

1 1 1 0.098

(a)

a

c

b b

b

c c

0.3 0.7

0.2 0.8 0.8 0.2

0.5 0.5 0.6 0.4 0.4 0.6 0.3 0.7

(b)

Figure 3.1. (a) A probability distribution, (b) An OR tree representing the distribution given in
(a). The left branch from a node represents conditioning by 0, whereas the right branch represents
conditioning by 1.

3.3 OR Search Trees

OR trees are rooted trees which are used to represent the search space explored during probabilistic

inference by conditioning (Pearl, 1988; Dechter and Mateescu, 2007). Each node in an OR tree is

labeled by a variable v in the model. Each edge emanating from a node represents the conditioning

of the variable v at that node by a value xv ∈ ∆v and is labeled by the marginal probability of the

variable-value assignment given the path from the root to the node. For simplicity, we will focus

on binary valued variables. For binary variables, assume that left edges represent the assignment

of variable v to 0 and right edges represent v = 1. A similar representation can be used for

multi-valued variables.

Any distribution can be represented using an OR Tree. In the worst-case, the tree will require

O(2n+1) parameters to specify the distribution. Figure 3.1 shows a probability distribution and a

possible OR tree.

The distribution represented by an OR tree O is given by:

P (x) =
∏

(u,v)∈pathO(x)

ω(u, v) (3.2)

24

a

c b

b b c c

0.336

0.3 0.7

0.2 0.8

0.5 0.5 0.6 0.4 0.4 0.6 0.3 0.7

0.8 0.2

Figure 3.2. The OR tree in Figure 3.1 computing the probability (0.336) of the MAP tuple 〈b =
0, c = 1〉 given evidence a = 1.

where pathO(x) is the path from the root to a unique leaf node corresponding to the assignment x

and ω(u, v) is the probability value attached to the edge between the OR nodes u and v. The size

of an OR tree is measured by the number of its edges. During probabilistic inference, the tree is

traversed in a depth-first manner starting from the root and visiting each edge in the tree consistent

with the evidence. Nodes labeled by non-evidence variables compute the weighted summation of

the values returned by its children which is equivalent to summing out that variable. Similarly,

the MAP probability can be computed when each OR node functions as max node instead of a

sum node as shown in Figure 3.2. Samples from an OR tree can be generated by sampling edges

(variable-value pairs) based on their probabilities starting from the root. Therefore, the complexity

of inference and sampling is linear in the size of the tree.

3.4 Cutset Networks

Cutset Networks (CNs) are a hybrid of rooted OR trees and tree distributions, with an OR tree at

the top and a tree distribution attached to each leaf node of the OR tree. Formally, a cutset network

is a pair C = (O,T) where O is a rooted OR tree and T = {T1, . . . , TL} is a collection of tree

25

distributions. The distribution represented by a cutset network is given by:

P (x) =

 ∏
(u,v)∈pathO(x)

ω(u, v)

(T`(x)(xScope(T`(x)))
)

(3.3)

where pathO(x) is the path from the root to the unique leaf node `(x) corresponding to the as-

signment x, ω(u, v) is the probability value attached to the edge between the OR nodes u and v

and T`(x) is the tree distribution associated with `(x) and Scope(T`(x)) is the set of variables over

which T`(x) is defined. Figure 3.3 shows an example cutset network.

a

e

f

b

c d

c

b d

c

d b

f

b

d

c e

f c

d e f

0.45

0.35 0.65

0.55

0.80.2

0.3
0.7

Figure 3.3. A cutset network over binary random variables X = {a, b, c, d, e, f}. Left branches in
the OR tree represent conditioning by 0 while right branches represent conditioning by 1.

CNs can represent a variety of models, for example, a CN of depth zero is a tree distribution and

a CN of depth one is a Bayesian multinet (Geiger and Heckerman, 1996b).Note that unlike classic

cutset conditioning, cutset networks can take advantage of determinism (Chavira and Darwiche,

2008) and context-specific independence (Boutilier et al., 1996) by branching on different variables

at the same level (or depth) (Gogate and Domingos, 2010b; Gogate et al., 2010). As a result, they

can yield a compact representation, even if the size of the cutset2 is arbitrarily large. For example,

consider the cutset network given in Figure 3.3. The left most leaf node represents a tree Bayesian

network over X \ {a, e, f} while the right most leaf node represents a tree Bayesian network over

2Given a graph G = (V,E), C ⊆ V is a cutset of G if the subgraph over V \ C is a tree.

26

X\{a, b}. Technically, the size of the cutset can be as large as the union of the variables mentioned

at various levels in the OR tree. Thus, for the cutset network given in Figure 3.3, the size of the

cutset can be as large as {a, b, e, f}.

3.5 Learning Cutset Networks

If we bound the number of nodes in the OR tree of the cutset network by k, then the optimal

cutset network can be learned in O(nk+2kδmaxN) time where n is the number of variables, δmax

is the maximum domain size and N is the number of examples. To see this, notice that there are

at most n choices for each node and thus we will have to evaluate O(nk) OR trees; each OR tree

will have at most O(kδmax) leaves and the Chow-Liu algorithm at each leaf node requires O(n2N)

time. Although, the algorithm, just described is tractable, it has high polynomial complexity and

is infeasible for any reasonable k (e.g., 10-100) that we would like to use in practice.

Therefore, to make our algorithm practical, we use splitting heuristics and pruning techniques

developed over the last few decades for inducing decision trees from data (Quinlan, 1986; Mitchell,

1997). The splitting heuristics help us quickly learn a reasonably good cutset network, without any

backtracking, while the pruning techniques such as pre-pruning and reduced-error (post) pruning

help us avoid overfitting. To improve the accuracy further, we also consider mixtures of cutset

networks, which generalize mixtures of Chow-Liu trees (Meila and Jordan, 2000) and develop an

expectation-maximization algorithm for learning them from data.

Simply put, given training data D = {x1, . . . ,xN} defined over a set X of variables, we

can use the following recursive or divide-and-conquer approach to learn a cutset network from

D (see Algorithm 1). Select a variable using the given splitting heuristic, place it at the root

and make one branch for each of its possible values. Repeat the approach at each branch, using

only those instances that reach the branch. If at any time, some pre-defined termination condition

is satisfied, run the Chow-Liu algorithm on the remaining data and variables. It is easy to see

that the optimal probability value, assuming that we are using the maximum likelihood estimation

27

Algorithm 1: LearnCN (D, X)
Input: Training datasetD = {x1, ...,xN}, Variables X .
Output: A cutset network C

if Termination condition is satisfied then
return ChowLiuTree(D, X)

end if
Heuristically select a variable v ∈X for splitting
Create a new node Ov labeled by v.
/*
Each node has a left child Ov.left, a right child Ov.right, a left
probability Ov.lp and a right probability Ov.rp.
*/
LetDv=0 = {xi ∈ D|xiv = 0}
LetDv=1 = {xi ∈ D|xiv = 1}
Ov.lp← |Dv=0|

|D|

Ov.rp← |Dv=1|
|D|

Ov.left← LearnCN (Dv=0,X \ v)
Ov.right← LearnCN (Dv=1,X \ v)
return Ov

principle, attached to each branch in the OR tree is the fraction of the instances at the parent that

actually reach the branch.

The two main choices in the above algorithm are which variable to split on and the termination

condition. We discuss each of them in turn, next, followed by the algorithm to learn mixtures of

cutset networks from data.

3.5.1 Splitting Heuristics

Intuitively, we should split on a variable that reduces the expected entropy (or the information

content) of the two partitions of the data created by the split. The hope is that when the expected

entropy is small, we will be able to represent it faithfully using a simple distribution such as a

tree Bayesian network. Unfortunately, unlike traditional classification problems, in which we are

interested in (the entropy of) a specific class variable, estimating the joint entropy of the data when

28

the class variable is not known is a challenging task (we just don’t have enough data to reliably

measure the joint entropy). Therefore, we propose to approximate the joint entropy by the average

entropy over individual variables. Formally, for our purpose, the entropy of dataD defined over a

set X of variables is given by:

Ĥ(D) =
1

|X|
∑
v∈X

HD(v) (3.4)

where HD(v) is the entropy of variable v relative toD. It is given by:

HD(v) = −
∑
xv∈∆v

P (xv)log(P (xv))

Given a closed-form expression for the entropy of the data, we can calculate the information

gain or the expected reduction in the entropy after conditioning on a variable v using the following

expression:

GainD(v) = Ĥ(D)−
∑
xv∈∆v

|Dxv |
|D| Ĥ(Dxv)

whereDxv = {xi ∈ D|xiv = xv}.

From the discussion above, the splitting heuristic is obvious: select a variable that has the

highest information gain.

3.5.2 Termination Condition and Post-Pruning

A simple termination condition that we can enforce is stopping when the number of examples at

a node falls below a fixed threshold. Alternatively, we can also declare a node as a leaf node if

the entropy falls below a threshold. Unfortunately, both of these criteria are highly dependent on

the threshold used. A large threshold will yield shallow OR trees that are likely to underfit the

data (high bias) while a small threshold will yield deep trees that are likely to overfit the data

(high variance). To combat this, inspired by the decision tree literature (Quinlan, 1986, 1993),

we propose to use reduced error pruning. In reduced error pruning, we grow the tree fully and

post-prune in a bottom-up fashion. (Alternatively, we can also prune in a top-down fashion).

29

The benefits of pruning over using a fixed threshold are that it avoids the horizon effect (the

thresholding method suffers from lack of sufficient look ahead). Pruning comes at a greater com-

putational expense than threshold based stopped splitting and therefore for problems with large

training sets, the expense can be prohibitive. For small problems, though, these computational

costs are low and pruning should be preferred over stopped splitting. Moreover, pruning is an

anytime method and as a result we can stop it at any time.

Formally, our proposed reduced error pruning for cutset networks operates as follows. We

divide the data into two sets: training data and validation data. Then, we build a full OR tree over

the training data, declaring a node as a leaf node using a weak termination condition (e.g., the

number of examples at a node is less than or equal to 5). Then, we recursively visit the tree in

a bottom up fashion, and replace a node and the sub-tree below it by a leaf node (namely, a tree

distribution) if it increases the log-likelihood of the validation set.

We summarize the time and space complexity of learning (using Algorithm 1) and inference in

cutset networks in the following theorem.

Theorem 1. The time complexity of learning cutset networks is O(n2Ns) where s is the number of

nodes in the cutset network, N is the number of training samples and n is the number of variables.

The space complexity of the algorithm isO(ns), which also bounds the space required by the cutset

networks. The time complexity of performing marginal and maximum-a-posteriori inference in a

cutset network is O(ns).

Proof. The time complexity of computing the gain at each internal OR node isO(n2N). Similarly,

the time complexity of running the Chow-Liu algorithm at each leaf node is O(n2N). Since there

are s nodes in the cutset network, the overall time complexity is O(n2Ns). The space required to

store an OR node is O(1) while the space required to store a tree Bayesian network is O(n). Thus,

the overall space complexity is O(max(n, 1)s) = O(ns). The time complexity of performing

inference at each leaf Chow-Liu node is O(n) while inference at each internal OR node can be

done in constant time. Since the tree has s nodes, the overall inference complexity is O(ns).

30

3.6 Mixtures of Cutset Networks

Similar to mixtures of trees (Meila and Jordan, 2000), we define mixtures of cutset networks

(MCNs) as distributions of the form:

P (x) =
k∑
i=1

λiCi(x) (3.5)

with λi ≥ 0 for i = 1, . . . , k, and
∑k

i=1 λi = 1. Each mixture component Ci(x) is a cutset network

and λi is its mixture co-efficient. At a high level, one can think of the mixture as containing a latent

variable z which takes a value i ∈ {1, . . . , k} with probability λi.

Next, we present a version of the expectaton-maximization algorithm (EM) (Dempster et al.,

1977) for learning mixtures of cutset networks from data. The EM algorithm operates as follows.

We begin with random parameters. At each iteration t, in the expectation-step (E-step) of the

algorithm, we find the probability of completing each training example, using the current model.

Namely, for each training example xj and each component i, we compute

P t(z = i|xj) =
λtiCti (xj)∑k
r=1 λ

t
rCtr(xj)

Then, in the maximization-step (M-step), we learn each mixture component i, using a weighted

training set in which each example xj has weight P t(z = i|xj). This yields a new mixture

component Ct+1
i . In the M-step, we also update the mixture co-efficients using the following

expression:

λt+1
i =

∑N
j=1 P

t(z = i|xj)
N

We can run EM until it converges or until a pre-defined bound on the number of iterations is

exceeded. The quality of the local maxima reached by EM is highly dependent on the initializa-

tion used and therefore in practice, we typically run EM using several different initializations and

choose parameter settings having the highest log-likelihood score. Notice that by varying the num-

ber of mixture components, we can explore interesting bias versus variance tradeoffs. Large k will

yield high variance models and small k will yield high bias models.

31

We summarize the time and space complexity of learning and inference in mixtures of cutset

networks in the following theorem.

Theorem 2. The time complexity of learning mixtures of cutset networks is O(n2Nsktmax) where

s is the number of nodes in the cutset network, N is the number of examples, k is the number of

mixture components, tmax is the maximum number of iterations for which EM is run and n is the

number of variables. The space complexity of the algorithm is O(nsk), which also bounds the

space required by the mixtures of cutset networks. The time complexity of performing marginal

and maximum-a-posteriori inference in a mixtures of cutset networks is O(nks).

Proof. As proved in Theorem 1, each CN in the ensemble requires O(n2Ns) time to be learned.

There are k such CNs each learned once during an EM iteration on the weighted data. Hence

the total time to learn a mixture is O(n2Nsktmax). Each CN requires O(ns) space and therefore

the mixture of k CNs requires O(nsk) space which also bounds the complexity for performing

maginal and maximum-a-posteriori inference.

3.7 Empirical Evaluation

The aim of our experimental evaluation is two fold: comparing the learning speed, measured

in terms of CPU time, and accuracy, measured in terms of test set log likelihood scores, of our

methods with state-of-the-art methods for learning tractable models.

3.7.1 Methodology and Setup

We evaluated our algorithms as well as the competition on 20 benchmark datasets shown in Table

3.1. The number of variables in the datasets ranged from 16 to 1556, and the number of training

examples varied from 1.6K to 291K examples. All variables in our datasets are binary-valued

for a fair comparison with other methods, who operate primarily on binary-valued input. These

datasets or a subset of them have also been used by (Davis and Domingos, 2010; Rooshenas and

32

Lowd, 2014; Lowd and Rooshenas, 2013; Lowd and Davis, 2010; Gens and Domingos, 2013;

Van Haaren and Davis, 2012).

We implemented three variations of our algorithms: (1) learning CNs without pruning (CN),

(2) learning CNs with pruning (CNP) and (3) learning mixtures of CNs (MCNs). We compared

their performance with the following learning algorithms from literature: learning sum-product

networks with direct and indirect interactions (ID-SPN) (Rooshenas and Lowd, 2014), learning

Markov networks using arithmetic circuits (ACMN) (Lowd and Rooshenas, 2013), learning mix-

ture of trees (MT) (Meila and Jordan, 2000), Chow-Liu trees (Chow and Liu, 1968), learning

Sum-Product Networks (LearnSPN) (Gens and Domingos, 2013) and learning latent tree models

(LTM) (Choi et al., 2011). Most of the results on the datasets (except the results on learning Chow-

Liu models) were made available to us by (Rooshenas and Lowd, 2014). They are part of the Libra

toolkit available on Daniel Lowd’s web page.

We smoothed all parameters using 1-laplace smoothing. For learning CNs without pruning, we

stopped building the OR tree when the number of examples at the leaf node were fewer than 10 or

the total entropy was smaller than 0.01. To learn MCNs, we varied the number of components from

5 to 40, in increments of 5 and ran the EM algorithm for 100 iterations or convergence whichever

was earlier. For each iteration of EM, we could update both the structure and the parameters of the

cutset network associated with each component. However, to speed up the learning algorithm, we

chose to update just the parameters, utilizing the structure learned at the first iteration.

3.7.2 Learning Time

Table 3.1 shows the time taken by CN, CNP, MCN, ID-SPN and ACMN to learn a model from

data. We gave a time limit of 48 hours to all algorithms and ran all our timing experiments on

a quad-core Intel i7, 2.7 GHz machine with 8GB of RAM. The fastest cutset network learners,

in order, are: CN, CNP, and MCN. On an average, ACMN is slower than MCN. ID-SPN is the

slowest algorithm. In fact, ID-SPN did not finish on 8 out of the 20 datasets in 48 hours (note that

33

Table 3.1. Runtime Comparison (in seconds). Time-limit for each algorithm: 48 hours. †indicates
that the algorithm did not terminate in 48 hours.

Dataset Var# Train Valid Test CN CNP MCN ID-SPN ACMN
NLTCS 16 16181 2157 3236 0.2 0.4 36.5 307.0 242.4
MSNBC 17 291326 38843 58265 13.0 29.2 2177.7 90354.0 579.9
KDDCup2000 64 180092 19907 34955 95.9 197.8 1988.0 38223.0 645.5
Plants 69 17412 2321 3482 6.5 10.5 135.0 10590.0 119.4
Audio 100 15000 2000 3000 17.2 19.6 187.0 14231.0 1663.9
Jester 100 9000 1000 4116 14.0 11.8 101.2 † 3665.8
Netflix 100 15000 2000 3000 25.2 22.6 224.4 † 1837.4
Accidents 111 12758 1700 2551 15.7 22.1 195.4 † 793.4
Retail 135 22041 2938 4408 18.9 27.6 104.7 2116.0 12.5
Pumsb-star 163 12262 1635 2452 30.1 41.8 233.8 18219.0 374.0
DNA 180 1600 400 1186 13.8 6.9 57.7 150850.0 39.9
Kosarek 190 33375 4450 6675 65.9 102.5 141.2 † 585.4
MSWeb 294 29441 32750 5000 208.6 365.8 642.8 † 286.3
Book 500 8700 1159 1739 129.1 204.2 154.4 125480.0 3035.0
EachMovie 500 4524 1002 591 90.7 133.4 204.8 78982.0 9881.1
WebKB 839 2803 558 838 169.7 228.7 160.4 † 7098.3
Reuters-52 889 6532 1028 1540 397.1 650.4 1177.2 † 2709.6
20Newsgroup 910 11293 3764 3764 695.2 935.8 1525.2 † 16255.3
BBC 1058 1670 225 330 206.7 223.9 70.2 4157.0 1862.2
Ad 1556 2461 327 491 365.8 594.3 155.4 285324.0 6496.4

for the datasets on which ID-SPN did not finish in 48 hours, we report the test set log-likelihood

scores from (Rooshenas and Lowd, 2014)). The best performing cutset network algorithm, MCN,

was faster than ID-SPN on all 20 datasets and ACMN on 14 datasets. If we look at the learning

time and accuracy (see Table 3.2) as a whole, CNP is the best performing algorithm, providing

reasonably accurate results in quick time.

3.7.3 Accuracy

Table 3.2 shows the average test set log likelihood scores for the various benchmark networks

while Table 3.3 shows head-to-head comparison of the six best performing algorithms namely

CNP, MCN, ID-SPN, ACMN, MT and LearnSPN. Excluding the first two datasets where there

34

Ta
bl

e
3.

2.
A

ve
ra

ge
te

st
se

tl
og

-l
ik

el
ih

oo
d.
†in

di
ca

te
s

th
at

th
e

re
su

lts
of

th
is

al
go

ri
th

m
ar

e
no

ta
va

ila
bl

e.

D
at

as
et

C
N

C
N

P
M

C
N

ID
-S

PN
A

C
M

N
M

T
C

ho
w

-L
iu

L
ea

rn
SP

N
LT

M
N

LT
C

S
-6

.1
0

-6
.0

5
-6

.0
0

-6
.0

2
-6

.0
0

-6
.0

1
-6

.7
6

-6
.1

1
-6

.4
9

M
SN

B
C

-6
.0

6
-6

.0
5

-6
.0

4
-6

.0
4

-6
.0

4
-6

.0
7

-6
.5

4
-6

.1
1

-6
.5

2
K

D
D

C
up

20
00

-2
.2

1
-2

.1
9

-2
.1

2
-2

.1
3

-2
.1

7
-2

.1
3

-2
.3

2
-2

.1
8

-2
.1

8
Pl

an
ts

-1
3.

37
-1

3.
25

-1
2.

78
-1

2.
54

-1
2.

80
-1

2.
95

-1
6.

51
-1

2.
98

-1
6.

39
A

ud
io

-4
6.

84
-4

1.
97

-3
9.

73
-3

9.
79

-4
0.

32
-4

0.
08

-4
4.

35
-4

0.
50

-4
1.

90
Je

st
er

-6
4.

50
-5

5.
26

-5
2.

57
-5

2.
86

-5
3.

31
-5

3.
08

-5
8.

21
-5

3.
48

-5
5.

17
N

et
fli

x
-6

9.
74

-5
8.

72
-5

6.
32

-5
6.

36
-5

7.
22

-5
6.

74
-6

0.
25

-5
7.

33
-5

8.
53

A
cc

id
en

ts
-3

1.
59

-3
0.

66
-2

9.
96

-2
6.

98
-2

7.
11

-2
9.

63
-3

3.
17

-3
0.

