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Abstract. We propose a systematic procedure called the Clebsch canonization for obtaining a

canonical Hamiltonian system that is related to a given Lie–Poisson equation via a momentum

map. We describe both coordinate and geometric versions of the procedure, the latter apparently

for the first time. We also find another momentum map so that the pair of momentum maps

constitute a dual pair under a certain condition. The dual pair gives a concrete realization of what

is commonly referred to as collectivization of Lie–Poisson systems. It also implies that solving

the canonized system by symplectic Runge–Kutta methods yields so-called collective Lie–Poisson

integrators that preserve the coadjoint orbits and hence the Casimirs exactly. We give a couple of

examples, including the Kida vortex and the heavy top on a movable base with controls, which are

Lie–Poisson systems on so(2, 1)∗ and (se(3)⋉ R3)∗, respectively.

1. Introduction

1.1. The Lie–Poisson Dynamics. The formalization of mechanics by Lagrange and Hamilton
evolved in the 19th century into the description of dynamical systems where the equations of motion
are generated by canonical Poisson brackets, written in terms of canonical coordinates, position and
momenta, with a Hamiltonian function. More modern differential geometric descriptions of Hamil-
tonian systems occurred well into the 20th century by, e.g., Mackey [29] and Jost [22], motivating
present day symplectic geometry.

Less well-known is Poisson geometry. Its origins date back to Lie [27] in 1890, but it was
brought into modern geometric form with contributions from Souriau [60] and others including
the seminal paper of Weinstein [67]. Like the canonical Poisson brackets of symplectic geometry,
noncanonical Poisson brackets of Poisson geometry are binary operations on smooth phase space
functions constituting a Lie algebra realization, but explicit reference to canonical coordinates is
removed and degeneracy is allowed. A manifold with such a Poisson bracket is a generalization of
the symplectic manifold called a Poisson manifold. Noncanonical Poisson brackets, including the
present day coordinate-free axioms, were present in the theoretical physics community in the mid
20th century in e.g. the works of Dirac [10], Martin [37], Pauli [56], Sudarshan [62].

A special kind of noncanonical Poisson bracket, the Lie–Poisson bracket, has explicit linear
dependence on the phase space coordinates and is intimately related to a Lie algebra. Lie–
Poisson dynamics—dynamics generated by Lie–Poisson brackets—is ubiquitous as basic equations
of physics. It is this kind of dynamics that is the subject of the present paper.

An important example of Lie–Poisson dynamics is given by Euler’s equations for rigid body
dynamics with a Lie–Poisson bracket based on the Lie algebra of infinitesimal rotations [37] (see
also [61, 62]). This example often serves as inspiration for generalization and exploration of new
concepts. The Lie–Poisson bracket for the full ideal fluid including magnetohydrodynamics was
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given in Morrison and Greene [51]; see also Vishik and Dolzhansky [66]. This example was followed
by the Lie–Poisson formulation of the Maxwell–Vlasov system of equations in Morrison [45], with a
correction given in Weinstein and Morrison [68] and Marsden and Weinstein [32] and a limitation
to the correction pointed out in Morrison [47], which was followed up more recently in Heninger
and Morrison [19], Morrison [50] and then in Lainz et al. [25]. Another example from the mid 1980s
is that given in Marsden et al. [34], where the Lie–Poisson bracket for general moment closures
of the kinetic hierarchy were given. There is now a large literature with very many subsequent
publications that can be found, e.g., in Morrison [48, 49] and Arnold and Khesin [3].

Given the ubiquity of the Lie–Poisson form, it is natural to inquire about its origin. One thread
extends back to the quasi-coordinate description of Poincaré [57] (see also Hamel [18]), where
Euler’s equations for rigid body dynamics, and its Lagrangian counterpart—the Euler–Poincaré
equation—was first formulated on a general Lie algebra. This idea was applied to fluid dynamics
in Arnold [1, 2] where Euler’s equations for the incompressible fluid are seen to be the Euler–
Poincaré equation on the Lie algebra of a diffeomorphism group, putting the work of Lagrange
[24] into modern language. (See Morrison et al. [54] for commentary.) Although these works did
not explicitly give the Lie–Poisson bracket, the equations of motion for a reduced dynamics were
obtained.

The main geometrical idea behind the Lie–Poisson brackets for the dynamics of rigid body,
fluids, and plasmas is now understood as a process of reduction from canonical to noncanonical
Hamiltonian form as follows (see, e.g., Marsden and Ratiu [31, Chapter 13]): The configuration
space of the systems is a Lie group G, and the basic equation of the system is a canonical Hamiltonian
system defined on the cotangent bundle T ∗G. However, the Hamiltonian has G-symmetry, and thus
one may reduce the system to the dual g∗ of the Lie algebra g of G. The resulting equation on g∗

has Lie–Poisson form.
There are also examples where the system is defined on a Lie group G, but the symmetry of the

system is broken. A well-known example is the heavy top, where the symmetry is broken by the
gravity; another is the compressible fluid, where density plays a role similar to gravity for the heavy
top case. In either case, it is known that one can still recover the full symmetry by extending the
configuration space to a semidirect product G⋉V using a G-representation on a vector space V ; see,
e.g., Holm et al. [20], Marsden et al. [35, 36]. As a result, one again obtains a Lie–Poisson system
on the dual of the semidirect product Lie algebra g ⋉ V , which is a special case of Lie–Poisson
brackets based on Lie algebra extensions [64] that occur in a variety of physical systems including
magnetohydrodynamics (see Marsden and Morrison [30]).