04
-3

3.
05

R
et

ai
l

-1
1.

12
-1

0.
98

-1
0.

82
-1

0.
85

-1
0.

88
-1

0.
83

-1
1.

02
-1

1.
04

-1
0.

92
Pu

m
sb

-s
ta

r
-2

5.
06

-2
4.

28
-2

4.
18

-2
2.

40
-2

3.
55

-2
3.

71
-3

0.
80

-2
4.

78
-3

1.
32

D
N

A
-1

09
.7

9
-8

7.
50

-8
5.

82
-8

1.
21

-8
0.

03
-8

5.
14

-8
7.

70
-8

2.
52

-8
7.

60
K

os
ar

ek
-1

1.
53

-1
1.

07
-1

0.
58

-1
0.

60
-1

0.
84

-1
0.

62
-1

1.
52

-1
0.

99
-1

0.
87

M
SW

eb
-1

0.
20

-1
0.

12
-9

.7
9

-9
.7

3
-9

.7
7

-9
.8

5
-1

0.
35

-1
0.

25
-1

0.
21

B
oo

k
-4

0.
19

-3
7.

51
-3

3.
96

-3
4.

14
-3

5.
56

-3
4.

63
-3

7.
84

-3
5.

89
-3

4.
22

E
ac

hM
ov

ie
-6

0.
22

-5
7.

71
-5

1.
39

-5
1.

51
-5

5.
80

-5
4.

60
-6

4.
79

-5
2.

49
†

W
eb

K
B

-1
71

.9
5

-1
61

.5
8

-1
53

.2
2

-1
51

.8
4

-1
59

.1
3

-1
56

.8
6

-1
64

.8
9

-1
58

.2
0

-1
56

.8
4

R
eu

te
rs

-5
2

-9
1.

35
-8

7.
64

-8
6.

11
-8

3.
35

-9
0.

23
-8

5.
90

-9
6.

85
-8

5.
07

-9
1.

23
20

N
ew

sg
ro

up
-1

76
.5

6
-1

61
.6

8
-1

51
.2

9
-1

51
.4

7
-1

61
.1

3
-1

54
.2

4
-1

64
.9

9
-1

55
.9

3
-1

56
.7

7
B

B
C

-3
00

.3
3

-2
60

.5
5

-2
50

.5
8

-2
48

.9
3

-2
57

.1
0

-2
61

.8
4

-2
61

.4
1

-2
50

.6
9

-2
55

.7
6

A
d

-1
6.

31
-1

6.
14

-1
6.

68
-1

9.
00

-1
6.

53
-1

6.
02

-1
6.

67
-1

9.
73

†

35

are multiple winners, we can see that MCN has the best log-likelihood score on 9 out of the

remaining 18 benchmarks, while ID-SPN is the second best performing algorithm, with the best

log-likelihood score on 7 out of the 18 benchmarks. In the head-to-head comparison, MCN is better

than CNP on 19 benchmarks, ID-SPN on 11 benchmarks, ACMN on 13 benchmarks, MT on 15

benchmarks and LearnSPN on 18 benchmarks. CNP is better than ID-SPN only on 1 benchmark,

ACMN and MT on 2 benchmarks while it is better than LearnSPN on 6 benchmarks. A careful

look at the datasets reveal that when the number of training examples is large, MCN and to some

extent CNP are typically better than the competition. However, for small training set sizes, ID-SPN

is the best performing algorithm. As expected, Chow-Liu trees and CNs are the worst-performing

algorithms, the former underfits and the latter overfits.

MCN is consistently better than CNP which suggests that whenever possible it is a good idea

to use latent mixtures of simple models. This conclusion can also be drawn from the performance

of MT, which greatly improves the accuracy of tree distributions.

Table 3.3. Head-to-head comparison of the number of wins (in terms of average test set log-
likelihood score) achieved by one algorithm (row) over another (column), for all pairs of the 6 best
performing algorithms used in our experimental study.

CNP MCN ID-SPN ACMN MT LearnSPN
CNP - 1 1 2 2 6
MCN 19 - 11 13 15 18

ID-SPN 19 8 - 16 16 20
ACMN 18 5 3 - 8 15

MT 18 5 3 12 - 16
LearnSPN 14 2 0 5 4 -

3.8 Chapter Summary

In this chapter, we presented cutset networks - a novel, simple and tractable probabilistic graphical

model. At a high level, cutset networks are operational representation of Pearl’s cutset condition-

36

ing method, with an OR tree modeling conditioning (at the top) and a tree distribution modeling

inference over trees at the leaves. We developed an efficient algorithm for learning cutset networks

from data. Our new algorithm uses a decision tree inspired learning algorithm for inducing the

structure and parameters of the OR tree and the classic Chow-Liu algorithm for learning the tree

distributions at the leaf nodes. We also presented an EM-based algorithm for learning mixtures of

cutset networks.

Our detailed experimental study on a variety of benchmark datasets clearly demonstrated the

power of cutset networks. In particular, our new algorithm that learns mixtures of cutset networks

from data, was the best performing algorithm in terms of average test set log-likelihood score on

55% of the benchmarks when compared with 5 other state-of-the-art algorithms from literature.

Moreover, our new one-shot algorithm, which builds a cutset network using the information gain

heuristic and employs reduced-error pruning is not only fast (as expected) but also reasonably

accurate on several benchmark datasets. This gives us a spectrum of algorithms for future investi-

gations: fast, accurate one-shot algorithms and slow, highly accurate iterative algorithms based on

EM.

CHAPTER 4

LEARNING ENSEMBLES OF CUTSET NETWORKS

4.1 Introduction

In Chapter 3, we showed that cutset networks (CNs) admit a polynomial-time learning algorithm

when the number of nodes in the OR tree is bounded by a constant. A straight-forward approach is

to generate all possible CNs having a small, fixed number of OR nodes and then select the one that

has the highest log-likelihood score on the training data. Although tractable, the learning algorithm

has high polynomial complexity and therefore we proposed a heuristic recursive algorithm to rem-

edy the problem. Further, to avoid overfitting, we proposed a bottom-up post-pruning method in

section 3.5.2. Recently, (Di Mauro et al., 2015) proposed a Bayesian learning approach to prevent

overfitting, in lieu of the costly post-pruning step.

In this chapter, instead of using methods such as post-pruning and Bayesian learning to avoid

overfitting, we propose to limit the depth of the OR tree, yielding a weak learner. We then im-

prove the accuracy of weak learners using ensemble methods, namely we develop techniques that

combine multiple CNs using popular ensemble learning approaches such as bagging and boosting.

We make the following contributions in this chapter. First, in section 4.2, we develop sequential

boosting-based as well as parallel bagging-based algorithms for learning ensembles of CNs from

data, leveraging vast amount of previous work on boosting and bagging algorithms (cf. (Zhou,

2012)) as well as their generalizations for density estimation (Rosset and Segal, 2002; Ridgeway,

2002; Welling et al., 2002). Second, in section 4.3, we perform and report on a comprehensive

empirical evaluation, comparing our new algorithms with several state-of-the-art systems such as

sum-product networks with direct and indirect interactions (Rooshenas and Lowd, 2014), latent

tree models (Choi et al., 2011) and mixtures of cutset networks (Rahman et al., 2014) on a wide

37

38

variety of benchmark datasets. Our empirical evaluation clearly demonstrates the power of our new

approaches; our new algorithms are better than competing systems on 12 out of 20 datasets in terms

of average test set log-likelihood. This is significant because we compare with well-engineered,

state-of-the-art systems.

The research in this chapter is based on (Rahman and Gogate, 2016a).

4.2 Ensembles of Cutset Networks

We define an ensemble of cutset networks (ECNs), denoted by fM , as a collection of pairs

{〈αm, Cm〉}Mm=1 where Cm is a CN and αm is its associated weight or coefficient such that αm ≥ 0

and
∑M

m=1 αm = 1. fM represents the following probability distribution.

fM(x) =
M∑
m=1

αmCm(x)

where x is an assignment of values to all the variables in X in the domain and Cm(x) is the

probability of x w.r.t. Cm. We assume that each cutset network Cm in the ensemble is a member of

some class Qd of cutset networks, such that the depth of the OR tree of all networks in the class

Qd is bounded by d. Frequently, we will refer to the cutset networks as the base models of the

ensemble fM .

Given training dataD = {x1, ...,xN}, we can learn fM by solving the following optimization

problem:

f ∗M = argmax
fM

L(fM ;D) (4.1)

where L(fM ;D) =
∑N

i=1 log(fM(xi)) is the log-likelihood of D given fM . Since αm’s cannot

be directly estimated from data (they are not observed), the optimization problem is multi-modal.

Therefore, we seek approximate heuristic approaches to solve it. One such approach is to fix M

and then use the EM algorithm (Dempster et al., 1977) to solve the optimization problem. This

approach yields the MCN algorithm described in the previous chapter.

39

In this chapter, we propose to solve the optimization problem using sequential boosting-based

approaches as well as parallel bootstrapping (bagging) approaches. Intuitively, our new algorithms

are likely to yield more accurate models than the conventional EM algorithm which updates all

base models and mixture weights simultaneously because they will have better convergence prop-

erties (Neal and Hinton, 1998), smaller computational complexity (since networks will be added

sequentially or via bootstrapping), and superior ability to escape local maxima than the latter. As

we will describe in the section on experiments, our experimental results clearly validate this intu-

ition.

4.2.1 Boosting

In this subsection, we present three approaches for boosting CNs. The first approach is based on

the boosting density estimation approach of (Rosset and Segal, 2002) (henceforth, called the BDE

method); the second is based on a kernel-based generalization of the BDE method; and the third

approach uses the sequential (or incremental) EM algorithm. We describe the three approaches in

order next.

The BDE method sequentially grows the ensemble, adding a weak base learner at each stage.

Formally, at each boosting stage m it seeks to find a weak learner Cm belonging to a class Qd and

a coefficient ηm to add to the current model fm−1 such that the log-likelihood of the new model

fm = (1 − ηm)fm−1 + ηmCm, denoted by L(fm;D), is maximized where D = {x1, ...,xN} is a

set of N training examples. Since optimizing the log-likelihood is hard (there is no closed form

solution), the log-likelihood is approximated using the following expression (derived using Taylor

series).

L(fm;D) ≈ L(fm−1;D) +
ηm

1− ηm

N∑
i=1

Cm(xi)

fm−1(xi)
(4.2)

Assuming that ηm is a (small) constant, L(fm;D) can be maximized by maximizing
∑

i
Cm(xi)
fm−1(xi)

.

To maximize the latter, at each boosting step m, we search for a CN Cm ∈ Qd that maximizes the

weighted log-likelihood of data, in which each example xi is weighted by 1
fm−1(xi)

. In other words,

40

examples which have lower probability according to the previous model receive higher weight and

vice versa.

An algorithmic description of a scheme that uses the BDE method for boosting CNs is given in

Algorithm 2. The algorithm begins by initializing the model f0 to the uniform distribution. Then,

at each iteration m, it updates the weight ωim of each example xi to 1
fm−1(xi)

(step 4), learns a

new CN Cm that maximizes the weighted log-likelihood using the algorithm described in (Rahman

et al., 2014; Di Mauro et al., 2015) (step 5), finds a weighting co-efficient ηm for the new model

by performing a line search (step 6), and finally updates the model fm with the new weighting

co-efficient (step 7).

Algorithm 2: CN-Boosting(D,X,M, d)
Input : DatasetD, Variables X , An integer M , maximum-depth d

Output: fM

1 begin

2 f0 = uniform distribution

3 for m = 1 to M do

4 ωim = 1
fm−1(xi)

∀xi ∈ D
5 Cm = argmax

C

∑
i

ωimC(xi) from Qd

6 ηm = argmax
η

∑
i

log((1− η)fm−1(xi) + ηCm(xi))

7 fm = (1− ηm)fm−1 + ηmCm
8 end

9 return fM

10 end

Next, we derive an AdaBoost (Freund and Schapire, 1997) style algorithm for learning ECNs

by generalizing the weight update rule in step 4 of Algorithm 2. To derive this rule, we rewrite the

41

weight as

ωim+1 =
1

fm(xi)
=

1

(1− ηm)fm−1(xi) + ηmCm(xi)

Dividing both the numerator and the denominator by fm−1(xi) and factoring out ηm we get:

ωim+1 =
ωim

1 + ηm(Cm(xi)
fm−1(xi)

− 1)
(4.3)

From (4.3), we can see that the ratio Cm(xi)
fm−1(xi)

determines the relationship between ωim and ωim+1:

• Case 1: Cm(xi)
fm−1(xi)

≥ 1 ⇒ ωim+1 ≤ ωim: the weight of an example having higher probability

in Cm than fm−1 is decreased.

• Case 2: Cm(xi)
fm−1(xi)

< 1 ⇒ ωim+1 > ωim: the weight of an example having higher probability

in fm−1 than Cm is increased.

We can express the relationship between ωim+1 and ωim, in a more general form using the following

expression:

ωim+1 =
ωim

1 + βmK(Cm(xi), fm−1(xi), ε)
(4.4)

where K is a kernel-function for smoothing the (gradient) updates, βm ∈ (0, 1) is the step size and

ε is a tolerance measure. For example, the following function can be used to smooth the updates:

K(Cm(x), fm−1(x), ε) =

+1 if (Cm(x)

fm−1(x)
− 1) > ε

−1 if (1− Cm(x)
fm−1(x)

) > ε

0 otherwise

(4.5)

Using (4.4) (with K given by (4.5)) instead of the rule given in step 4 of Algorithm 2 yields

smooth updates in the following sense. In the BDE method, all weights change at each iteration

by a different amount. When a smooth K such as the one given in (4.5) is used, a weight ωim+1 is

updated iff the relative difference between Cm(xi) and fm−1(xi) for the corresponding example xi

is larger than the tolerance measure ε. Moreover, all weights (that are updated) are updated by the

same amount, similar to AdaBoost (which updates all misclassified examples).

42

Our third approach uses the EM algorithm (Dempster et al., 1977) to solve the optimization

problem at each iteration m. Note that in the approximation given in (4.2), ηm is assumed to

be a (small) constant. In our EM-based approach similar to (Ridgeway, 2002), we remove this

relaxation and jointly optimize ηm and Cm, keeping fm−1 fixed.1 The algorithm operates as follows.

At each iteration m, the algorithm randomly guesses ηm and Cm. It then alternates between the

following expectation (E-Step) and maximization steps (M-Step) until convergence:

• E-Step : γim = ηmCm(xi)
(1−ηm)fm−1(xi)+ηmCm(xi)

• M-step :

ηm = 1

N

N∑
i=1

γim

Cm = argmax
C

N∑
i=1

γim log(C(xi)), C ∈ Qd

4.2.2 Bagging

Bootstrap aggregation (Bagging) is a method for combining several high variance models of the

same kind trained on different subsets of the data (Breiman, 2001). The subsets are called bootstrap

samples and are generated by sampling the original data with replacement. In various empirical

studies, bagging has been shown to improve the accuracy of several supervised learning algorithms

by reducing the variance of the learning algorithm when data is scarce. We use the following

straight-forward extension of the general bagging method to learn ECNs.

Algorithm 3 presents the steps to learn a bagged ensemble of cutset networks. Each constituent

CN Cm in the ensemble is learned by generating bootstrap samples from the data, and then maxi-

mizing the log-likelihood of the generated samples. The coefficients αm’s can be learned in several

ways. One approach is to attach the same weight 1/M to each Cm, yielding a simple average mix-

ture. Another approach is to weigh each Cm by a value that is proportional to its likelihood. Here

1The difference between this EM-based method and the EM-based MCN algorithm proposed in Chapter 3 is that
in the latter at each EM iteration, all cutset networks Cj and coefficients ηj for j = 1 to m are updated simultaneously
while in the former only Cm and ηm are updated.

43

we use the latter approach because it often performs better than simple averaging in practice. Note

that the negative log-likelihood measures the error of the base models and thus our one-shot weigh-

ing technique assigns high weight to low error models and vice versa. Since each bootstrap uses

roughly 63.2% of the unique examples ofD, this measure takes into account the out-of-bag sample

error and therefore exempts us from using a validation set to estimate the coefficients.
Algorithm 3: CN-Bagging(D,X,M, d)

Input : DatasetD, Variables X , An integer M , maximum depth d

Output: fM

1 begin

2 fM = ∅

3 for m = 1 to M do

4 Dm = booststrap N samples fromD
5 Cm = argmax

C
L(C;Dm), C ∈ Qd

6 αm = 1
L(Cm;D)

7 fM = fM ∪ 〈αm, Cm〉

8 end

9 return fM

10 end

To de-correlate the cutset networks in the bagged ensemble, we use the following random

forests inspired approach (Breiman, 2001). At each node of the OR tree, we pick r variables

uniformly at random and then use the splitting heuristic to select the best variable from these r

variables. This randomization trick also reduces the time complexity of training a tree since at

each splitting node we only consider a smaller subset of the available variables.

44

4.3 Experiments

We evaluated the performance of ECNs on 20 real world benchmark datasets described in Chapter

3.. The number of variables range from 16 to 1556 and the number of training examples vary from

1.6K to 291K examples. All variables are binary. We ran all our experiments on a quad-core Intel

i7 2.7 GHz machine with 16GB RAM and ran each algorithm for 48 hours or until termination,

whichever was earlier.

We use a different heuristic than maximum gain for choosing the next variable to condition on.

We score each variable u ∈ X using Score(u) =
∑

v∈X\{u} I(u, v) where I(u, v) is the mutual

information between u and v and choose a variable having the highest score. The rationale for this

heuristic is that variables having a large score are likely to be involved in a large number of edges

and thus likely to be a part of a cutset. In our experiments, we found that this heuristic is much

superior to the one used in the previous chapter for learning CNs.

Our chosen base models are CNs and small MCNs with the number of components fixed to

either 2 or 3 in an ensemble (chosen by the validation set). We also ensured that the total number

of component Nets learned does not exceed 40. This was done to make fair comparisons with

other tractable model learners. We introduced two types of randomizations in learning the base

models: randomizing the pool of cutset variables at each splitting node, and randomizing the

maximum depth of the OR tree. The former is equivalent to learning an ensemble of randomized

cutset networks as done in random forests – at each splitting node we randomly sample without

return 50% of the variables and apply our heuristic to choose the best one. The latter is similar

to stacking – combining models of different complexities. At each iteration we randomly picked

an integer depth 0 ≤ ` ≤ max depth to learn the next base model. Here max depth is the

maximum depth that a cutset network can have in an ensemble. Therefore, both boosting and

bagging are performed using fixed depth as well as variable depth base models leading to four

categories of algorithms: learning with fixed depth CNs, learning with variable depth CNs, learning

45

with fixed depth MCNs, and learning with variable depth MCNs. We used 1-laplace smoothing for

the parameters.

4.3.1 Boosting Performance

We compare the following three different boosting techniques using CNs and MCNs as base mod-

els: the BDE method, our proposed modification to the BDE method (see Eq. (4.5)) which

we call the generalized BDE (GBDE) and the sequential EM-algorithm which we refer to as

SEQEM in brief. For the GBDE, we tried the following values for ε: {0.1,0.3,0.5,0.7,0.9} and

βm: {0.01,0.05,0.2,0.4,0.6,0.8}. The best values were selected based on the accuracy attained on

the validation set. In all three algorithms, we added a base model to the ensemble until the valida-

tion set likelihood decreased or the total number of boosting iterations reached 40. The maximum

depth of CNs and MCNs was varied from 0 to 5 and the best depth was also chosen by the val-

idation set. To learn simpler models than fully connected tree distributions at the leaves of the

base models (and thus avoid overfitting), we removed all edges from the Chow-Liu trees whose

mutual information was smaller than 0.005. For learning MCNs we generated bootstrap samples

from the weighted datasets in both BDE and GBDE algorithms (Freund and Schapire, 1996). The

parameters of the mixture were then optimized via the EM algorithm using the original training set

for 50 iterations or until convergence.

Table 4.1 reports the average test set log-likelihood scores achieved by each algorithm in four

different categories of algorithms. The last row reports the average score across all datasets for

each algorithm and represents a quick shot statistic for comparing the performance of the various

algorithms. SEQEM-boosting with fixed depth MCNs is the best performing algorithm scoring

the highest average log-likelihood of -53.23. GBDE yields better generalization performance than

the BDE in all four categories. Table 4.2 reports the learning time in seconds for the various

methods. Variable depth boosted models are significantly faster to learn than fixed depth boosted

models but has lower prediction accuracy than fixed depth models in most cases. Although boosted

46

ensembles with MCNs as base models always perform better than boosted ensembles with CNs

as base models, they are much shower to learn because of the iterative nature of learning through

EM. GBDE not only has better generalization performance than BDE, but also converges faster.

4.3.2 Bagging Performance

We varied the number of bags from 5 to 40 with increments of 5. The maximum depth of the

OR trees was varied from 2 to 10. The number of bags and the depth was chosen based on the

accuracy on the validation set. In bagging MCNs, we randomized the structure using bootstrap

replicates and then learned the best parameters for that structure on the training set (Ammar et al.,

2010). EM was run for 75 iterations or until convergence. Unlike boosting, randomization of the

depth and the pool of cutset variables improved the accuracy and learning time in bagging. Table

4.3 shows the average test set log-likelihood and learning time of bagged ensembles of CNs while

Table 4.4 shows the results of bagged ensembles of MCNs. From Table 4.3 we observe that bagged

ensembles of variable depth CNs with randomized variable selection (VDR) has the highest test set

log-likelihood score of -54.09 averaged over the 20 datasets and the fastest learning time of 743.24

seconds. Similar phenomenon can be observed in bagged ensembles of MCNs in Table 4.4 – bag

of variable depth MCNs has the highest test set log-likelihood score of -53.21 averaged over the

20 datasets with the fastest learning time of 1426.02 seconds. Varying the depth and randomizing

the selection of cutset variables helps more in higher dimensional cases with very few samples

(e.g. the last five datasets) while datasets with more samples benefit from only randomizing the

selection of cutset variables. In general, increasing the variability of the base models improved the

accuracy by reducing the variance as well as significantly scaled the learning.

4.3.3 Comparison with State-of-the-art

We also compared the accuracy and learning efficiency of ECNs to five other well-cited state-of-

the-art tractable model learners: learning sum-product network with direct and indirect variable

47

Ta
bl

e
4.

1.
Te

st
se

tl
og

-l
ik

el
ih

oo
d

sc
or

es
of

bo
os

tin
g

al
go

ri
th

m
s.

W
in

ni
ng

sc
or

es
ar

e
bo

ld
ed

an
d

un
de

rl
in

es
hi

gh
lig

ht
G

B
D

E
ov

er
B

D
E

.F
D

:=
Fi

xe
d

D
ep

th
an

d
V

D
:=

V
ar

ia
bl

e
D

ep
th

.

D
at

as
et

s
C

N
M

C
N

FD
V

D
FD

V
D

B
D

E
G

B
D

E
S

E
Q

E
M

B
D

E
G

B
D

E
S

E
Q

E
M

B
D

E
G

B
D

E
S

E
Q

E
M

B
D

E
G

B
D

E
S

E
Q

E
M

N
LT

C
S

-6
.0

3
-6

.0
1

-6
.0

1
-6

.0
3

-6
.0

2
-6

.0
1

-6
.0

0
-6

.0
0

-6
.0

0
-6

.0
0

-6
.0

2
-6

.0
2

M
SN

B
C

-6
.2

6
-6

.2
1

-6
.1

5
-6

.2
5

-6
.2

3
-6

.1
5

-6
.2

1
-6

.1
7

-6
.2

5
-6

.2
2

-6
.2

3
-6

.2
4

K
D

D
C

up
2K

-2
.1

9
-2

.1
5

-2
.1

5
-2

.1
8

-2
.1

7
-2

.1
5

-2
.1

4
-2

.1
3

-2
.1

3
-2

.1
5

-2
.1

4
-2

.1
4

Pl
an

ts
-1

3.
03

-1
2.

76
-1

2.
72

-1
3.

42
-1

3.
11

-1
2.

65
-1

2.
44

-1
2.

42
-1

2.
32

-1
2.

58
-1

2.
69

-1
2.

64
A

ud
io

-4
0.

59
-4

0.
37

-3
9.

94
-4

0.
95

-4
0.

67
-3

9.
84

-3
9.

80
-3

9.
86

-3
9.

67
-3

9.
89

-4
0.

08
-4

0.
11

Je
st

er
-5

3.
25

-5
2.

98
-5

2.
87

-5
3.

55
-5

3.
45

-5
2.

82
-5

2.
57

-5
2.

69
-5

2.
44

-5
2.

82
-5

2.
94

-5
2.

78
N

et
fli

x
-5

6.
76

-5
6.

73
-5

6.
47

-5
7.

62
-5

7.
61

-5
6.

44
-5

6.
29

-5
6.

39
-5

6.
13

-5
6.

47
-5

6.
65

-5
6.

65
A

cc
id

en
ts

-3
0.

09
-3

0.
09

-2
9.

45
-3

0.
52

-3
0.

42
-2

9.
45

-2
9.

41
-2

9.
33

-2
9.

27
-2

9.
50

-2
9.

67
-3

0.
26

R
et

ai
l

-1
0.

93
-1

0.
89

-1
0.

81
-1

0.
96

-1
0.

88
-1

0.
82

-1
0.

83
-1

0.
85

-1
0.

79
-1

0.
84

-1
0.

83
-1

0.
83

Pu
m

sb
-s

ta
r

-2
4.

08
-2

4.
09

-2
3.

45
-2

4.
37

-2
4.

25
-2

3.
47

-2
3.

43
-2

3.
48

-2
3.

37
-2

3.
53

-2
3.

80
-2

6.
03

D
N

A
-8

6.
24

-8
6.

30
-8

6.
12

-8
6.

18
-8

5.
82

-8
5.

67
-8

5.
00

-8
4.

93
-8

2.
67

-8
4.

03
-8

4.
68

-8
5.

12
K

os
ar

ek
-1

1.
03

-1
0.

77
-1

0.
62

-1
0.

83
-1

0.
78

-1
0.

60
-1

0.
57

-1
0.

57
-1

0.
54

-1
0.

58
-1

0.
59

-1
0.

56
M

SW
eb

-1
0.

04
-9

.8
6

-9
.7

3
-1

0.
03

-9
.8

9
-9

.7
5

-9
.8

5
-9

.8
0

-9
.7

2
-9

.8
9

-9
.8

3
-9

.7
9

B
oo

k
-3

6.
08

-3
5.

91
-3

4.
46

-3
6.

02
-3

5.
74

-3
4.

48
-3

3.
93

-3
3.

85
-3

3.
95

-3
3.

99
-3

3.
85

-3
3.

78
E

ac
hM

ov
ie

-5
5.

18
-5

3.
46

-5
2.

00
-5

4.
61

-5
3.

87
-5

1.
53

-5
1.

63
-5

1.
75

-5
1.

14
-5

1.
75

-5
1.

48
-5

1.
92

W
eb

K
B

-1
56

.4
6

-1
55

.0
8

-1
52

.8
6

-1
54

.9
5

-1
55

.1
0

-1
52

.5
3

-1
51

.6
4

-1
51

.4
5

-1
51

.6
0

-1
51

.5
1

-1
50

.7
1

-1
50

.8
4

R
eu

te
rs

-5
2

-8
5.

82
-8

4.
90

-8
4.

03
-8

5.
16

-8
4.

83
-8

3.
69

-8
3.

65
-8

3.
61

-8
2.

29
-8

4.
09

-8
3.

73
-8

2.
65

20
N

ew
sg

rp
.

-1
56

.1
6

-1
55

.6
1

-1
53

.5
7

-1
55

.8
5

-1
55

.7
7

-1
53

.1
2

-1
53

.5
2

-1
52

.9
0

-1
51

.7
5

-1
52

.5
9

-1
52

.8
9

-1
53

.1
7

B
B

C
-2

47
.0

1
-2

47
.4

4
-2

51
.9

6
-2

50
.9

2
-2

49
.5

3
-2

51
.8

1
-2

44
.6

1
-2

37
.8

7
-2

37
.9

4
-2

42
.4

3
-2

38
.5

9
-2

48
.3

2
A

d
-1

5.
74

-1
5.

90
-1

4.
37

-1
5.

75
-1

6.
09

-1
4.

36
-1

4.
48

-1
4.

97
-1

4.
58

-1
4.

65
-1

4.
65

-1
4.

50
A

ve
ra

ge
L

L
-5

5.
15

-5
4.

87
-5

4.
49

-5
5.

31
-5

5.
11

-5
4.

37
-5

3.
90

-5
3.

67
-5

3.
23

-5
3.

78
-5

3.
60

-5
4.

22

48

Ta
bl

e
4.

2.
L

ea
rn

in
g

tim
e

co
m

pa
ri

so
n

of
bo

os
tin

g
m

et
ho

ds
.F

D
:=

Fi
xe

d
D

ep
th

an
d

V
D

:=
V

ar
ia

bl
e

D
ep

th
.

D
at

as
et

s
C

N
M

C
N

FD
V

D
FD

V
D

B
D

E
G

B
D

E
S

E
Q

E
M

B
D

E
G

B
D

E
S

E
Q

E
M

B
D

E
G

B
D

E
S

E
Q

E
M

B
D

E
G

B
D

E
S

E
Q

E
M

N
LT

C
S

27
.6

23
.7

18
1.

2
6.

5
8.

8
69

7.
5

51
2.

8
63

.6
19

3.
0

43
1.

2
36

.3
59

.8
M

SN
B

C
36

6.
3

24
5.

9
14

96
2.

2
13

6.
0

67
.7

49
15

.3
42

24
.6

54
96

.7
10

6.
4

81
7.

5
79

3.
0

84
.4

K
D

D
C

up
2K

60
0.

7
10

64
.9

57
85

.3
11

13
.8

47
0.

1
12

91
.8

15
45

4.
7

26
45

.0
17

31
.5

19
48

.7
23

13
.5

34
63

.2
Pl

an
ts

97
3.

2
86

1.
5

27
73

.7
81

.3
95

.3
31

77
.4

24
94

.6
13

67
.7

23
40

.0
22

94
.3

39
1.

7
41

2.
3

A
ud

io
13

84
.6

90
9.

0
28

89
.4

15
7.

6
11

6.
6

45
93

.8
27

44
.5

24
17

.9
28

65
.4

26
30

.4
72

1.
6

12
86

.9
Je

st
er

15
40

.0
11

18
.3

21
52

.6
21

1.
7

71
.4

21
41

.0
16

95
.2

14
19

.5
64

37
.1

12
31

.0
12

9.
0

64
8.

4
N

et
fli

x
56

10
.4

99
0.

7
45

69
.4

10
1.

1
11

5.
0

30
01

.9
33

28
.4

18
95

.3
53

21
.3

25
01

.2
44

4.
4

12
73

.1
A

cc
id

en
ts

20
49

.2
81

4.
0

33
85

.9
71

.0
70

.3
48

49
.3

34
84

.3
21

84
.5

72
28

.4
27

74
.8

35
4.

7
73

1.
7

R
et

ai
l

21
3.

4
72

.1
76

41
.1

13
9.

7
34

.9
60

70
.4

44
16

.3
81

4.
1

40
65

.4
37

79
.4

64
9.

9
79

2.
4

Pu
m

sb
St

ar
10

55
.0

28
0.

7
44

19
.9

15
3.

7
65

.1
40

79
.7

41
73

.1
26

74
.8

38
64

.3
27

12
.9

42
3.

0
58

.9
D

N
A

89
.7

12
3.

8
42

1.
3

24
.6

28
.3

47
0.

9
44

6.
6

21
8.

3
15

3.
2

52
8.

8
80

.9
16

3.
6

K
os

ar
ek

96
7.

9
91

5.
7

13
35

2.
1

47
3.

3
36

5.
4

44
66

.3
94

74
.6

26
12

.5
10

89
1.

2
88

93
.8

56
8.

3
43

23
.6

M
SW

eb
13

09
.7

18
58

.6
17

43
1.

3
45

3.
3

44
8.

6
17

42
1.

8
13

20
7.

5
41

59
.4

16
13

6.
6

12
16

7.
8

45
91

.4
63

70
.0

B
oo

k
41

1.
2

33
7.

4
87

56
.6

82
7.

5
10

20
.2

86
55

.2
66

50
.1

14
42

.8
54

51
.1

40
63

.4
33

16
.0

61
82

.6
E

ac
hM

ov
ie

30
53

.3
67

2.
4

40
37

.3
68

4.
9

99
6.

4
36

22
.6

46
46

.3
34

36
.4

20
73

.3
17

54
.7

14
32

.9
67

9.
3

W
eb

K
B

49
3.

1
10

79
.0

25
37

.5
20

10
.0

45
2.

3
19

82
.2

47
54

.5
17

69
.1

20
38

.2
28

27
.6

30
78

.2
31

70
.5

R
eu

te
rs

-5
2

53
09

.4
14

97
.4

10
68

0.
9

20
42

.5
72

7.
4

88
98

.6
14

99
5.

2
34

13
.0

52
68

.6
63

18
.6

10
67

.7
58

38
.8

20
N

ew
sG

rp
.

12
95

0.
5

74
58

.0
25

96
1.

2
51

47
.0

46
61

.7
23

13
7.

8
27

31
0.

0
14

77
2.

9
10

04
5.

2
14

15
7.

6
13

07
4.

6
32

98
7.

2
B

B
C

23
53

.1
12

09
.0

11
90

.5
54

7.
0

21
4.

8
94

7.
0

37
74

.4
16

63
.2

16
97

.8
30

22
.8

13
05

.9
69

4.
4

A
d

23
14

.9
44

2.
9

88
00

.2
37

2.
0

45
1.

3
72

69
.8

78
34

.9
20

43
.9

30
41

.0
28

38
.6

14
25

.9
34

85
.6

A
ve

ra
ge

Ti
m

e
21

53
.7

10
98

.8
70

96
.5

73
7.

7
52

4.
1

55
84

.5
67

81
.1

28
25

.5
45

47
.5

38
84

.8
18

10
.0

36
35

.3

49

Table 4.3. Average test set log-likelihood scores and learning time (in seconds) of bagged ensem-
bles of cutset networks (CNs). FD:= Fixed Depth CNs (without randomized variable selection),
FDR:= Fixed Depth CNs with randomized variable selection, VD:= Variable Depth CNs (without
randomized variable selection) and VDR:= Variable Depth CNs with randomized variable selec-
tion. Bold values indicate the best values achieved for the dataset.

Datasets
FD FDR VD VDR

LL Time LL Time LL Time LL Time
NLTCS -6.02 7.10 -6.00 2.77 -6.03 3.78 -6.03 2.46
MSNBC -6.08 1037.46 -6.08 834.41 -6.17 242.98 -6.18 421.88
KDD2KCup -2.16 4036.43 -2.15 1292.48 -2.16 2203.90 -2.15 991.36
Plants -12.43 202.97 -12.35 43.68 -12.56 175.74 -12.50 39.13
Audio -40.33 181.58 -40.16 66.83 -40.58 143.51 -40.44 71.07
Jester -53.13 97.48 -52.91 41.73 -53.23 87.49 -53.17 39.43
Netflix -57.11 214.56 -56.57 82.91 -57.34 172.67 -57.01 55.82
Accidents -30.40 407.52 -29.98 62.11 -30.30 468.07 -30.26 68.12
Retail -10.94 549.00 -10.89 249.16 -10.91 391.60 -10.89 228.94
Pumsb star -24.22 427.80 -24.04 127.68 -24.40 325.18 -24.34 133.20
DNA -85.58 50.90 -84.21 22.01 -82.30 59.96 -82.18 18.73
Kosarek -10.90 1882.70 -10.73 597.79 -10.82 2355.44 -10.75 621.16
MSWeb -9.85 6199.35 -9.79 2780.89 -9.88 4465.47 -9.84 1158.97
Book -35.97 1800.05 -36.05 1948.28 -35.75 3382.05 -35.77 1425.51
EachMovie -54.29 904.19 -53.79 357.56 -53.43 1026.41 -53.37 468.71
WebKB -155.59 1140.33 -155.12 632.09 -154.42 1056.76 -154.15 739.36
Reuters -86.11 2388.42 -84.53 1690.28 -85.49 5265.21 -84.25 1914.25
20NewsGr. -156.21 7929.19 -154.75 3903.13 -155.06 7368.10 -154.35 3953.20
BBC -243.56 1301.06 -244.56 538.71 -239.46 1275.44 -238.43 630.48
Ad -15.89 1947.93 -15.64 3499.17 -15.62 2201.61 -15.68 1883.04
Average -54.84 1635.30 -54.52 938.68 -54.30 1633.57 -54.09 743.24

interactions (ID-SPN) (Rooshenas and Lowd, 2014), learning Markov networks using arithmetic

circuits (ACMN) (Lowd and Rooshenas, 2013), learning mixtures of trees(MT) (Meila and Jordan,

2000), learning sum-product networks (SPN) (Poon and Domingos, 2011) and learning latent tree

models (LTM) (Choi et al., 2011). Table 4.5 reports the performance of these algorithms. These

results were taken from Chapter 3. For bagging and boosting we are only reporting results for set-

tings selected using the validation set for a fair comparison. Comparing the time for Bagging from

Table 4.6 with that of Boosting, we see that bagging is the fastest algorithm among the ensemble

learning techniques for cutset networks. Unlike boosting, larger depth trees and randomization

50

Table 4.4. Average test set log-likelihood scores and learning time (in seconds) of bagged ensem-
bles of small mixtures of cutset networks (MCNs). FD:= Fixed Depth MCNs (without randomized
variable selection), FDR:= Fixed Depth MCNs with randomized variable selection, VD:= Vari-
able Depth MCNs (without randomized variable selection) and VDR:= Variable Depth MCNs with
randomized variable selection. Bold values indicate the best values achieved for the dataset.

Datasets
FD FDR VD VDR

LL Time LL Time LL Time LL Time
NLTCS -6.01 21.75 -6.00 9.28 -6.02 18.84 -6.01 15.25
MSNBC -6.08 2158.86 -6.06 4849.93 -6.11 1019.29 -6.10 779.88
KDD2KCup -2.14 19635.64 -2.13 7725.90 -2.14 13373.30 -2.13 3058.92
Plants -12.38 256.71 -12.22 670.70 -12.34 248.28 -12.30 128.79
Audio -39.95 348.01 -39.72 279.86 -40.01 312.79 -39.91 273.84
Jester -52.69 171.41 -52.53 143.94 -52.71 143.27 -52.71 120.55
Netflix -56.81 443.25 -56.27 255.46 -56.76 316.84 -56.46 216.70
Accidents -29.72 554.36 -29.42 208.41 -29.71 543.19 -29.58 203.71
Retail -10.88 607.02 -10.84 312.43 -10.85 665.81 -10.83 422.11
Pumsb star -23.67 525.32 -23.51 331.86 -23.85 418.08 -23.69 146.92
DNA -85.62 39.57 -84.15 36.65 -81.93 58.34 -81.53 31.96
Kosarek -10.65 2268.80 -10.57 1166.24 -10.60 2902.81 -10.56 2502.24
MSWeb -9.78 10325.48 -9.72 7264.64 -9.77 7072.79 -9.74 5745.33
Book -34.36 1923.58 -34.31 1103.91 -33.85 1447.24 -33.89 1913.05
EachMovie -52.18 747.58 -51.80 462.82 -51.51 678.21 -51.47 519.58
WebKB -152.47 1159.21 -151.82 943.96 -151.02 1162.07 -150.95 861.10
Reuters -84.47 2736.97 -83.31 4882.07 -83.81 6696.68 -83.02 2103.03
20NewsGr. -152.75 5337.42 -151.62 3918.66 -151.90 7391.86 -151.41 5469.69
BBC -242.37 1480.25 -240.26 844.19 -238.17 1684.16 -236.99 992.65
Ad -15.12 2898.29 -15.02 2349.46 -14.94 2270.32 -14.91 3015.16
Average -54.00 2681.97 -53.56 1888.02 -53.40 2421.21 -53.21 1426.02

significantly improves the accuracy of the model. Table 4.5 and Table 4.6 essentially compares the

time versus accuracy trade-offs of boosting and bagging with CNs. ECNs algorithms are clearly

the best performing algorithms outperforming the competition on 12 out of the 20 datasets with 1

tie. ECNs are almost always better than MCNs. This shows that our new bootstrap and sequential

optimization approaches are superior to the non-sequential EM algorithm used in MCNs.

51

4.4 Chapter Summary

In this chapter, we presented novel boosting and bagging algorithms for learning ensembles of

cutset networks from data. We performed a comprehensive empirical evaluation comparing our

algorithms to state-of-the-art algorithms as well as to each other. Our results clearly show that our

new additive models are quite powerful and superior to state-of-the-art algorithms.

52

Ta
bl

e
4.

5.
Te

st
se

tl
og

-l
ik

el
ih

oo
d

co
m

pa
ri

so
n.

(T
ie

s
ar

e
no

tb
ol

de
d)

.

D
at

as
et

#V
ar

#T
ra

in
#V

al
id

#T
es

t
E

C
N

M
C

N
ID

-S
PN

A
C

M
N

M
T

SP
N

LT
M

B
ag

B
oo

st
N

LT
C

S
16

16
18

1
21

57
32

36
-6

.0
0

-6
.0

0
-6

.0
0

-6
.0

2
-6

.0
0

-6
.0

1
-6

.1
1

-6
.4

9
M

SN
B

C
17

29
13

26
38

84
3

58
26

5
-6

.0
6

-6
.1

5
-6

.0
4

-6
.0

4
-6

.0
4

-6
.0

7
-6

.1
1

-6
.5

2
K

D
D

C
up

2K
64

18
00

92
19

90
7

34
95

5
-2

.1
3

-2
.1

3
-2

.1
2

-2
.1

3
-2

.1
7

-2
.1

3
-2

.1
8

-2
.1

8
Pl

an
ts

69
17

41
2

23
21

34
82

-1
2.

22
-1

2.
32

-1
2.

74
-1

2.
54

-1
2.

80
-1

2.
95

-1
2.

98
-1

6.
39

A
ud

io
10

0
15

00
0

20
00

30
00

-3
9.

72
-3

9.
67

-3
9.

73
-3

9.
79

-4
0.

32
-4

0.
08

-4
0.

50
-4

1.
90

Je
st

er
10

0
90

00
10

00
41

16
-5

2.
53

-5
2.

44
-5

2.
57

-5
2.

86
-5

3.
31

-5
3.

08
-5

3.
48

-5
5.

17
N

et
fli

x
10

0
15

00
0

20
00

30
00

-5
6.

27
-5

6.
13

-5
6.

32
-5

6.
36

-5
7.

22
-5

6.
74

-5
7.

33
-5

8.
53

A
cc

id
en

ts
11

1
12

75
8

17
00

25
51

-2
9.

42
-2

9.
27

-2
9.

96
-2

6.
98

-2
7.

11
-2

9.
63

-3
0.

04
-3

3.
05

R
et

ai
l

13
5

22
04

1
29

38
44

08
-1

0.
83

-1
0.

79
-1

0.
82

-1
0.

85
-1

0.
88

-1
0.

83
-1

1.
04

-1
0.

92
Pu

m
sb

-s
ta

r
16

3
12

26
2

16
35

24
52

-2
3.

51
-2

3.
37

-2
4.

18
-2

2.
40

-2
3.

55
-2

3.
71

-2
4.

78
-3

1.
32

D
N

A
18

0
16

00
40

0
11

86
-8

1.
53

-8
2.

67
-8

5.
82

-8
1.

21
-8

0.
03

-8
5.

14
-8

2.
52

-8
7.

60
K

os
ar

ek
19

0
33

37
5

44
50

66
75

-1
0.

56
-1

0.
54

-1
0.

58
-1

0.
60

-1
0.

84
-1

0.
62

-1
0.

99
-1

0.
87

M
SW

eb
29

4
29

44
1

32
75

0
50

00
-9

.7
2

-9
.7

2
-9

.7
9

-9
.7

3
-9

.7
7

-9
.8

5
-1

0.
25

-1
0.

21
B

oo
k

50
0

87
00

11
59

17
39

-3
3.

85
-3

3.
78

-3
3.

96
-3

4.
14

-3
6.

56
-3

4.
63

-3
5.

89
-3

4.
22

E
ac

hM
ov

ie
50

0
45

24
10

02
59

1
-5

1.
47

-5
1.

14
-5

1.
39

-5
1.

51
-5

5.
80

-5
4.

60
-5

2.
49

†
W

eb
K

B
83

9
28

03
55

8
83

8
-1

50
.9

5
-1

50
.7

1
-1

53
.2

2
-1

51
.8

4
-1

59
.1

3
-1

56
.8

6
-1

58
.2

0
-1

56
.8

4
R

eu
te

rs
-5

2
88

9
65

32
10

28
15

40
-8

3.
02

-8
2.

29
-8

6.
11

-8
3.

35
-9

0.
23

-8
5.

90
-8

5.
07

-9
1.

23
20

N
ew

sg
rp

.
91

0
11

29
3

37
64

37
64

-1
51

.4
1

-1
51

.7
5

-1
51

.2
9

-1
51

.4
7

-1
61

.1
3

-1
54

.2
4

-1
55

.9
3

-1
56

.7
7

B
B

C
10

58
16

70
22

5
33

0
-2

36
.9

9
-2

37
.8

7
-2

50
.5

8
-2

48
.9

3
-2

57
.1

0
-2

61
.8

4
-2

50
.6

9
-2

55
.7

6
A

d
15

56
24

61
32

7
49

1
-1

4.
91

-1
4.

36
-1

6.
68

-1
9.

00
-1

6.
53

-1
6.

02
-1

9.
73

†
A

ve
ra

ge
L

L
-5

3.
16

-5
3.

16
-5

4.
50

-5
3.

89
-5

5.
83

-5
5.

55
-5

5.
32

†

53

Ta
bl

e
4.

6.
R

un
tim

e
co

m
pa

ri
so

n
(i

n
se

co
nd

s)
.†

in
di

ca
te

s
th

at
th

e
al

go
ri

th
m

di
d

no
tt

er
m

in
at

e
in

48
hr

s.

D
at

as
et

s
B

oo
st

in
g

B
ag

gi
ng

M
C

N
ID

-S
PN

A
C

M
N

B
D

E
G

B
D

E
S

E
Q

E
M

C
N

M
C

N
C

N
M

C
N

C
N

M
C

N
C

N
M

C
N

N
LT

C
S

27
.6

0
51

2.
80

82
.6

0
28

9.
51

18
1.

17
19

3.
04

2.
77

9.
28

36
.5

7
30

7.
00

24
2.

40
M

SN
B

C
36

6.
28

42
24

.6
4

99
2.

60
57

87
.6

8
14

96
2.

22
10

6.
38

83
4.

41
48

49
.9

3
21

77
.7

3
90

35
4.

00
57

9.
90

K
D

D
C

up
2K

60
0.

73
15

45
4.

69
69

66
.5

5
13

70
3.

42
57

85
.3

0
17

31
.4

7
99

1.
36

30
58

.9
2

19
88

.4
9

38
22

3.
00

64
5.

50
Pl

an
ts

97
3.

17
24

94
.6

0
26

68
.3

0
18

29
.7

4
27

73
.6

7
23

40
.0

1
43

.6
8

67
0.

70
13

5.
00

10
59

0.
00

11
9.

40
A

ud
io

13
84

.6
0

27
44

.5
1

15
29

.6
0

20
45

.9
4

28
89

.4
3

28
65

.3
7

66
.8

3
27

9.
86

18
7.

78
14

23
1.

00
16

63
.9

0
Je

st
er

15
39

.9
5

16
95

.2
1

33
54

.3
0

10
63

.9
0

21
52

.5
8

64
37

.0
8

41
.7

3
14

3.
94

10
1.

15
†

36
65

.8
0

N
et

fli
x

56
10

.4
0

33
28

.4
4

39
82

.8
6

22
43

.7
9

45
69

.4
4

53
21

.2
8

82
.9

1
25

5.
46

22
4.

38
†

18
37

.4
0

A
cc

id
en

ts
20

49
.2

3
34

84
.3

0
18

88
.7

1
23

34
.0

4
33

85
.8

6
72

28
.4

4
62

.1
1

20
8.

41
19

5.
49

†
79

3.
40

R
et

ai
l

21
3.

41
44

16
.3

2
28

5.
11

11
32

.0
0

76
41

.0
5

40
65

.4
4

22
8.

94
42

2.
11

10
4.

67
21

16
.0

0
12

.5
0

Pu
m

sb
-s

ta
r

10
55

.0
3

41
73

.1
1

10
15

.1
3

29
08

.7
1

44
19

.9
1

38
64

.3
2

12
7.

68
33

1.
86

23
3.

79
18

21
9.

00
37

4.
00

D
N

A
89

.6
9

44
6.

61
12

8.
02

33
1.

83
42

1.
34

15
3.

18
18

.7
3

31
.9

6
57

.6
9

15
08

50
.0

0
39

.9
0

K
os

ar
ek

96
7.

93
94

74
.5

7
25

64
.8

2
56

93
.6

6
13

35
2.

09
10

89
1.

22
59

7.
79

25
02

.2
4

14
1.

16
†

58
5.

40
M

SW
eb

13
09

.7
1

13
20

7.
53

36
46

.5
4

12
26

0.
44

17
43

1.
33

16
13

6.
63

27
80

.8
9

72
64

.6
4

64
2.

80
†

28
6.

30
B

oo
k

41
1.

21
66

50
.1

2
44

51
.5

2
14

84
.7

0
87

56
.6

4
54

51
.0

8
33

82
.0

5
14

47
.2

4
15

4.
42

12
54

80
.0

0
30

35
.0

0
E

ac
hM

ov
ie

30
53

.3
1

46
46

.3
4

29
73

.9
9

35
60

.8
4

40
37

.2
8

20
73

.3
3

46
8.

71
51

9.
58

20
4.

81
78

98
2.

00
98

81
.1

0
W

eb
K

B
49

3.
07

47
54

.4
9

11
85

.2
5

16
43

.6
5

25
37

.4
8

20
38

.2
0

73
9.

36
86

1.
10

16
0.

40
†

70
98

.3
0

R
eu

te
rs

-5
2

53
09

.4
1

14
99

5.
21

57
70

.7
3

46
37

.3
1

10
68

0.
87

52
68

.5
6

19
14

.2
5

21
03

.0
3

15
25

.2
0

†
27

09
.6

0
20

N
ew

sg
rp

.
12

95
0.

45
27

31
0.

00
74

63
.0

5
77

74
.8

5
25

96
1.

20
10

04
5.

16
39

53
.2

0
54

69
.6

9
11

77
.1

6
†

16
25

5.
30

B
B

C
23

53
.0

6
37

74
.4

0
14

97
.8

2
18

23
.5

1
11

90
.4

7
16

97
.8

0
63

0.
48

99
2.

65
70

.2
1

41
57

.0
0

18
62

.2
0

A
d

23
14

.9
1

78
34

.9
2

26
3.

50
31

88
.4

4
88

00
.2

2
30

40
.9

7
22

01
.6

1
30

15
.1

6
15

5.
38

†
64

96
.4

0
A

ve
ra

ge
Ti

m
e

21
53

.6
6

67
81

.1
4

26
35

.5
5

37
86

.9
0

70
96

.4
8

45
47

.4
5

95
8.

47
17

21
.8

9
48

3.
71

†
29

09
.1

9

CHAPTER 5

MERGING STRATEGIES FOR SUM-PRODUCT-CUTSET NETWORKS

5.1 Introduction

In this chapter, we propose sum-product-cutset networks (SPCNs) – a novel representation that

combines the power of deep, tractable probabilistic architectures called sum-product networks

(SPNs) (Poon and Domingos, 2011) with fast learnability of cutset networks (CNs). Recall that

an SPN consists of alternating levels of sum and product nodes with trivial univariate distributions

at each leaf. Sum nodes are latent and represent mixtures over their child sub-SPNs while prod-

uct nodes represent decomposition (partition) of observed variables into independent components.

Our empirical evaluations in previous chapters show that the performance of CNs can be greatly

improved using mixtures or sum nodes. We hypothesize that by using product nodes which take

advantage of decomposition, in addition to the sum nodes, we can further improve their perfor-

mance. This yields a novel deep architecture, which we call SPCNs, which has a sum-product

network at the top with cutset networks at the leaves.

SPCNs have two major advantages over SPNs and CNs. First, SPCNs allow conditioning (sum

nodes) over both observed and latent variables. Models learned using this general assumption

are often much more compact and accurate than SPNs and CNs. Second, unlike SPNs, SPCNs

have CNs as leaf nodes. CNs are much superior in terms of representation power than univariate

distributions; they represent a joint probability distribution over large number of variables, yet

admit polynomial time inference and learning algorithms.

The second contribution of this chapter is proposing an algorithm that learns more compact

and accurate representations of SPCNs. Existing structure learning algorithms for SPNs, and the

ones proposed for CNs in the previous chapters (and thus by extensions for SPCNs) induce a tree

54

55

structured model – there exists a single conditioning path from the root to each internal node. Tree

SPCNs are a very small and inefficient sub-class of the possible structures, and thus by inducing

only tree models our learning algorithms may miss important structures having high accuracy. We

address this limitation by developing post-processing approaches that induce graph SPCNs from

tree SPCNs. The main idea in our approach is as follows. We first learn a tree structured model over

latent and observed nodes using standard algorithms, and then convert the tree structured model to a

graph structured model by processing the learned model in a bottom-up fashion, merging two sub-

networks (sub-SPNs, sub-CNs or sub-SPCNs) if the distributions represented by them are similar

and defined over the same variables. To convert this idea into a general-purpose algorithm, we

have to solve two problems: (1) how to find similar sub-networks, and (2) how to merge them into

one sub-network. Both problems are computationally expensive to solve and therefore we develop

approximate algorithms for solving them, which is the main contribution of this chapter. The

key benefits of graph representations over tree representations include (1) smaller computational

complexity which facilitates faster online inference, and (2) better generalization accuracy because

of reduced variance, at the cost of slight increase in the learning time.

The third contribution of this chapter is a thorough experimental evaluation of our proposed

merging algorithms on twenty benchmark datasets, all of which were used in several previous

studies. Our experiments clearly show that merging always improves the performance of tree

networks, measured in terms of test set log-likelihood score and prediction time. We also experi-

mentally compared bagged ensembles of graph structured models with state-of-the-art approaches

such as ensembles of cutset networks (Rahman and Gogate, 2016a) introduced in Chapter 4, sum-

product networks with direct and indirect interactions (Rooshenas and Lowd, 2014), sum-product

networks learned via the SVD-based approach (Adel et al., 2015), arithmetic circuits with Markov

networks (Lowd and Rooshenas, 2013), and mixtures of cutset networks (Rahman et al., 2014) on

the same datasets, and found that our new approach yields better test set log likelihood score on

8 out of the 20 datasets with two ties. This clearly demonstrates the power of our new merging

algorithms.

56

The rest of the chapter is organized as follows. In the next section, we revisit SPNs and describe

a top-down algorithm for learning these models from data. In section 5.3, we formally introduce

SPCNs. In section 5.4, we describe powerful merging approaches for converting an arbitrary tree

structured representation to a graph structured representation. Experimental results are presented

in section 5.5 followed by a summary of our achievements in section 5.6.

The research presented in this chapter is based on (Rahman and Gogate, 2016b).

5.2 Top Down Learning of SPNs

As mentioned in section 2.3.5, any (discrete) probability distribution over a set of variables X can

be expressed using an arithmetic circuit (AC) (Darwiche, 2003) or a sum-product network (SPN)

(Poon and Domingos, 2011). SPNs used in this dissertation are equivalent to ACs (as well as

AND/OR decision diagrams (Mateescu et al., 2008)) defined over latent and observed variables.

However, in order to be consistent, we will use the term SPNs throughout the dissertation. We

will distinguish between the following types of SPNs: SPNs with sum nodes defined over only

the observed variables, SPNs with sum nodes defined over only latent variables and SPNs with

sum nodes defined over either observed or latent variables. All three have different representation

powers. SPNs with observed sum nodes are CNs with product nodes; SPNs with both observed

and latent sum nodes are our proposed SPCNs and are more general and therefore more powerful

than the other representations.

The literature abounds with algorithms for learning the structure of SPNs and ACs from data,

starting with the work of Lowd and Domingos (Lowd and Domingos, 2008) who proposed to

learn ACs over observed variables by using the AC size as a learning (inductive) bias within a

Bayesian network structure learning algorithm, and then compiling the induced Bayesian network

to an AC. Later Lowd and Rooshenas (Lowd and Rooshenas, 2013) extended this algorithm to

learn a Markov network having small AC size. The latter performs much better in terms of test set

57

log likelihood score than the former because of the increased flexibility afforded by the undirected

Markov network structure.

A limitation of the two aforementioned approaches for learning ACs is that they do not use

latent variables; it turns out that their accuracy can be greatly improved using latent variables.

Unfortunately, the parameter learning problem (a sub-step in structure learning) – the problem of

learning the weights or probabilities of a given SPN structure – is much harder in presence of

latent variables. In particular, the optimization problem is non-convex, which necessitates the use

of algorithms such as gradient descent and expectation maximization that only converge to a local

minima. However, since learning is often an offline process, this increase in complexity is often

not a big issue.

The first approach for learning the structure of SPNs with latent variables as sum nodes and ob-

served variables appearing only at the leaf nodes is due to Gens and Domingos (Gens and Domin-

gos, 2013). An issue with this approach is that it learns only directed trees instead of (directed

acyclic) graphs and as a result is unable to fully exploit the power and flexibility of SPNs. To

address this limitation, (Dennis and Ventura, 2012; Peharz et al., 2013; Dennis and Ventura, 2015)

proposed to learn graph structured SPNs over latent variables while (Rooshenas and Lowd, 2014)

proposed to learn graph structured SPNs over observed variables at the leaves. A drawback of these

approaches is that they are unable to learn a graph SPN over both observed and latent variables. In

this chapter, we address this limitation.

In the following, we focus on top-down approaches that directly learn the structure of SPNs

from data. Instead of learning Bayesian and Markov networks and then compiling them into SPNs

(this is the approach used in (Lowd and Domingos, 2008; Lowd and Rooshenas, 2013)), the key

advantage of this direct approach is that the size of the SPN can be controlled in a straight-forward

manner, which is typically bounded from above by the data size.

Algorithm 4 shows a generic recursive learning algorithm for learning tree SPNs from data,

which is loosely based on the algorithm proposed by Gens and Domingos (Gens and Domingos,

58

Algorithm 4: LEARNSPN(D,X)
Input: Set of Training InstancesD and set of variables X
Output: An SPN representing a distribution over X

1 begin
// 1. Base Case

2 if conditions for inducing the base models are satisfied
3 then return LEARNBASEMODEL(D,X)

// 2. Decomposition Step
4 if X can be partitioned into subsets Xj

5 then return
∏

j LEARNSPN(D,Xj)
// 3. Splitting Step

6 PartitionD into subsets of similar instancesDi

7 return
∑

i
|Di|
|D| LEARNSPN(Di,X)

8 end

2013). The algorithm has three steps: base case, decomposition and splitting. In the base case, if

the conditions for learning the base model are satisfied, for example, when the size of the training

data is small or only one variable remains, then the algorithm learns the corresponding trivial

distribution and terminates the recursion. In the decomposition step, the algorithm tries to partition

the variables into roughly independent components Xj ⊆ X such that P (X) =
∏

j P (Xj) and

recurses on each component, inducing a product node. If neither the base case nor the conditions

for the decomposition step are satisfied, then the algorithm partitions the training instances into

clusters of multiple instances, inducing a sum node, and recurses on each part.

Several techniques proposed in literature for learning SPNs can be understood as special cases

of Algorithm 4, with the difference between them being the approaches used at the three steps.

Table 5.1 gives examples of techniques from the SPN literature that are based on Algorithm 4.

Gens and Domingos (Gens and Domingos, 2013), and Gogate et al. (Gogate et al., 2010) stop

when only one variable remains and induce a univariate distribution; Rahman et al. (Rahman

et al., 2014), Rahman and Gogate (Rahman and Gogate, 2016a) and Vergari et al. (Vergari et al.,

2015), stop when the entropy of the data is small or use a Bayesian criteria, and induce an SPN

corresponding to a tree distribution (tree BN/MN) at the leaves using the Chow-Liu algorithm

(Chow and Liu, 1968) in polynomial time. Rooshenas and Lowd (Rooshenas and Lowd, 2014)

59

Table 5.1. Examples of SPN structure learning approaches in the literature that follow the pre-
scription given in Algorithm 4. Base case is the stopping criteria for the recursive algorithm.

Reference Base Case Decomposition Splitting
(Gens and Domingos, 2013) Univariate distribution Independence tests Latent Variables

(Gogate et al., 2010) Univariate distribution Independence assumption Conjunctive fixed-length features
(Rahman et al., 2014) Tree Markov networks not used Observed variables

(Rahman and Gogate, 2016a) Tree Markov networks not used Observed and Latent variables
(Vergari et al., 2015) Tree Markov networks Independence tests Latent Variables

(Rooshenas and Lowd, 2014) Arithmetic Circuits Independence tests Latent Variables

learns an SPN over observed variables in the base case using the algorithm described in (Lowd

and Domingos, 2008). In the decomposition step, Gens and Domingos, Rooshenas and Lowd, and

Vergari et al. use pair-wise variable independence tests (e.g., the G-test) for inducing the product

nodes; Gogate et al. uses no independence tests and instead assume that each split decomposes the

variables into multiple components; while Rahman et al. ignore the decomposition step inducing

only sum nodes. Gens and Domingos, Rooshenas and Lowd, and Vergari et al. split only over

latent variables using a naive Bayes mixture model with hard EM, Gogate et al. and Rahman et al.

split only over observed variables which are heuristically chosen or their features, while Rahman

and Gogate split over both latent and observed variables.

Although, the structure learning problem is NP-hard in SPNs having only observed variables as

well as in SPNs having both observed and latent variables, the parameter (weight) learning problem

is easier in the former than the latter. In particular, parameter learning can be done in closed form

when the SPN has only observed variables. On the other hand, the optimization problem is non-

convex in the presence of latent variables and one has to use iterative algorithms having high

computational complexity such as hard and soft EM to solve the non-convex problem (cf. (Poon

and Domingos, 2011; Meila and Jordan, 2000; Rahman and Gogate, 2016a)). Thus, although latent

variables help yield a more powerful representation, they often significantly increase the learning

time.

60

5.3 Sum-Product-Cutset Networks

Formally, a sum-product-cutset network (SPCN) is a rooted directed acyclic graph which consists

of three types of internal nodes: latent-sum nodes, observed-sum nodes, and product nodes with

cutset networks as leaf nodes (see for example Figure 5.1). Latent-sum nodes represent mixtures,

and observed-sum nodes represent conditioning of observed variables, similar to the nodes in the

OR search tree. Similar to SPNs, we impose the following restrictions:

1. Each node t represents a conditional distribution over variables mentioned in its descendants

given an assignment of values to all observed and latent variables on all paths between the

root node and t.

2. The distributions over child nodes of a latent sum-node are defined over the same set of

variables.

3. Each observed sum-node is labeled by a discrete variable v and the distribution over its child

nodes is defined over the remaining discrete (namely, all but v) variables.

4. Let a product node t have k child nodes. Then for each pair of children 〈chi, chj〉 of t

Scope(chi) ∩ Scope(chj) = ∅.

Representationally, SPCNs are equivalent to SPNs in that we can easily transform an SPCN

to an SPN in linear time. The algorithm for doing this is straight-forward. All we have to do is

transform each tree Bayesian network to an SPN by converting the former to a junction tree and

then inducing an SPN from the junction tree. In summary,

Proposition 1. Each SPCN having O(p) parameters can be converted in linear time and space to

an equivalent SPN having O(p) parameters.

Thus, inference procedures for SPNs can be used to perform inference over SPCNs. However,

note that learning algorithms for the two are much different. In fact, learnng is much faster and

easier in SPCNs and as a result SPCNs are often more accurate than SPNs.

61

+

×

A +

B

CNA,C,D,E ×

CNA,D CNC,E
CND,E CND,ECNB,C CNB,C

0.65 0.35

0.25 0.75

0.4 0.6

Figure 5.1. An SPCN rooted by a latent-sum node (denoted by a +) over discrete variables
X = {A,B,C,D,E}. All observed and latent variables are over binary domains and left edges
represent conditioning by value 0 or false and right edges represent conditioning by value 1 or
true. A and B are the only observed cutset variables. Product nodes (denoted by ×) decompose
the model differently and each leaf node (denoted by a rectangle) is a cutset network (CN) over the
remaining observed variables (appears in the subscript as a comma separated list).

5.4 Merging Strategies: From Trees to Graphs

A key problem with existing methods for learning SPCNs is that they induce tree models, except at

the leaves. It is well known in the probabilistic inference literature (Dechter and Mateescu, 2007;

Darwiche, 2003, 2001) that tree SPCNs can be exponentially larger than graph SPCNs, which

are obtained from the former by merging identical sub-SPCNs (see Fig.5.2(b) and (c)). Thus,

converting tree SPCNs to graph SPCNs is a good idea because they can significantly improve the

time required to make predictions.

From a learning point of view, graph SPCNs can potentially improve the generalization per-

formance by addressing the following issue associated with the LEARNSPN algorithm: as the

depth of the node increases,1 the number of training examples available for learning a sub-SPCN

rooted at the node decreases exponentially. Merging increases the number of examples available

at a node, since examples from all directed paths from the root to the node can be combined. This

reduces the variance of the parameter estimates while having no effect on their bias. Since the

1The depth of a node equals the number of sum nodes from the root to the node.

62

V1

× ×

V2 : 0.6 V3 V2 : 0.7 V3

V4 : 0.1 V4 : 0.4 V4 : 0.1 V4 : 0.4

0.2 0.8

0.3 0.7 0.3 0.7

(a)

V1

× ×

V2 : 0.6 V3 V2 : 0.7

V4 : 0.1 V4 : 0.4

0.2 0.8

0.3
0.7

(b)

+

× ×

V2 : 0.6 V1 : 0.3 V3 V1 : 0.8 V2 : 0.7

V4 : 0.1 V4 : 0.4

0.2 0.8

0.3 0.7

(c)

Figure 5.2. Three example SPNs over variables {V1, V2, V3, V4}. We are assuming that all variables
are binary and take values from the domain {0, 1}. Leaf nodes express univariate distributions. For
example, the node V2 : 0.6 expresses the probability distribution P (V2 = 1) = 0.6. Sum nodes
are labeled either by a variable which denotes conditioning over the variable or by a + sign which
denotes that the sum node is latent. All left (right) arcs emanating from a sum node correspond
to an assignment of 1 (0) to the labeled variable. Product nodes are labeled by ×. (a) Tree SPN
(SPN which is a rooted directed acyclic tree) that decomposes according to a tree Markov network
V4 − V3 − V1 − V2. (b) Graph SPN that is equivalent to the tree SPN given in (a) obtained by
merging identical sub-trees. (c) Graph SPCN over latent and observed sum nodes.

mean-squared error of the model equals bias squared plus the variance, graph SPCNs are likely to

be more accurate than tree SPCNs. The following proposition formalizes this intuition:

Proposition 2. Let S1, S2 and S1,2 be three (sub-)SPCNs having the same structure and defined

over the same variables but whose parameters are estimated from training examples T1, T2 and

T1,2 = T1 ∪ T2 respectively. Then assuming that the datasets are generated uniformly at random

from a distribution whose structure decomposes according to S1 (and thus S2 and S1,2), the sample

variance of S1,2 is smaller than S1 and S2.

Proof. The sample variance of S1, S2 and S1,2 is given by V ar(S1)/|T1|, V ar(S2)/|T2| and

V ar(S1,2)/|T1∪T2| respectively where V ar(S1), V ar(S2) and V ar(S1,2) is the (population) vari-

ance of the distributions induced by S1, S2 and S1,2. Since V ar(S1) = V ar(S2) = V ar(S1,2) (our

assumption), |T1 ∪ T2| ≥ |T1| and |T1 ∪ T2| ≥ |T2|, the proof follows.

5.4.1 Our Approach

The main idea in our approach is to relax the identical sub-SPCN requirement and merge similar

sub-SPCNs. We use this relaxation because the sub-SPCNs are estimated from data and the likeli-

63

Algorithm 5: MERGE(S,X ,ε)
Input: SPCN S
Output: Merged SPCN S ′

1 begin
2 S ′ = S
3 repeat
4 for i = 1 to |X| do
5 Si = sub-SPCNs in S ′ having exactly i variables in their scope
6 ρ = Partition Si into cells having identical scopes
7 for each cell ρj of ρ do
8 Merge all sub-SPCNs in ρj such that the distance between them is bounded

by ε and S ′ is a DAG

9 until convergence;
10 return S ′

hood that they will be identical is slim to none. In this context, we develop methods for answering

the following two questions: which sub-SPCNs to merge and how to merge them.

One approach for selecting candidate sub-SPCNs for merging is to compare the distance be-

tween the distributions represented by the two sub-SPCNs, given that they are defined over the

same variables, and check if the distance is smaller than a threshold. However, computing the

distance between two sub-SPCNs can be quite time-consuming. Therefore, we propose to use

the following mean-field style approximation (Wiegerinck, 2000) of the distance between the two

distributions:

D(P ||Q) ≈ 1

|X|
∑
v∈X

D(P (v)||Q(v))

where P and Q are two distributions over X and D is a distance function (e.g., KL divergence,

relative error, Hellinger distance, etc.). Since single-variable marginal distributions in each sub-

SPCN can be computed in time that is linear in the number of nodes of the sub-SPCN (and in

practice can be pre-computed), our proposed distance method is also linear time.

Next, we describe our greedy, bottom-up approach for merging similar sub-SPCNs of a given

SPCN S (see Algorithm 5). The algorithm begins by initializing S ′ to S and repeats the following

steps until convergence. For all sub-SPCNs Si of S ′ that are defined over exactly i variables, it

64

partitions the sub-SPCNs based on their scopes such that all sub-SPCNs having the same scope

are in the same cell (part) ρj of the partition ρ. Then, in each cell ρj , ensuring that S ′ remains

a DAG, it merges all sub-SPCNs such that the distance between them is bounded by ε, a user-

defined constant that can be set using a validation set. Another option is to merge two sub-SPCNs

if the accuracy on the validation set improves, thereby using a greedy strategy (in our experiments,

we used both strategies). Note that the for-loop of the algorithm operates in a bottom-up fashion

similar to reduced-error pruning in decision trees. The loop starts at the leaves, which are sub-

SPCNs having just one variable in their scope (i = 1), and then proceeds towards the root which

includes all variables in its scope (i = |X|). The algorithm is guaranteed to converge in finite

number of iterations because at each iteration, the size of the SPCN can only decrease or remain

the same.

5.4.2 Practical Merging Strategies

We complete the description of the algorithm by describing how to merge two similar sub-SPCNs

S1 and S2. A straight-forward method is to merge the datasets at the two sub-SPCNs and then learn

a new graph sub-SPCN, say S1,2 from the new dataset. An issue with this approach is that since our

basic algorithm (see Algorithm 4) learns tree SPCNs, we have to call Algorithm 5 again to convert

the newly created tree SPCN to a graph SPCN. This may yield a self-recursive algorithm with

infinite loops that may not terminate. To overcome this computational difficulty, we propose to not

relearn the structure, but only update the weights. In particular, we use the following approach. We

consider two candidate structures for the merged sub-SPCN; the first structure is identical to S1

and the second to S2. Then, we learn the weights of the two candidate sub-SPCN using the merged

dataset and choose the one that yields the maximum improvement in accuracy (log-likelihood

score) over the validation set.

There are two types of merging that require special attention. The first type is when the two

sub-SPCNs are children of the same sum node. In this case, if the sum node corresponds to splitting

65

over an observed variable, we can replace the sum-node by a product node having two children

as depicted in Fig. 5.3(a). On the other hand, if the sum node is a latent node then the sum node

can be deleted without changing the underlying distribution. This is depicted in Fig. 5.3(b). This

type of merging is useful because it substantially simplifies the model, allowing us to either prune

sub-SPCNs (see Fig. 5.3(b)) or take advantage of problem decomposition (see Fig. 5.3(a)). This

yields better generalization and faster inference.

Vi

S1 S2

0.3 0.7
⇒ Vi

S1,2

0.3 0.7

⇒ ×

Vi : 0.3 S1,2

(a) Merge child nodes of observed sum node

+

S1 S2

0.3 0.7
⇒ +

S1,2

0.3 0.7

⇒
S1,2

(b) Merge child nodes of latent sum node

Figure 5.3. Figure demonstrating how to simplify and thus reduce the size of the SPCN after
merging. As before, sum nodes are labeled either by a variable which denotes conditioning over
the variable or by a + sign which denotes that the sum node is latent. All left (right) arcs emanating
from a sum node correspond to an assignment of 1 (0) to the labeled variable. Product nodes are
labeled by ×. S1,2 is an SPCN obtained by merging SPCNs S1 and S2. (a): shows how the SPCN
can be reduced when the two child nodes of an observed sum node are merged. The node Vi : 0.3
represents a univariate probability distribution over Vi with P (Vi = 1) = 0.3. (b): shows how the
SPCN can be reduced when the two child nodes of a latent sum node are merged.

A second type of merging that requires special attention is when the two sub-SPCNs to be

merged correspond to tree Markov (or Bayesian) networks over the observed variables. In this

case, unlike in the general case, we propose to learn both the structure and parameters of the

merged sub-SPCN (using the merged dataset). This is because both the structure and parameter

learning problem in such SPCNs can be solved in polynomial time using the Chow-Liu algorithm

(Chow and Liu, 1968).

66

5.5 Experiments

5.5.1 Setup

We evaluated the impact of merging on 20 real world benchmark datasets (see Table 3.1) which

has been used in the previous chapters as well. All of our experiments were performed on a quad-

core Intel i7 2.7 GHz machines with 16 GB RAM. Each algorithm was given a time bound of 48

hours, after which the algorithm was terminated.

5.5.2 Algorithms Evaluated

We implemented two variants of SPCNs: SPCNs in which sum nodes split over value assignments

to a latent variable and SPCNs in which sum nodes split over value assignments to a heuristically

chosen observed variable. Henceforth, we will call the two SPCNs L-SPCNs and O-SPCNs

respectively. We learned tree versions of both SPCNs using Algorithm 4. We used tree Markov

networks (MNs) as base models in both SPCNs; as mentioned earlier tree MNs can be learned in

polynomial time using the Chow-Liu algorithm.

To learn sum nodes in L-SPCNs, following Gens and Domingos (Gens and Domingos, 2013),

we employed hard EM over a naive Bayes mixture model with three random restarts for 15 itera-

tions to split the training instances into two clusters, i.e. we only considered binary splits for latent

sum nodes for better regularization and faster learning as in (Vergari et al., 2015). To learn sum

nodes in O-SPCNs, we employed two heuristics proposed in our previous work (Rahman et al.,

2014; Rahman and Gogate, 2016a). The first heuristic selects an observed variable that has the

highest information gain. The second heuristic selects an observed variable based on the following

mutual information based criteria: given a set of variables X and training data D, we score each

variable v ∈ X using Score(v) =
∑

u∈X\v ID(v, u) where ID(v, u) is the mutual information

between v and u according toD and choose a variable having the highest score. Variables having

high mutual information score are likely to yield better decompositions, which in turn will likely

yield small depth SPCNs having high generalization accuracy.

67

In both L-SPCNs and O-SPCNs, we learn product nodes using the technique described in

Gens and Domingos (Gens and Domingos, 2013). We first compute the mutual information graph

given data (similar to the Chow-Liu algorithm). This graph is a complete weighted graph over

all variables, in which each edge is weighted by the mutual information between the two corre-

sponding variables. Then, we prune weak edges from the graph using a threshold chosen from

β: {0.001, 0.0015, 0.01, 0.5}. Finally, we find connected components of the pruned graph, and

recursively learn a sub-SPCNs over variables and data in each connected component.

We varied the depth h of SPCNs from {4, 5, 6, 7, 10}.2 We use the following stopping criteria

for learning the base model (tree Markov network): stop when the number of samples N at a node

is less than 10 or the maximum depth is reached. All parameters in the model were smoothed using

1-Laplace smoothing.

For each possible configuration of h and β we learned both a tree L-SPCN and a tree O-SPCN.

In case of O-SPCNs, we also varied the heuristic to choose an observed variable. The best tree

SPCN in each category was chosen according to the average log-likelihood score achieved on the

validation set and provided as the input to the merging algorithm (see Algorithm 5). Then, we

applied practical merging and simplification strategies described in Section 5.4.2 on the merged

SPCN and report the test set log-likelihood score of the merged model that achieved the highest

log-likelihood score on validation set.3 We used Manhattan distance to measure the distance be-

tween two candidate sub-SPCNs and chose a threshold (ε) from {0.0001, 0.001, 0.01, 0.1} using

the validation set. Finally, after each merge we performed the following sanity/model complexity

check. If the merged sub-SPCN had smaller log-likelihood than a tree Markov network on the

validation set, we replaced the merged sub-SPCN by the latter.

2Note that the overall depth of the SPCN is h plus the depth of the SPCN corresponding to the tree Markov network
(our base model). Thus, the overall depth can be quite large (> 30 in most cases).

3Our experiments showed that merging sub-SPCNs that are rooted at child nodes of the same sum node (the cases
given in Fig. 5.3) was often more beneficial as compared to merging sub-SPCNs that are child nodes of two different
sum nodes.

68

5.5.3 Impact of Merging on Test Set Log-Likelihood

Table 5.2 shows the results of our experiments for evaluating the impact of merging on the accu-

racy, time complexity and prediction time of L-SPCNs and O-SPCNs. In terms of learning time,

we see that for L-SPCNs, merging requires a significant amount of time. This is to be expected

because parameter learning is computationally expensive in presence of latent variables. To up-

date the parameters of candidate sub-, we ran hard EM with the merged dataset for 20 iterations

or until convergence. For some L-SPCNs (e.g. Plants), merging was a factor of 200 slower than

learning tree models. The reason for this anomaly is that the corresponding tree L-SPCNs have

large number of latent sum nodes. On the other hand, merging is significantly faster in O-SPCNs

than L-SPCNs because the parameters are updated in closed-form, by making only one pass over

the data as well as the model.

We measure the prediction time by the number of edges attached to the sum nodes (see columns

|T|, |G| and CR in Table 5.2) since the prediction time is linearly proportional in the number of

these weights. We see that in general merging yields reductions in complexity of inference by

reducing the size of the network in majority of cases.

In terms of accuracy, we see from Table 5.2 that merging improves the test set log-likelihood

score for the majority of datasets, clearly demonstrating our intuition that it will yield better gen-

eralization, primarily because it significantly reduces the variance at the cost of slightly increasing

the bias.

5.5.4 Comparison with State-Of-The-Art

Finally, we demonstrate that we can achieve state-of-the-art performance using our merging algo-

rithm. For this, following our previous work (Rahman and Gogate, 2016a; Vergari et al., 2015),

we learn bagged ensemble of tree SPCNs and graph SPCNs. It was shown in previous studies

that bagged ensembles of tree SPCNs (especially L-SPCNs) achieves state-of-the-art results. In

69

Ta
bl

e
5.

2.
Ta

bl
e

sh
ow

in
g

th
e

im
pa

ct
of

m
er

gi
ng

on
th

e
av

er
ag

e
te

st
-s

et
lo

g
lik

el
ih

oo
d,

tim
e

co
m

pl
ex

ity
an

d
pr

ed
ic

tio
n

tim
e

of
L

-S
PC

N
s

an
d

O
-S

PC
N

s
(a

ll
va

lu
es

ro
un

de
d

to
tw

o
de

ci
m

al
pl

ac
es

).
W

e
us

e
th

e
fo

llo
w

in
g

no
ta

tio
n:

(1
)

T-
L

L
:A

ve
ra

ge
te

st
-s

et
lo

g
lik

el
ih

oo
d

fo
rt

he
tr

ee
SP

C
N

s;
(2

)G
-L

L
:a

ve
ra

ge
te

st
-s

et
lo

g
lik

el
ih

oo
d

fo
rt

he
gr

ap
h

SP
C

N
s

ob
ta

in
ed

fr
om

th
e

tr
ee

SP
C

N
s

by
m

er
gi

ng
si

m
ila

r
su

b-
SP

C
N

s;
(3

)
|T
|:

nu
m

be
r

of
pa

ra
m

et
er

s
in

th
e

tr
ee

SP
C

N
;(

4)
|G
|:

nu
m

be
r

of
pa

ra
m

et
er

s
in

th
e

gr
ap

h
SP

C
N

;(
5)

C
R

:=
C

om
pr

es
si

on
R

at
io

=
|T
|

|G
|;

(6
)

T-
Ti

m
e:

Tr
ee

SP
C

N
le

ar
ni

ng
tim

e
in

se
co

nd
s

an
d

(7
)

G
-T

im
e:

Ti
m

e
in

se
co

nd
s

re
qu

ir
ed

by
th

e
m

er
gi

ng
al

go
ri

th
m

(t
hu

s
th

e
to

ta
ll

ea
rn

in
g

tim
e

fo
r

gr
ap

h
SP

C
N

is
T-

tim
e+

G
-t

im
e

se
co

nd
s)

.
In

ea
ch

ro
w

,b
ol

d
va

lu
es

in
di

ca
te

th
e

be
st

sc
or

e
fo

re
ac

h
of

th
e

tw
o

SP
C

N
ca

te
go

ri
es

:L
-S

PC
N

an
d

O
-S

PC
N

.

D
at

as
et

s
L

-S
PC

N
O

-S
PC

N
T-

L
L

G
-L

L
|T
|
|G
|

C
R

T-
tim

e
G

-t
im

e
T-

L
L

G
-L

L
|T
|
|G
|

C
R

T-
tim

e
G

-t
im

e
N

LT
C

S
-6

.0
3

-6
.0

4
54

98
39

88
1.

38
5.

37
39

6.
69

-6
.0

4
-6

.0
5

14
06

11
52

1.
22

0.
98

4.
69

M
SN

B
C

-6
.4

6
-6

.4
6

27
80

24
40

1.
14

10
9.

38
53

.4
9

-6
.0

9
-6

.0
8

20
03

2
94

78
2.

11
6.

36
12

45
.6

2
K

D
D

-2
.1

4
-2

.1
4

11
51

6
66

70
1.

73
19

9.
13

15
11

9.
05

-2
.2

2
-2

.1
9

34
32

8
16

60
8

2.
07

91
.3

8
59

.5
4

Pl
an

ts
-1

2.
80

-1
2.

69
65

13
2

47
80

2
1.

36
68

.4
4

17
77

5.
76

-1
3.

83
-1

3.
49

86
53

0
36

96
0

2.
34

9.
56

14
.1

2
A

ud
io

-4
0.

11
-4

0.
02

12
79

8
10

80
4

1.
18

68
.3

0
19

95
.9

4
-4

2.
06

-4
2.

06
61

42
61

42
1.

00
10

.7
4

3.
90

Je
st

er
-5

3.
12

-5
2.

97
12

79
8

10
00

2
1.

28
39

.0
9

20
.8

9
-5

5.
38

-5
5.

36
61

42
49

96
1.

23
6.

51
2.

39
N

et
fli

x
-5

6.
71

-5
6.

64
12

79
8

11
60

4
1.

10
62

.6
4

22
87

.7
8

-5
8.

64
-5

8.
64

61
42

61
42

1.
00

19
.9

5
2.

35
A

cc
id

en
ts

-3
0.

09
-3

0.
01

14
20

6
13

32
2

1.
07

58
.2

3
20

89
.4

9
-3

0.
83

-3
0.

83
68

46
68

46
1.

00
14

.1
3

3.
90

R
et

ai
l

-1
0.

88
-1

0.
87

32
38

21
62

1.
50

51
.1

5
75

.2
5

-1
1.

02
-1

0.
95

63
02

31
58

2.
00

32
.6

9
15

.0
6

Pu
m

sb
st

ar
-2

4.
17

-2
4.

10
19

55
8

17
60

4
1.

11
66

.0
5

23
14

.4
7

-2
4.

42
-2

4.
34

20
22

2
18

33
8

1.
10

20
.6

14
.9

3
D

N
A

-8
5.

90
-8

5.
51

57
58

43
20

1.
33

8.
26

11
.2

6
-9

0.
43

-8
7.

49
11

26
2

14
30

7.
88

3.
76

9.
48

K
os

ar
ek

-1
0.

62
-1

0.
62

53
18

53
18

1.
00

21
9.

01
20

0.
11

-1
1.

10
-1

0.
98

11
90

2
67

12
1.

77
79

.5
5

46
.6

6
M

SW
eb

-9
.9

5
-9

.9
0

32
92

6
16

48
4

2.
00

49
0.

12
29

48
2.

04
-1

0.
07

-1
0.

06
15

08
6

12
77

0
1.

18
20

9.
54

21
.0

7
B

oo
k

-3
4.

80
-3

4.
76

15
99

8
11

99
8

1.
33

22
0.

56
12

9.
98

-3
8.

60
-3

7.
44

31
74

0
11

91
6

2.
66

38
7.

75
10

.7
5

E
ac

hM
ov

ie
-5

2.
07

-5
2.

07
15

99
8

15
99

8
1.

00
94

.9
2

91
.3

1
-5

9.
99

-5
8.

05
31

74
5

19
84

6
1.

60
17

6.
95

6.
18

W
eb

K
B

-1
54

.8
6

-1
53

.5
5

26
84

6
20

13
4

1.
33

15
7.

89
78

.6
4

-1
72

.0
8

-1
61

.1
7

53
43

8
10

04
6

5.
32

28
7.

01
24

9.
27

R
eu

te
rs

-5
2

-8
4.

70
-8

3.
90

56
89

4
46

23
2

1.
23

47
8.

65
13

31
.3

8
-9

0.
43

-8
7.

49
56

63
8

28
33

4
2.

0
48

5.
6

42
8.

4
20

N
ew

sG
rp

.-
15

4.
35

-1
54

.6
7

58
23

8
43

68
4

1.
33

91
3.

81
34

57
.0

7
-1

63
.3

5
-1

61
.4

6
57

98
2

29
01

6
2.

0
82

7.
71

70
5.

53
B

B
C

-2
56

.0
5

-2
53

.4
5

33
85

4
21

16
0

1.
60

98
.5

5
53

.9
3

-2
72

.9
8

-2
60

.5
9

63
24

2
84

54
7.

48
16

3.
47

14
2.

89
A

d
-1

6.
77

-1
6.

77
49

79
0

49
79

0
1.

00
24

4.
44

15
5.

53
-1

7.
37

-1
5.

39
62

09
8

31
07

0
2.

00
95

3.
70

83
2.

40

70

our evaluation, we wanted to see whether we would be able to match or exceed these results us-

ing bagged ensemble of graph SPCNs. As a strong baseline, we also compare with five other

state-of-the-art tractable model learners: (1) learning sum-product networks with direct and in-

direct variable interactions (ID-SPN) (Rooshenas and Lowd, 2014), learning Markov networks

using arithmetic circuits (ACMN) (Lowd and Rooshenas, 2013), learning mixtures of cutset net-

works (MCN) (Rahman et al., 2014), learning sum-product networks via SVD based algorithm

(SPN-SVD) (Adel et al., 2015) and learning ensembles of cutset networks (ECN) (Rahman and

Gogate, 2016a). We report the results of IDSPN and ACMN from (Rooshenas and Lowd, 2014),

MCN from (Rahman et al., 2014), SPN-SVD from (Adel et al., 2015) and ECN from (Rahman and

Gogate, 2016a).

In our experiments, we fixed the number of bags to 40 following (Rahman and Gogate, 2016a).

Instead of performing a grid search, we performed random search (Bergstra and Bengio, 2012) to

create a configuration for the models in the ensemble. Each component model was then weighted

according to its likelihood on the training set. To get better accuracy, we treated the bagged en-

semble of L-SPCNs and O-SPCNs as an SPCN having one latent sum node as the root and each

independent component (bag) as its child sub-SPCN. The benefit of this approach is that instead

of optimizing the local log-likelihood scores of individual SPCNs, while merging, we can directly

optimize the global log-likelihood.

Table 5.3 shows the bagged ensemble scores of L-SPCNs and O-SPCNs before and after merg-

ing as well as the best log-likelihood score obtained to date using the competing approaches men-

tioned above. Bagged graph SPCNs, especially L-SPCNs, performed significantly better than

the state-of-the-art on all of the high dimensional datasets with very competitive scores on the

others. This suggests that merging is especially useful for accurately modeling relationships in

high-dimensional data (see also Table 5.2).

71

Table 5.3. Average test set log-likelihood comparison with state-of-the-art tractable model learners.
Bold values indicate the winning score for the corresponding dataset. T-LL: Bagged LL of tree
SPCNs and G-LL: Bagged LL of graph SPCNs. Column “Best-LL to date” gives the best log-
likelihood score to date for each dataset obtained using the following competing approaches: ID-
SPN (Rooshenas and Lowd, 2014), ACMN (Lowd and Rooshenas, 2013), MCN (Rahman et al.,
2014), SPN-SVD (Adel et al., 2015), and ECN (Rahman and Gogate, 2016a).

Datasets |Var| |Train| |Valid| |Test| L-SPCN O-SPCN
Best-LL to date

T-LL G-LL T-LL G-LL
NLTCS 16 16181 2157 3236 -6.01 -6.00 -6.01 -6.00 -6.00
MSNBC 17 291326 38843 58265 -6.45 -6.39 -6.10 -6.10 -6.04
KDD 64 180092 19907 34955 -2.13 -2.12 -2.14 -2.13 -2.12
Plants 69 17412 2321 3482 -12.31 -12.03 -12.25 -12.21 -11.99
Audio 100 15000 2000 3000 -39.57 -39.49 -40.35 -40.31 -39.67
Jester 100 9000 1000 4116 -52.65 -52.47 -53.56 -53.13 -41.11
Netflix 100 15000 2000 3000 -55.92 -55.84 -56.69 -56.65 -56.13
Accidents 111 12758 1700 2551 -29.41 -29.32 -29.81 -29.82 -24.87
Retail 135 22041 2938 4408 -10.85 -10.82 -10.87 -10.85 -10.60
Pumsb star 163 12262 1635 2452 -23.82 -23.67 -23.85 -23.81 -22.40
DNA 180 1600 400 1186 -86.63 -80.89 -85.97 -84.79 -80.03
Kosarek 190 33375 4450 6675 -10.71 -10.55 -10.85 -10.74 -10.54
MSWeb 294 29441 32750 5000 -9.84 -9.78 -9.77 -9.76 -9.22
Book 500 8700 1159 1739 -36.49 -34.25 -36.35 -35.89 -30.18
EachMovie 500 4524 1002 591 -54.70 -50.72 -55.82 -53.07 -51.14
WebKB 839 2803 558 838 -170.27 -150.04 -166.65 -152.82 -150.10
Reuters-52 889 6532 1028 1540 -84.32 -80.66 -86.00 -82.66 -82.10
20NewsGrp. 910 11293 3764 3764 -151.48 -150.80 -158.40 -154.28 -151.29
BBC 1058 1670 225 330 -265.89 -233.26 -244.12 -238.61 -236.82
Ad 1556 2461 327 491 -16.33 -14.58 -15.69 -14.34 -14.36

5.6 Chapter Summary

In this chapter, we proposed sum-product-cutset networks (SPCNs) by combining the features

of sum-product networks and cutset networks to scale up the learning and accuracy of a deep

probabilistic model. We presented a novel algorithm for learning graph structured SPCNs from tree

structured SPCNs by merging similar sub-SPCNs. Our proposed algorithm for finding and merging

similar sub-SPCNs is general enough to serve as a template for incorporating suitable functions

that measure similarity between sub-SPCNs as well as for performing arbitrary mergings. Our

72

experimental evaluation clearly shows that graph SPCNs can significantly boost the accuracy and

prediction time of tree SPCNs by substantially reducing the number of parameters that the learning

algorithm needs to induce from data. We also investigated the merit of learning ensembles of graph

SPCNs, building on our previous work on learning ensembles of tree SPCNs, for a variety of

high dimensional real world datasets, and comparing them to other state-of-the-art tractable model

learners. Our experimental results showed that ensembles of graph SPCNs significantly outperform

the state-of-the-art learners, clearly demonstrating the efficacy of our proposed approach.

CHAPTER 6

LEARNING HYBRID SUM-PRODUCT-CUTSET NETWORKS

6.1 Introduction

Cutset networks (CNs) and sum-product-cutset networks (SPCNs) have been introduced as tractable

PGMs for representing joint distributions over discrete variables. Most real-world application do-

mains have a combination of both discrete and continuous variables. For example, in predicting

whether a patient has heart disease, several measurements like cholesterol, resting blood pressure,

max heart rate etc. are continuous valued while the gender of the patient and the type of chest

pain (Angina, Abnormal Angina, Nonanginal, Asymptomatic) are discrete valued measures. The

most common approach for handling continuous variables when learning PGMs is to discretize

them (Pernkopf and Bilmes, 2005; Friedman and Goldszmidt, 1996; Kozlov and Koller, 1997)

which results in loss of information (Yang and Webb, 2009). On the other hand (Silva et al., 2011),

(Uria et al., 2013), and (Tang et al., 2012) proposed to learn models only over continuous variables

removing the discrete variables present in the domain.

In this chapter, we propose hybrid sum-product-cutset networks (HSPCNs) – a simple and nat-

ural extension to SPCNs to handle mixed domains and develop novel learning algorithms for them.

HSPCNs yield a rich class of models that generalize several related, previously proposed tractable

models such as hybrid tree-augmented Bayesian networks (Friedman et al., 1997), and hybrid

Bayesian multinets (Geiger and Heckerman, 1996a). They also include hybrid cutset networks as

well as hybrid sum-product networks (SPNs) as special cases. HSPCNs allow conditioning (sum

nodes) over both discrete observed and latent variables and have tree structured conditional lin-

ear Gaussian networks (CLGs) (Lauritzen, 1996; Lauritzen and Wermuth, 1984, 1989; Heckerman

73

74

and Geiger, 1995; Bøttcher, 2004; Murphy, 1998) as leaf nodes. Conditional linear Gaussian net-

works are Bayesian networks which represent joint distributions over both discrete and continuous

variables with the following restrictions – discrete variables cannot have continuous parents and

continuous distributions are assumed to be Gaussians. Tree CLG networks are a subclass of CLG

networks which allow variables to have at most one parent. Thus they are similar to the discrete

tree distributions discussed in Section 2.3.1 over mixed domains with aforementioned constraints.

Tree CLG networks are much superior in terms of representation power than univariate distri-

butions as in SPNs; they represent a joint probability distribution over large number of discrete

and continuous variables, yet admit polynomial time inference and learning algorithms. Most real

world application domains contain both discrete and continuous variables, and HSPCNs enable an

application designer to develop rich density estimators in such domains.

The rest of the chapter is organized as follows. In Section 6.2, we present a brief background

on conditional linear Gaussian networks and formalize the notation used throughout the chapter.

Section 6.3 introduces our proposed hybrid architectures and we describe a learning algorithm

for it in section 6.4. In section 6.5, we present results of our detailed experimental evaluation, in

which we compare HSPCNs with four generatively learned models: cutset networks, naive Bayes

(baseline), Bayesian multi-nets and SPNs, on eighteen datasets from the UCI machine learning

repository. In our evaluation, we considered two tasks: density estimation and classification, with

the performance over the two tasks measured using test set log-likelihood score and classification

accuracy respectively. We found that HSPCNs are substantially more accurate than the competition

on both tasks. We conclude by summarizing our contributions in Section 6.6.

6.2 Background

Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym} denote the set of discrete and continuous variables

respectively. Let {∆1, . . . ,∆n} be the set of domains of the discrete variables where ∆i is the

domain of Xi which denotes the values that the random variable Xi can take. Let x = (x1, . . . , xn)

75

and y = (y1, . . . , ym) denote an assignment of values to all discrete and continuous variables

respectively where xi ∈ ∆i and yj ∈ R. We assume that each continuous variable Yi is normally

distributed with mean µi and variance σ2
i , namely P (yi) = N (yi;µi, σ

2
i) = 1√

2πσ2
i

exp(− (yi−µi)2
2σ2
i

).

A tree CLG is a pair 〈G,Θ〉 where G = 〈X ∪Y,E〉 is a directed acyclic tree in which nodes

represent random variables in X∪Y and edges represent direct probabilistic dependencies among

them, and Θ is a set of functions, one for each variable, representing the conditional probability

distribution (CPD) of that variable given its parents in G. The CPDs and G have the following

restrictions:

1. Each node has at most one parent.

2. A discrete variable has no continuous parents.

3. The CPD of a continuous variable is either a table of Gaussians or a linear Gaussian. If

a continuous variable Yi has a discrete parent Xj , then the CPD of Yi is a table of normal

distributions, one for each value of the discrete parent. Formally, let ∆j = {xj,1, . . . , xj,d}

be the domain of Xj , then P (Yi = yi|Xj = xj,k) = N (yi;µi|k, σ
2
i|k) where µi|k and σ2

i|k are

conditional mean and variance respectively. On the other hand, if Yi has a continuous parent

Yj , then the conditional mean of Yi is linear in Yj = yj as µi|j = µi + βij(yj − µj), where

βij = ρij
σi
σj

measures the degree of dependence of Yi on Yj in terms of their correlation

coefficient ρij . However, the conditional variance of Yi is σ2
i|j = σ2

i (1− ρ2
ij) and is constant.

It is well known that marginal inference – computing the marginal probability distribution over

a random variable given evidence – in CLGs can be performed in linear time in the size of the

network, using a variable elimination algorithm in which all continuous variables are eliminated

before the discrete variables (using an ordering from leaves to the parents). Thus, a CLG is a

tractable model. Fig. 6.1 shows a toy tree CLG over three variables.

Next, we describe how tree CLGs can be used to construct a tractable model, by interleaving

sum nodes with product nodes in a rooted directed acyclic graph, with tree CLGs as leaves.

76

X1 Y1 Y2

0

N (µ0, σ
2
0)

N (µ2 + β1,2(y1 − µ1), σ
2
2|1)

1 0.34

0.66

X1 P (X1)

N (µ1, σ
2
1)

0

1

X1 P (Y1|X1)

Figure 6.1. A tree CLG over discrete variable X1 ranging over domain {0, 1} and continuous
variables Y1 and Y2.

6.3 Representation

In this section, we describe our new tractable model called hybrid sum-product-cutset network

(HSPCN). We will begin by describing a special class of HSPCNs called hybrid cutset networks

(HCNs), which do not have product or decomposition nodes.

6.3.1 Hybrid Cutset Networks

A hybrid cutset network (HCN) is a cutset network in which the OR search tree is defined over

a subset of discrete variables and the tree Bayesian networks are tree CLGs. The probability

distribution represented by a HCN defined over discrete variables X and continuous variables Y

is given by:

P (x,y) = Tl(x)(xScope(Tl(x)),y)
∏

(u,v)∈path(x)

ω(u, v)

where ω(u, v) is the edge weight between nodes u and v on the unique path from the root to leaf

l(x) consistent with assignment x in the HCN, Tl(x) is the probability distribution represented by

the tree CLG over variables Scope(Tl(x)) ⊆ X and Y, and xScope(Tl(x)) is the projection of x on

Scope(Tl(x)).1

1Although, we have defined cutset networks as having rooted OR search trees, we can easily generalize the defi-
nition to include rooted OR search graphs instead of search trees. Graphs can be obtained from OR search trees by
merging identical sub-trees as described in Chapter 5.

77

Class

X1

X2 Y1

Y2

(a)

Class

X1

X2

Y1

Y2

X1

X2

Y1

Y2

X1

X2

Y1

Y2

T1 T2 T3

P (
Cl
as
s =

c1
)

P
(C

la
ss

=
c
2)

P (Class =
c
3)

(b)

X1

X2

Class Class

Class

X2 X2

Y1

Y2

Y1

Y2

Y1

Y2

Y1

Y2

Y2

Y1

Y2

Y1

Y2

Y1

Y2

Y1

0.2 0.8

0.9 0.1 0.4 0.6

0.45 0.55 0.37 0.630.75 0.250.5 0.5

(c)

Figure 6.2. (a)Hybrid TAN and (b)Hybrid BMN and (c) Hybrid CN over discrete variables
{X1, X2, Class} and continuous variables {Y1, Y2}

.
HCNs generalize several existing classes of tractable hybrid models. For example, Tree Aug-

mented Naive Bayes (TAN) and Bayesian Multinets (BMNs) are special cases of hybrid cutset

networks in which the class variable is the only cutset variable. TAN classifiers have identical tree

BN structures for each class while BMNs generalize TAN classifiers by learning a different tree

BN for each class value (see Figure 6.2). Note that in a HCN the Class variable is not required to

be the root of the OR search tree. The key advantage of cutset networks is that they can compactly

represent large treewidth graphical models. This is because one can use different tree networks

at the leaves. The corresponding graphical model has an edge between two nodes if there is an

edge between the nodes in any of the tree Bayesian networks, and thus can have arbitrarily large

treewidth.

78

+

X1

X2

X3

Y1

Y2

X2

X3

Y1

Y2

Y3

Y4 Y5

Y1

Y2 Y3

Y4

X2

X3

X1

Y5

X2

X3 X1

Y5

+

××

0.23 0.73

0.6 0.4 0.85 0.15

Figure 6.3. An HSPCN rooted by a latent-sum node over discrete variables {X1, X2, X3} and
continuous variables {Y1, Y2, Y3, Y4, Y5}. X1 is the only observed sum node. Each product node
decomposes the model differently and each leaf is a tree CLG over remaining observed variables.

6.3.2 Hybrid Sum-Product Cutset Networks (HSPCNs)

Hybrid sum-product-cutset networks are SPCNs introduced in Section 5.3 representing joint dis-

tributions over both discrete and continuous variables. HSPCNs are rooted directed acyclic graphs

which consists of three types of nodes: latent-sum, observed-sum, and product nodes with tree

CLGs at the leaves. Latent-sum nodes represent mixtures, and observed-sum nodes represent con-

ditioning of observed discrete variables. Product nodes partition the sets X and Y into independent

subsets. Figure 6.3 shows an HSPCN for a toy problem. The HSPCN is defined over two latent

variables (+ nodes in the figure), three discrete variables and five continuous variables.

6.4 Learning HSPCNs

Algorithm 6 describes the learning algorithm for HSPCNs. The algorithm has three main steps:

(1) Base case; (2) Decomposition Step and (3) Splitting Step. The algorithm recursively partitions

the training examples (sum nodes) or the variables (product nodes) in the training data into subsets

until a termination criteria is satisfied (base case). In the base case, we learn a tree CLG using an

algorithm proposed by Friedman et al. (Friedman et al., 1998). The latter is a simple modifica-

79

tion of the Chow-Liu algorithm for discrete variables to CLGs. Algorithm 6 provides a general

template for learning various hybrid models presented in Table 6.1. Both HNBs and HBMNs are

essentially unit depth cutset networks with the dedicated class variable as the root and CLGs at

the leaves. A HNB assumes complete conditional independence of the variables given the class

where discrete variables are multinomials and continuous variables are simple Gaussians whereas

a HBMN assumes a structurally and parametrically different tree CLG for each value of the class

attribute.

Table 6.1. Structural comparison of various hybrid models. HNB:=Hybrid Naive Bayes, HBMN:=
Hybrid Bayesian Multinet, HCN:= Hybrid Cutset Network, HSPN:= Hybrid Sum-Product Net-
work, and HSPCN:= Hybrid Sum-Product-Cutset Network.

Model Observed Sum Node Latent Sum Node Product Node Base Model
HNB Class None None Univariate distributions
HBMN Class None None Tree CLG
HCN Heuristically chosen None None Tree CLG
HSPN None Heuristically chosen Independence tests Univariate distributions
HSPCN Heuristically chosen Heuristically chosen Independence tests Tree CLG

6.4.1 Learning Tree Structured CLGs

(Friedman et al., 1998) proposed an algorithm for learning tree-augmented Bayesian network clas-

sifiers over discrete and continuous random variables. Their algorithm learns structurally identical

tree CLGs for each value of the class attribute by maximizing a score that depends on the condi-

tional mutual information between variables given the class attribute. We generalize their method

to learn a tree CLG based on the mutual information between variables.

Given a set of N training samples D = {x1, ...,xN} and a set of m random variables over

mixed domains V = X ∪ Y , the objective is to find a tree CLG network B that maximizes the

log-likelihood:

80

Algorithm 6: LEARNHSPCN(D,X,Y)
1 begin

// 1. Base Case
2 if termination conditions are satisfied then
3 return TreeCLG(D, X, Y)
4 end

// 2. Decomposition Step
5 if X and Y can be decomposed into subsets {X1, . . . ,Xk} and {Y1, . . . ,Yk}

respectively then
6 return

∏k
i=1 LEARNHSPCN(D,Xi,Yi)

7 end
// 3. Splitting Step

8 Heuristically select either a latent or an observed discrete variable from X to condition
on.

9 if an observed variable Xi is selected then
10 return

∑
j
|Dj |
|D| LEARNHSPCN(Dj ,X−i,Y)

11 where X−i = X \ {Xi} and Dj are the set of data points in which Xi is assigned to
xi,j

12 end
13 if a latent variable is selected then
14 Use a clustering algorithm or hard-EM to divide the examples into k clusters.
15 Let D = {D1, . . . ,Dk} be the clusters.
16 return

∑k
j=1

|Dj |
|D| LEARNHSPCN(Dj ,X,Y)

17 end
18 end

L(B;D) =
∑
v∈V

N∑
i=1

logPB(x
i
v|xiπ(v))

=
(∑
v 6=vroot

ScoreB(π(v)→ v) + ScoreB(vroot)
)

(6.1)

where xiv is the value of variable v in sample xi, π(v) is its parent and therefore xiπ(v) is the value

of the parent π(v) in sample xi. vroot is the root node of the tree G. The problem is to essentially

find the set of parents π (directed edges) of variables satisfying the constraints of a CLG such that

6.1 is maximized. Following is a graph-theoretic procedure that maximizes 6.1.

1. Initialize G = {V ,E = {}}

81

2. For each pair of variables 〈A,B〉, if A → B is valid then E = E ∪ {A → B} with weight

Score(A → B). The optimal CPD parameters are the maximum likelihood parameters

computed from the data using standard procedures.

3. Once all O(m2) arcs are added to G, find a set of arcs S that induces a maximum weighted

directed spanning tree of G (Tarjan, 1977; Even, 1979) such that each node has at most one

incoming edge.

4. For each variable B, select the CPD in step 2 that matches an arc in S.

There are three possible cases to consider while computing Score(A → B) and in all three

cases it can be shown that the score depends on the empirical mutual information Î(A,B) between

the variables in consideration.

1. Both A and B are discrete: Let A ∈ X defined over domain ∆A and B ∈ X defined over

domain ∆B. The CPD of the B given A is modeled as a conditional probability table which

defines the conditional probability of each possible value b ∈ ∆B given each possible value

a ∈ ∆A. We denote by Nab as the number of samples inD with A = a and B = b. Then,

Score(A→ B) =
∑
a∈∆A

∑
b∈∆B

Nab logP (b|a)

= N
∑
a∈∆A

∑
b∈∆B

P̂ (a, b) logP (b|a)

= N
∑
a∈∆A

∑
b∈∆B

P̂ (a, b) log
(P (a, b)

P (a)P (b)
P (b)

)
= N

∑
a∈∆A

∑
b∈∆B

(
P̂ (a, b) log

P (a, b)

P (a)P (b)
+
∑
a∈∆A

∑
b∈∆B

P̂ (a, b) logP (b)
)

= N
∑
a∈∆A

∑
b∈∆B

P̂ (a, b) log
P (a, b)

P (a)P (b)
+N

∑
b∈∆B

P̂ (b) logP (b)

which is maximized when the marginals P (a, b) , P (a) and P (b) are equal to their empirical

values. After some more algebraic manipulations Score(A → B) becomes NÎ(A,B) −

82

NĤ(B), where Î(A,B) is the empirical mutual information between A and B and Ĥ(B) is

the empirical entropy of B which is independent of the data. Therefore, the best score for

the edge A → B is proportional to the empirical mutual information Î(A,B) between the

discrete variables A and B. This idea has been used by Chow and Liu (Chow and Liu, 1968)

to learn the optimal tree distribution over a set of discrete random variables.

2. Both A and B are continuous: Let A ∈ Y with mean and variance µA and σ2
A respectively

and let B ∈ Y with mean and variance µB and σ2
B respectively. The CPD of B given A

is modeled as a linear Gaussian with conditional mean µB|A = µB + βAB(xA − µA) where

βAB = ρAB
σB
σA

and conditional variance σ2
B|A = σ2

B(1 − ρ2
AB) where ρAB is the correlation

coefficient between A and B measured as Cov(A,B)
σAσB

. Then,

Score(A→ B) =
N∑
i=1

logP (xiB|xiA) =
N∑
i

log
(1√

2πσ2
B|A

e
(−

(xiB−µB|A)2

2σ2
B|A

))
where the maximum likelihood parameters for the means (conditional and unconditional),

variances (conditional and unconditional) and covariances are estimated from data using

standard procedure. We denote each such parameter with aˆsymbol. Therefore,

Score(A→ B) = N log(
1√

2πσ̂2
B|A

)− 1

2σ̂2
B|A

N∑
i

(xiB − µ̂B|A)2

= N log(
1√

2πσ̂2
B|A

)− Nσ̂2
B|A

2σ̂2
B|A

= N log(
1√

2πeσ̂2
B|A

)

= −N
2

[
log(1− ρ̂2

AB) + log(2πeσ̂2
B)
]

= −N
2

log(1− ρ̂2
AB)− N

2
log(2πeσ̂2

B) = NÎ(A,B)−NĤ(B)

where Ĥ(B) = 1
2

log(2πeσ̂2
B) is the empirical differential entropy of the continuous variable

B which is independent of the data and Î(A,B) = −1
2

log(1 − ρ̂2
AB) is empirical mutual

information between the Gaussian variables A and B.

83

3. A is discrete andB is continuous: LetA ∈X with domain ∆A andB ∈ Y . For each value

a ∈ ∆A, B is normally distributed with the conditional mean µB|a and conditional variance

σ2
B|a. As before, in the following we assume maximum likelihood parameters to compute the

score of A→ B and denote them with aˆsymbol.

Score(A→ B) =
∑
a∈∆A

DA=a∑
j=1

logP (xjB|xjA)

=
∑
a∈∆A

DA=a∑
j=1

log

(
1√

2πσ̂2
B|a

e

(
−

(x
j
B
−µ̂B|a)

2

2σ̂2
B|a

))

=
∑
a∈∆A

[
Na log

(1√
2πσ̂2

B|a

)
− 1

2σ̂2
B|a

DA=a∑
j

(xjB − µ̂B|a)2
]

=
∑
a∈∆A

[
Na log

(1√
2πσ̂2

B|a

)
− Na

2

]
=

∑
a∈∆A

−Na

2
log(2πeσ̂2

B|a)

= −N
2

∑
a∈∆A

P̂ (a) log(2πeσ̂2
B|a)

= −N
2

[∑
a∈∆A

P̂ (a) log(2πe) +
∑
a∈∆A

P̂ (a) log(σ̂2
B|a)

]

= −N
2

[
log(2πeσ̂2

B)− log(σ̂2
B) +

∑
a∈∆A

P̂ (a) log(σ̂2
B|a)
]

=
N

2

[
log(σ̂2

B)−
∑
a∈∆A

P̂ (a) log(σ̂2
B|a)
]
−N [

1

2
log(2πeσ̂2

B)]

= NÎ(A,B)−NĤ(B)

where σ̂2
B is the empirical variance of B and Î(A,B) = 1

2

[
log(σ̂2

B) − ∑
a∈∆A

P̂ (a) log(σ̂2
B|a)
]

is the

empirical mutual information between discrete variable A and the Gaussian variable B (Martı́nez

et al., 2006).

The above scores can be computed by a single pass over the data. Hence, learning tree CLGs

can be done efficiently.

Next, we describe the decomposition and splitting steps in turn.

84

6.4.2 Decomposition

We use an approach similar to Gens and Domingos (Gens and Domingos, 2013) to decompose

variables into independent components. The key idea is to compute a mutual information graph

over the discrete and continuous variables. The graph has variables as nodes and a weighted edge

between all pairs of variables (it is a complete graph). Mutual information measures the degree of

statistical dependence between two variables. Mutual information between pairs of discrete and

pairs of continuous variables is defined in the usual way. We use the technique given in Proposition

1 of (Martı́nez et al., 2006) to compute mutual information between a discrete and a continuous

variable. We then prune any weak edges from the mutual information graph; edges whose weight

falls below a predefined threshold. The connected components of the resultant graph produce the

desired decomposition.

6.4.3 Splitting

In the splitting step, we heuristically select either a latent variable or an observed variable to con-

dition on. To select a latent variable, we use the following method. We partition the training

instances using EM with a K−component mixture model rooted by a latent sum node having a

tree CLG in each of its K components. Once EM converges, we obtain a weighted (soft EM) or

unweighted (hard EM) partition of the data. Each edge from the latent root sum node is labeled by

the fraction of instances belonging to that component of the mixture. The number of K compo-

nents in the mixture can be chosen by an MDL/BIC scoring function as in (Friedman et al., 1997)

with a penalty 3K log(N)
2

, where N is the number of training instances.

To select an observed variable, we use the following heuristic based on maximum likelihood.

For each discrete variable Xi ∈ X, we learn a mixture model rooted by Xi such that for each of

its values xi,j in its domain, the mixture has a tree CLG over {X \ Xi} ∪ Y learned using data

Dj which is the current data D conditioned on Xi = xi,j . Each edge from the root sum node is

labeled by the fraction of training instances belonging to that split. Each Xi is scored according to

85

the likelihood of the mixture model that it roots and the highest scoring Xi is then chosen as the

desired variable to split the data.

To decide between an observed sum node (cutset conditioning) and a latent sum node (mix-

ture) in the splitting step, we use the MDL/BIC scoring method with a penalty of |M| log(N)
2

, where

|M| is the size (number of free parameters) of the modelM. If the score on the observed variable

is higher than the latent variable, we perform splitting using an observed variable. Otherwise, we

split on a latent variable.

6.5 Experiments

We evaluated the performance of HSPCNs as density estimators as well as probabilistic classifiers

over mixed domains. Table 6.2 shows the 18 real world datasets from various domains with mixed

variables that were chosen from the UCI machine learning repository (Merz et al., 1997). All the

problems have a designated class attribute which is considered as a discrete valued variable in

this dissertation. We used the training and test sets for each problem available from the MLC++

(Kohavi et al., 1994) website. Samples with missing values were discarded. We dedicated the first

10% samples from the training set as validation set to choose the tuning parameters for the models.

The best parameters were chosen based on maximum validation set log-likelihood and used for

learning the final model using the complete training set. All the reported results are based on the

final model’s performance on the test set.

For a diverse comparison we trained five different models over the hybrid domains namely:

(1) Hybrid Naive Bayes (HNB), (2) Hybrid Bayesian Multinets (HBMNs), (3) Hybrid Cutset Net-

works (HCNs), (4) Hybrid Sum-Product Networks (HSPNs) and (5) Hybrid Sum-Product-Cutset

Networks (HSPCNs). For HCNs, HSPNs and HSPCNs, the depth was varied from 1 to 10 and the

best depth was chosen based on the log-likelihood of the validation set. A tree CLG was learned

whenever the max depth was reached or the number of training samples fell below 5. For learning

latent sum nodes in HSPNs and HSPCNs, we ran hard EM for 10 iterations or until convergence

86

to cluster instances. To avoid multiple random restarts in EM, we ran WEKA’s (Holmes et al.,

1994) implementation of KMeans clustering to cluster samples and then use the samples in each

cluster to learn the initial parameters of each mixture component. The number of mixture com-

ponents were varied from 2 to 8 with increments of 2 and the best number of components were

chosen based on the BIC/MDL score with the penalty mentioned in Section 6.4.3. Decompositions

were approximated by pruning low mutual information edges from the mutual information graph.

Three different sets of thresholds were used: (1) {0.0001, 0.01, 0.1} to prune edges between two

discrete variables, (2) {0.0002, 0.02, 0.1} to prune edges between two continuous variables and

(3) {0.0003, 0.03, 0.1} to prune edges between discrete and continuous variable. The smoothing

technique proposed in (Friedman et al., 1998) with value 1.0 was applied to compute smoothed

estimates of means and variances of continuous variables and smoothed parameters of CPT values

of all discrete variables.

6.5.1 Density Estimation

Table 6.2 presents the average log-likelihood scores of various models evaluated on the test set.

HNBs is the weakest model with the lowest average score of −24.77 per dataset. HCNs perform

better than HNBs and HBMNs in most of the cases except for the datasets "australian",

"cleve" and "german" in which the models overfit with increased number of cutsets. HSPNs

have levels of latent sum and product nodes with complete independence over the observed vari-

ables at the leaves (Gens and Domingos, 2013). HSPNs perform better than HNBs, HBMNs and

HCNs in 17 out of 18 cases. HSPNs perform better than HSPCNs in 8 out of 18 cases. HSPCNs

perform better than any other models by scoring the highest −19.50 on average. HSPCNs al-

ways score significantly better than HNBs, HBMNs and HCNs and sometimes slightly worse than

HSPNs in cases where the underlying model is simpler and/or sufficient data is lacking to learn ac-

curate observed sum nodes. This can be observed for the datasets "australian", "cleve",

"echocardiogram" and "german".

87

Table 6.2. Comparison of average test set log-likelihood scores. Columns |Train|, |V alid| and
|Test| provides the number of samples for training, validation and test set respectively. Columns
labeled D and C indicate the number of discrete and continuous valued variables present in the
domain respectively. Bold values indicate the highest average score achieved by a model.

Datasets |Train| |V alid| |Test| D C HNB HBMN HCN HSPN HSPCN
anneal-U 539 59 300 33 6 -40.87 -32.84 -32.22 -31.54 -31.08
australian 414 46 230 9 6 -36.26 -36.66 -37.85 -31.75 -32.00
auto 97 10 52 11 15 -70.40 -66.47 -64.53 -61.55 -60.06
balance-scale 375 41 209 1 4 -7.48 -7.47 -7.47 -4.98 -4.98
breast 412 45 226 1 10 -31.25 -30.70 -30.70 -25.07 -24.46
cars1 235 26 131 1 7 -28.96 -27.38 -27.38 -25.14 -25.09
cleve 178 19 99 8 6 -25.81 -25.97 -26.80 -24.97 -25.08
crx 419 46 188 10 6 -34.87 -33.04 -33.04 -31.86 -31.87
diabetes 461 51 256 1 8 -30.34 -29.97 -29.97 -27.57 -27.59
echocardiogram 66 7 34 2 6 -11.44 -11.61 -11.61 -11.07 -11.44
flare 639 71 356 9 2 -7.25 -6.35 -5.25 -2.69 -2.36
german 600 66 334 14 7 -34.79 -33.50 -35.32 -25.40 -26.21
german-org 600 66 334 13 12 -30.39 -29.15 -28.94 -15.73 -15.70
glass 128 14 72 1 9 -2.79 -1.70 -1.70 1.37 1.77
glass2 98 10 55 1 9 1.63 2.49 2.49 6.49 7.13
heart 162 18 90 1 13 -28.65 -28.31 -28.31 -17.90 -18.08
iris 90 10 50 1 4 -2.59 -2.24 -2.24 -2.52 -2.24
liver-disorder 207 23 115 1 6 -23.40 -23.00 -23.00 -21.47 -21.64

Average LL -24.77 -23.55 -23.55 -19.63 -19.50
6.5.2 Classification

Table 6.3 presents the performance of the models as classifiers. HSPCNs have superior scores

compared to other models in 8 out of the 18 datasets. They have on average an accuracy of more

than 80% which is significantly higher than other models. In general, the performance of HSPCNs

lies between the performances of HCNs and HSPNs and always closer to the better performing one.

The weakest classifier in terms of average accuracy obtained per dataset is the hybrid naive Bayes

and it scores better than others only in 2 out of the 18 cases. As in density estimation, HCNs rarely

perform worse than HBMNs, exceptions being the "german" and "german-org" datasets

where simpler models dominate the competition. Unlike density estimation, HSPNs perform better

than other only in 1 out of the 18 datasets.

88

Table 6.3. Comparison of classification accuracy evaluated on the test set. Bold values indicate the
best accuracy achieved by the model on the particular instance.

Datasets HNB HBMN HCN HSPN HSPCN
anneal-U 81.67 93.33 94.67 83.33 96.33
australian 77.83 77.83 82.17 82.17 83.48
auto 46.15 65.38 69.23 50.00 63.46
balance-scale 89.47 88.52 88.52 56.94 89.47
breast 96.46 95.58 95.58 97.35 97.79
cars1 62.60 62.60 62.60 68.70 69.47
cleve 81.82 75.76 75.76 82.83 81.82
crx 78.19 78.19 78.19 82.45 83.51
diabetes 73.44 74.22 74.22 69.14 73.44
echocardiogram 79.41 79.41 79.41 76.47 79.41
flare 81.18 75.56 82.87 85.11 85.11
german 76.95 73.05 69.76 72.75 72.75
german-org 74.85 77.25 72.16 72.75 72.75
glass 50.00 50.00 50.00 69.44 69.44
glass2 61.82 65.45 65.45 81.82 87.27
heart 85.56 86.67 86.67 83.33 85.56
iris 94.00 96.00 96.00 96.00 98.00
liver-disorder 55.65 57.39 57.39 61.74 63.48
Average Accuracy 74.84 76.23 76.70 76.24 80.70

6.6 Chapter Summary

In this chapter, we proposed hybrid sum-product-cutset networks, which can represent high-dimensional

joint distributions over both discrete and continuous random variables. Our proposed algorithm for

learning the structure of HSPCNs can be considered as the first advanced structure learning algo-

rithm for SPNs and CNs with continuous variables present in the domain. A thorough evaluation

of the performance of HSPCNs on several real-world problems with a good mix of discrete and

continuous variables revealed that HSPCNs are superior in general in modeling the underlying

distributions than standalone CNs, SPNs and other state-of-the-art tractable PGMs.

CHAPTER 7

CONCLUSION

This final chapter concludes this dissertation by highlighting our contributions and providing valu-

able insights for potential future work.

7.1 Contributions

The goal of the research presented in this dissertation has been two-fold: proposing novel and

tractable representations for modeling the joint distributions over random variables and devising

efficient algorithms for learning these models form data.

7.1.1 Proposed Tractable PGMs

We have proposed the following three different tractable models.

• Cutset Networks (CNs) – our first proposed models which combine an OR search tree with

tree Bayesian or Markov networks. CNs are essentially a hybrid model which combine an

inference representation with a tractable (tree) PGM. CNs have two attractive properties:

they are highly interpretable and they often yield a compact representation by exploiting

various symmetry properties such as context-specific independence, identical probability

values and determinism (Gogate and Domingos, 2010b; Gogate, 2009).

• Sum-Product-Cutset Networks (SPCNs) – combines sum-product networks (SPNs) with

CNs. Our experimental evaluations revealed that flat mixtures of CNs without any model

decompositions significantly improved the prediction accuracy. SPNs achieve high accuracy

by using both mixture (sum) and decomposition (product) nodes; the product nodes partition

89

90

the variables into independent components. Therefore, we hypothesized that by combining

SPNs with CNs via a new deep architecture called SPCNs, we can further improve the accu-

racy of flat mixtures of CNs, by exploiting problem decomposition.

• Hybrid Sum-Product-Cutset Networks (HSPCNs) – a simple and natural extension of

SPCNs to model distributions over domains having both discrete and continuous random

variables. The leaf distributions in HSPCN are conditional linear Gaussians to maintain

tractable inference and efficient learning.

7.1.2 Proposed Learning Algorithms

For each novel representation, we proposed several advanced algorithms for learning both its struc-

ture and the parameters from data.

• Learning Cutset Networks

We proposed an efficient algorithm for learning CNs from data. The algorithm recursively

partitions the data based on some heuristic choice and then uses the celebrated Chow-Liu

algorithm to induce a tree Bayesian or Markov network. Our proposed algorithm is simple,

easily implementable and general enough to be used with any suitable heuristic.

• Learning Ensembles of Cutset Networks

We proposed several sequential boosting based and parallel bagging based methods for learn-

ing ensembles of CNs. Our experimental evaluations showed that, unlike learning mixtures

of CNs in a slow iterative manner, our proposed ensemble techniques can learn much more

accurate mixtures and much faster.

• Learning Sum-Product-Cutset Networks

Both SPN and CN learning algorithms are recursive in nature and share some common steps

such as inducing a base model and splitting training instances to learn sum nodes. We pro-

posed an algorithm for learning SPCNs that follows similar steps as an SPN and CN learner,

91

but also allows a mechanism to choose between an observed sum node (cutset conditioning)

or a latent sum node (mixture) at each recursive step. The final result is that the algorithm

provides a general template for learning an array of models – CNs, SPNs, and SPCNs.

• Learning Hybrid Sum-Product-Cutset Networks

Our proposed hybrid model learning algorithm learns a conditional linear Gaussian distribu-

tion at the leaves of CNs and SPCNs and also finds approximate decompositions over mixed

variables. As mentioned before, this is the first advanced algorithm for learning the structure

and parameters of a deep architecture such as SPN over mixed domains.

• Learning to Merge

To date, all algorithms proposed in literature for learning SPNs induce models which are

directed trees – there is a single path from the root to each node in the network. Our final

contribution in learning models is that we devised efficient post-optimization strategies for

finding similar sub-networks (sub-CNs, sub-SPNs, sub-SPCNs and their hybrids) in the tree

structured model and then merge them to form a more compact and accurate graph structured

model.

We evaluated the performance of each of our proposed models and learning algorithms on a

wide variety of high-dimensional real-world datasets, chosen from different domains. Our results

clearly show that the predictive accuracy, learning and prediction times of our new models and

learning algorithms are superior than state-of-the-art tractable model learners in literature.

7.2 Future Work

7.2.1 Discriminative Learning of CNs

The learning algorithms presented in this dissertation learn tractable models in a generative fashion

by optimizing log-likelihood. The learned models may not accurately capture the conditional dis-

tribution of query variables given the evidence variables in domains where the evidence is known

92

a priori. Discriminative learning has been extensively studied in the context of Bayesian network

classifiers. (Greiner and Zhou, 2002) proposed a discriminative parameter learning maximizing

the conditional likelihood of Bayesian network classifiers given the structure. (Grossman and

Domingos, 2004) proposed a discriminative structure learning technique for Bayesian network

classifiers maximizing the conditional likelihood. However the parameters were learned by maxi-

mum likelihood estimation. (Keogh and Pazzani, 1999; Pernkopf, 2005) used classification rate as

the objective function to discriminatively learn the structure and parameters of BN classifiers and

(Bilmes and Morgan, 1999; Bilmes, 2000; Pernkopf and Bilmes, 2005) proposed explaining away

residual for discriminative structure learning of dynamic BNs. Discriminative structure learning

has recently been studied by (Rooshenas and Lowd, 2016) only for arithmetic circuits over dis-

crete domains and discriminative parameter learning by (Gens and Domingos, 2012) for SPNs.

An important future research direction is thus to discriminatively learn both the structure and pa-

rameters of CNs, SPCNs and HSPCNs. Such learning will help to build models that have more

accurate conditional distributions and as a result allow them to be compared against other well-

known discriminative learners like SVMs, logistic regression and neural networks for supervised

classification tasks.

7.2.2 Dynamic Discritization of Continuous Variables in Hybrid Models

In this dissertation, we proposed hybrid models which allow conditioning over discrete variables

only. A common approach to deal with mixed domains is to discretize all the continuous attributes

as a pre-processing step of learning. This often significantly reduces the accuracy of models due

to loss of information. (Friedman et al., 1998) has proposed hybrid tree-augmented naive Bayes

models in which dual representation is possible where continuous variables can retain both their

original and discretized versions. Instead of discretizing every continuous variable in advance or

maintaining a dual representation of them, in CNs and SPCNs one has the provision to dynamically

choose a continuous attribute that is best represented discretized, and thoroughly investigating this

is an interesting line of future research.

93

7.2.3 Learning More Expressive Base Models

CNs and SPCNs were designed to allow only tree width one models at the leaves. These models

are often too biased in the presence of large amounts of data. One possible solution could be to

learn deeper models. (Vergari et al., 2015) proposed to learn SPNs with tree Bayesian networks at

the leaves where the depth of the SPNs was widely varied from 15 to 59. However, as we increase

the depth, it causes an exponential decrease in the number of samples available at the leaves,

which in turn causes the model to overfit the data because of high variance. This can be remedied

by learning ensembles of SPNs as done by (Vergari et al., 2015). But such an approach causes

a significant increase in the learning time. An alternative solution is to learn complex models.

(Rooshenas and Lowd, 2014) proposed to learn SPNs with arithmetic circuits at the leaves when

fewer than 50 samples were available. These models out-perform the models proposed by (Vergari

et al., 2015) in cases where sufficient data was available while they performed poorly when data

was scarce. A more effective solution worth future investigation to avoid high bias associated with

simpler models and high variance with deeper models, is to learn expressive enough base models

at the right point in learning. For example, learning polytrees with bounded number of parents or

learning bounded tree width Bayesian networks.

7.2.4 Relational Merging

Merging sub-networks improves model accuracy and reduces inference time as demonstrated in

this dissertation. A restriction of our proposed merging approach is that it only searches for similar

sub-networks over the same scope. More often than not, real-world scenarios have similarities

which span over different scopes (e.g. pixels of the left side of a facial image have the same values

as the pixels in the rights side). Following are two potential future works in this context: (1)

develop relational merging approaches that search for similarities in sub-networks having different

(even disjoint) scopes (cf. (Gogate and Domingos, 2010a, 2011)) and (2) analyzing contexts –

94

assignment to variables on the path from the root – of merged sub-networks for finding symmetric

contexts.

REFERENCES

Adel, T., D. Balduzzi, and A. Ghodsi (2015). Learning the structure of sum-product networks
via an svd-based algorithm. In Proceedings of the Thirty-First Conference on Uncertainty in
Artificial Intelligence, pp. 32–41.

Ammar, S., P. Leray, F. Schnitzler, et al. (2010). Subquadratic Markov tree mixture learning based
on randomizations of the Chow-Liu algorithm. In Proceedings of the 5th European Workshop
on Probabilistic Graphical Models, pp. 17–24.

Bach, F. R. and M. I. Jordan (2001). Thin junction trees. Advances in Neural Information Process-
ing Systems 14, 569–576.

Bergstra, J. and Y. Bengio (2012). Random search for hyper-parameter optimization. Journal of
Machine Learning Research 13, 281–305.

Bilmes, J. and N. Morgan (1999). Natural statistical models for automatic speech recognition.
University of California, Berkeley.

Bilmes, J. A. (2000). Dynamic bayesian multinets. In Proceedings of the 16th Conference in
Uncertainty in Artificial Intelligence (UAI), pp. 38–45.

Bøttcher, S. G. (2004). Learning Bayesian networks with mixed variables. Ph. D. thesis, Citeseer.

Boutilier, C., N. Friedman, M. Goldszmidt, and D. Koller (1996). Context-specific independence
in Bayesian networks. In Proceedings of the Twelfth Conference on Uncertainty in Artificial
Intelligence, pp. 115–123. Morgan Kaufmann.

Breiman, L. (2001). Random forests. Machine learning 45(1), 5–32.

Chavira, M. and A. Darwiche (2007). Compiling Bayesian networks using variable elimination.
In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), pp.
2443–2449.

Chavira, M. and A. Darwiche (2008). On probabilistic inference by weighted model counting.
Artificial Intelligence 172(6-7), 772–799.

Chechetka, A. and C. Guestrin (2008). Efficient principled learning of thin junction trees. In
J. Platt, D. Koller, Y. Singer, and S. Roweis (Eds.), Advances in Neural Information Processing
Systems 20. MIT Press.

95

96

Choi, M. J., V. Tan, A. Anandkumar, and A. Willsky (2011, May). Learning latent tree graphical
models. Journal of Machine Learning Research 12, 1771–1812.

Chow, C. K. and C. N. Liu (1968). Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Theory 14, 462–467.

Cooper, G. F. (1990, March). The computational complexity of probabilistic inference using
Bayesian belief netw orks. Artificial Intelligence 42(2-3), 393–405.

Cormen, T. H. (2009). Introduction to algorithms. MIT press.

Darwiche, A. (2001). Decomposable negation normal form. Journal of the ACM 48(4), 608–647.

Darwiche, A. (2003). A differential approach to inference in Bayesian networks. Journal of the
ACM 50(3), 280–305.

Darwiche, A. (2009). Modeling and reasoning with Bayesian networks. Cambridge University
Press.

Davis, J. and P. Domingos (2010). Bottom-up learning of Markov network structure. In Proceed-
ings of the Twenty-Seventh International Conference on Machine Learning, Haifa, Israel, pp.
271–278. ACM Press.

Dechter, R. and R. Mateescu (2007). AND/OR search spaces for graphical models. Artificial
Intelligence 171, 73–106.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 1–38.

Dennis, A. and D. Ventura (2012). Learning the architecture of sum-product networks using clus-
tering on variables. In Advances in Neural Information Processing Systems, pp. 2033–2041.

Dennis, A. and D. Ventura (2015). Greedy structure search for sum-product networks. In Pro-
ceedings of the 24th International Conference on Artificial Intelligence, pp. 932–938. AAAI
Press.

Di Mauro, N., A. Vergari, and F. Esposito (2015). Learning accurate cutset networks by exploiting
decomposability. In AI*IA 2015 Advances in Artificial Intelligence, pp. 221–232.

Even, S. (1979). Graph Algorithms. New York, NY, USA: W. H. Freeman & Co.

Freund, Y. and R. E. Schapire (1996). Experiments with a new boosting algorithm. In Proceedings
of the 13th International Conference on Machine Learning, pp. 148–156.

Freund, Y. and R. E. Schapire (1997). A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of computer and system sciences 55(1), 119–139.

97

Friedman, N., D. Geiger, and M. Goldszmidt (1997). Bayesian network classifiers. Machine
Learning 29(2-3), 131–163.

Friedman, N. and M. Goldszmidt (1996). Discretizing continuous attributes while learning
bayesian networks. In Machine Learning, Proceedings of the Thirteenth International Con-
ference (ICML), pp. 157–165.

Friedman, N., M. Goldszmidt, and T. J. Lee (1998). Bayesian network classification with contin-
uous attributes: Getting the best of both discretization and parametric fitting. In Proceedings of
the Fifteenth International Conference on Machine Learning (ICML), pp. 179–187.

Geiger, D. and D. Heckerman (1996a). Beyond bayesian networks: Similarity networks and
bayesian multinets. Artificial Intelligence 82, 45–74.

Geiger, D. and D. Heckerman (1996b). Knowledge representation and inference in similarity
networks and bayesian multinets. Artificial Intelligence 82(1), 45–74.

Gens, R. and P. Domingos (2012). Discriminative learning of sum-product networks. In Advances
in Neural Information Processing Systems, pp. 3248–3256.

Gens, R. and P. Domingos (2013). Learning the structure of sum-product networks. In Proceedings
of The 30th International Conference on Machine Learning, pp. 873–880.

Gogate, V. and P. Domingos (2010a). Exploiting Logical Structure in Lifted Probabilistic Infer-
ence. In AAAI 2010 Workshop on Statistical Relational Learning.

Gogate, V. and P. Domingos (2010b). Formula-Based Probabilistic Inference. In Proceedings of
the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, pp. 210–219.

Gogate, V. and P. Domingos (2011). Probabilistic Theorem Proving. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence, pp. 256–265. AUAI Press.

Gogate, V., W. Webb, and P. Domingos (2010). Learning efficient Markov networks. In Proceed-
ings of the 24th conference on Neural Information Processing Systems, pp. 748–756.

Gogate, V. G. (2009). Sampling algorithms for probabilistic graphical models with determinism.
Ph. D. thesis, University of California, Irvine.

Greiner, R. and W. Zhou (2002). Structural extension to logistic regression: Discriminative param-
eter learning of belief net classifiers. In Proceedings of the Eighteenth National Conference on
Artificial Intelligence, pp. 167–173. AAAI Press.

Grossman, D. and P. Domingos (2004). Learning Bayesian network classifiers by maximizing
conditional likelihood. In Proceedings of the Twenty-first International Conference on Machine
Learning, ICML ’04, New York, NY, USA, pp. 361–368. ACM.

98

Heckerman, D. and D. Geiger (1995). Learning bayesian networks: A unification for discrete
and gaussian domains. In Proceedings of the Eleventh Annual Conference on Uncertainty in
Artificial Intelligence (UAI), pp. 274–284.

Holmes, G., A. Donkin, and I. H. Witten (1994). Weka: A machine learning workbench. In
Intelligent Information Systems, 1994. Proceedings of the 1994 Second Australian and New
Zealand Conference on, pp. 357–361. IEEE.

Keogh, E. J. and M. J. Pazzani (1999). Learning augmented bayesian classifiers: A comparison of
distribution-based and classification-based approaches. In Proceedings of the Seventh Interna-
tional Workshop on Artificial Intelligence and Statistics, AISTATS.

Kisa, D., G. Van den Broeck, A. Choi, and A. Darwiche (2014). Probabilistic sentential decision
diagrams. In Proceedings of the 14th International Conference on Principles of Knowledge
Representation and Reasoning.

Kohavi, R., G. John, R. Long, D. Manley, and K. Pfleger (1994). Mlc++: A machine learning
library in c++. In Tools with Artificial Intelligence, 1994. Proceedings., Sixth International
Conference on, pp. 740–743. IEEE.

Koller, D. and N. Friedman (2009). Probabilistic Graphical Models: Principles and Techniques.
Cambridge, MA: MIT Press.

Kozlov, A. V. and D. Koller (1997). Nonuniform dynamic discretization in hybrid networks. In
UAI ’97: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence,
Brown University, Providence, Rhode Island, USA, August 1-3, 1997, pp. 314–325.

Kullback, S. and R. A. Leibler (1951). On information and sufficiency. The annals of mathematical
statistics 22(1), 79–86.

Lauritzen, S. L. (1996). Graphical models, Volume 17. Clarendon Press.

Lauritzen, S. L. and D. J. Spiegelhalter (1988). Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society. Series
B (Methodological) 50(2), 157–224.

Lauritzen, S. L. and N. Wermuth (1984). Mixed interaction models. Institut for Elektroniske
Systemer, Aalborg Universitetscenter.

Lauritzen, S. L. and N. Wermuth (1989). Graphical models for associations between variables,
some of which are qualitative and some quantitative. The Annals of Statistics 17(1), 31–57.

Liu, Q. and A. T. Ihler (2013). Variational algorithms for marginal MAP. Journal of Machine
Learning Research 14(1), 3165–3200.

99

Lowd, D. and J. Davis (2010). Learning Markov network structure with decision trees. In Pro-
ceedings of the 10th International Conference on Data Mining, pp. 334–343.

Lowd, D. and P. Domingos (2008). Learning arithmetic circuits. In Proceedings of the Twenty-
Fourth Conference on Uncertainty in Artificial Intelligence, Helsinki, Finland. AUAI Press.

Lowd, D. and A. Rooshenas (2013). Learning markov networks with arithmetic circuits. In Pro-
ceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, pp.
406–414.

Martı́nez, A. P., P. Larrañaga, and I. Inza (2006). Supervised classification with conditional gaus-
sian networks: Increasing the structure complexity from naive bayes. Int. J. Approx. Reason-
ing 43(1), 1–25.

Mateescu, R., R. Dechter, and R. Marinescu (2008). AND/OR multi-valued decision diagrams
(AOMDDs) for graphical models. Journal of Artificial Intelligence Research 33, 465–519.

Meila, M. and M. Jordan (2000). Learning with mixtures of trees. Journal of Machine Learning
Research 1, 1–48.

Merz, C., P. Murphy, and D. Aha (1997). Uci repository of machine learning databases. dept. of
information and computer science, univ. of california, irvine.

Mitchell, T. M. (1997). Machine Learning. New York, NY: McGraw-Hill.

Murphy, K. P. (1998). Inference and learning in hybrid bayesian networks. University of Califor-
nia, Berkeley, Computer Science Division.

Narasimhan, M. and J. Bilmes (2004). Pac-learning bounded tree-width graphical models. In
Proceedings of the 20th conference on Uncertainty in artificial intelligence, pp. 410–417. AUAI
Press.

Nath, A. and P. M. Domingos (2015). Learning relational sum-product networks. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin,
Texas, USA., pp. 2878–2886.

Neal, R. M. and G. E. Hinton (1998). A view of the EM algorithm that justifies incremental, sparse,
and other variants. In Learning in graphical models, pp. 355–368. Springer.

Park, J. D. (2002). Map complexity results and approximation methods. In Proceedings of the
Eighteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, USA, pp.
388–396. Morgan Kaufmann Publishers Inc.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann.

100

Peharz, R., B. C. Geiger, and F. Pernkopf (2013). Greedy part-wise learning of sum-product
networks. In Machine Learning and Knowledge Discovery in Databases - European Conference,
ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part II, pp.
612–627.

Pernkopf, F. (2005). Bayesian network classifiers versus selective k-nn classifier. Pattern Recog-
nition 38(1), 1–10.

Pernkopf, F. and J. Bilmes (2005). Discriminative versus generative parameter and structure learn-
ing of bayesian network classifiers. In Proceedings of the 22nd international conference on
Machine learning, pp. 657–664. ACM.

Poon, H. and P. Domingos (2011). Sum-product networks: A new deep architecture. In Pro-
ceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, Barcelona,
Spain, pp. 337–346. AUAI Press.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning 1, 81–106.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann.

Rahman, T. and V. Gogate (2016a). Learning ensembles of cutset networks. In AAAI conference
on Artificial Intelligence, pp. 3301–3307.

Rahman, T. and V. Gogate (2016b). Merging strategies for sum-product networks: From trees to
graphs. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence,
UAI 2016.

Rahman, T., P. Kothalkar, and V. Gogate (2014). Cutset networks: A simple, tractable, and scalable
approach for improving the accuracy of chow-liu trees. In Proceedings of ECML and PKDD,
pp. 630–645.

Ridgeway, G. (2002). Looking for lumps: Boosting and bagging for density estimation. Compu-
tational Statistics & Data Analysis 38(4), 379–392.

Rooshenas, A. and D. Lowd (2013). Learning tractable graphical models using mixture of arith-
metic circuits. In Proceedings of the 17th AAAI Conference on Late-Breaking Developments in
the Field of Artificial Intelligence, pp. 104–106. AAAI Press.

Rooshenas, A. and D. Lowd (2014). Learning sum-product networks with direct and indirect
interactions. In Proceedings of the Thirty-First International Conference on Machine Learning,
Beijing, China. JMLR: W&CP 32.

Rooshenas, A. and D. Lowd (2016). Discriminative structure learning of arithmetic circuits. In
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pp.
1506–1514.

101

Rosset, S. and E. Segal (2002). Boosting density estimation. In Advances in Neural Information
Processing Systems, pp. 641–648.

Roth, D. (1996). On the hardness of approximate reasoning. Artificial Intelligence 82(1), 273–302.

Silva, R., C. Blundell, and Y. W. Teh (2011). Mixed cumulative distribution networks. In Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2011, pp. 670–678.

Srebro, N. (2003). Maximum likelihood bounded tree-width Markov networks. Artificial Intelli-
gence 143(1), 123–138.

Tang, Y., R. Salakhutdinov, and G. E. Hinton (2012). Deep mixtures of factor analysers. In Pro-
ceedings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh,
Scotland, UK, June 26 - July 1, 2012.

Tarjan, R. E. (1977). Finding optimum branchings. Networks 7(1), 25–35.

Uria, B., I. Murray, and H. Larochelle (2013). RNADE: the real-valued neural autoregressive
density-estimator. In Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held
December 5-8, 2013, Lake Tahoe, Nevada, United States., pp. 2175–2183.

Van Haaren, J. and J. Davis (2012). Markov network structure learning: A randomized feature
generation approach. In Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp.
1148–1154.

Vergari, A., N. Di Mauro, and F. Esposito (2015). Simplifying, regularizing and strengthening
sum-product network structure learning. In Machine Learning and Knowledge Discovery in
Databases, pp. 343–358. Springer.

Welling, M., R. S. Zemel, and G. E. Hinton (2002). Self supervised boosting. In Advances in
Neural Information Processing Systems, pp. 665–672.

Wiegerinck, W. (2000). Variational approximations between mean field theory and the junction tree
algorithm. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence,
pp. 626–633.

Yang, Y. and G. I. Webb (2009). Discretization for naive-bayes learning: managing discretization
bias and variance. Machine Learning 74(1), 39–74.

Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms (1st ed.). Chapman &
Hall/CRC.

VITA

Tahrima Rahman earned her Bachelor’s degree in 2007 in Computer Science and Engineering

from the University of Dhaka, Bangladesh. In 2009, she completed her Master’s degree from the

University of Dhaka, Bangladesh in the same discipline. Before starting her PhD in Fall 2011

at The University of Texas at Dallas, Tahrima served as a lecturer in the Institute of Information

Technology, University of Dhaka. Before that she was a lecturer in the department of Computer

Science and Engineering at Eastern University, Dhaka, Bangladesh for three years.

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Dissertation Outline

	Background
	Notation
	Probabilistic Graphical Models (PGMs)
	Inference

	Tractable PGMs
	Tree Structured PGMs
	Thin Junction Trees
	Mixtures of Trees
	Arithmetic Circuits
	Sum-Product Networks

	Cutset Networks
	Introduction
	The Chow-Liu Algorithm for Learning Tree Distributions
	OR Search Trees
	Cutset Networks
	Learning Cutset Networks
	Splitting Heuristics
	Termination Condition and Post-Pruning

	Mixtures of Cutset Networks
	Empirical Evaluation
	Methodology and Setup
	Learning Time
	Accuracy

	Chapter Summary

	Learning Ensembles of Cutset Networks
	Introduction
	Ensembles of Cutset Networks
	Boosting
	Bagging

	Experiments
	Boosting Performance
	Bagging Performance
	Comparison with State-of-the-art

	Chapter Summary

	Merging Strategies for Sum-Product-Cutset Networks
	Introduction
	Top Down Learning of SPNs
	Sum-Product-Cutset Networks
	Merging Strategies: From Trees to Graphs
	Our Approach
	Practical Merging Strategies

	Experiments
	Setup
	Algorithms Evaluated
	Impact of Merging on Test Set Log-Likelihood
	Comparison with State-Of-The-Art

	Chapter Summary

	Learning Hybrid Sum-Product-Cutset Networks
	Introduction
	Background
	Representation
	Hybrid Cutset Networks
	Hybrid Sum-Product Cutset Networks (HSPCNs)

	Learning HSPCNs
	Learning Tree Structured CLGs
	Decomposition
	Splitting

	Experiments
	Density Estimation
	Classification

	Chapter Summary

	Conclusion
	Contributions
	Proposed Tractable PGMs
	Proposed Learning Algorithms

	Future Work
	Discriminative Learning of CNs
	Dynamic Discritization of Continuous Variables in Hybrid Models
	Learning More Expressive Base Models
	Relational Merging

	References
	Vita