1.2. Collectivization. Another class of Lie–Poisson systems arises as a result of so-called collec-
tivization in the sense of Guillemin and Sternberg [14] (see also Holmes and Marsden [21] and
Guillemin and Sternberg [15, Section 28]). Given a Poisson manifold P and an equivariant mo-
mentum map M : P → g∗ associated with an action of a Lie group G on P , one can show that M
is a Poisson map with respect to the Poisson bracket on P and the Lie–Poisson bracket on g∗; see,
e.g., Marsden and Ratiu [31, Theorem 12.4.1]. This implies the following: Given that Hamiltonian
H : P → R is collective in the sense that there exists h : g∗ → R such that H = h ◦M, the flow Φt

of the Hamiltonian vector field on P defined by H and the flow ϕt of the Lie–Poisson dynamics on
g∗ defined by h are related by M as M ◦ Φt = ϕt ◦M.

The term “collective” comes from the motivating examples of Guillemin and Sternberg [14, 15])
such as the liquid drop model in nuclear physics, where one seeks a set of equations that describe
aggregate motions of a number of particles “as if it were a rigid body or liquid drop”; the idea
behind this dates back to Riemann [58] (see also Rosensteel [59] and Morrison et al. [53]).
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1.3. Clebsch Canonization and Collectivization. What we refer to as Clebsch canonization
or just “canonization” for short is the opposite of the collectivization described above: One first
has a Lie–Poisson equation on g∗, and then constructs a cotangent bundle T ∗Q and an equivariant
momentum map M : T ∗Q → g∗ so that solutions of the new canonical Hamiltonian dynamics on
T ∗Q can be mapped by M to those of the Lie–Poisson dynamics on g∗.

This theoretical concept is motivated by the early use of potentials for describing the velocity field
of fluid mechanics: long before the introduction of the vector potential for representing a magnetic
field, researchers considered various potential representations of velocity fields, the most famous of
which is due to Clebsch [7, 8]. The connection between the Lie–Poisson brackets for fluid dynamics
and the canonical Hamiltonian description in terms of the Clebsch representation was first given in
Morrison [46, 47], Morrison and Greene [52], while two-dimensional vortex dynamics was considered
later in Marsden and Weinstein [33]. See also Ohsawa [55] for the Clebsch representation of the
heavy top dynamics. A general theory for Lie–Poisson brackets, motivated by [46] was given in
Morrison [48] and the present work places this in the geometric setting described above.

1.4. Lie–Poisson Integrators. Compared to symplectic integrators for canonical Hamiltonian
systems (see, e.g., Hairer et al. [17] and Leimkuhler and Reich [26]), integrators for Lie–Poisson
equations seem to be studied less extensively. Some earlier works include Ge and Marsden [13] and
Channell and Scovel [6], and are based on generating functions. Engø and Faltinsen [12] used Lie
group methods by exploiting the property that Lie–Poisson dynamics evolves on coadjoint orbits
on g∗. More recently, Ma and Rowley [28] developed a variational integrator for the Lie–Poisson
equation by discretizing the corresponding variational principle. See also Mart́ın de Diego [38] for
a more recent survey of Lie–Poisson integrators.

Our work gives a concrete realization of the general theory of collective integrators developed
by McLachlan et al. [39]; see also McLachlan et al. [40, 41]. The main advantage of collective
integrators is that one can construct Lie–Poisson integrators that preserve the coadjoint orbits out
of existing symplectic integrators. On the other hand, the main disadvantage is that it is not always
clear how one can find a suitable cotangent bundle T ∗Q and momentum map M.

It is important that the symplectic integrator “descends” [39] to a Lie–Poisson integrator that
preserves the coadjoint orbits. One can show that this is the case with the symplectic Runge–
Kutta method if, for example, one can find another momentum map J on T ∗Q so that the pair
of momentum maps M and J constitute a dual pair, as discussed in [39, Theorem 7]. Existing
constructions (see, e.g., McLachlan et al. [39, 40, 41]) of such momentum maps M and J are rather
ad-hoc, and thus are limited to Lie–Poisson equations on relatively simple spaces such as o(p, q,F),
sp(2k, F ), gl(n,F), u(p, q) with F = R,C,H, and some semi-direct products.

1.5. Main Result and Outline. We propose a systematic canonization that potentially works
for a wider class of Lie–Poisson equations by constructing a momentum map M : T ∗g → g∗; hence
the Lie–Poisson equation on g∗ is “canonized” to a canonical Hamiltonian system T ∗g ∼= T ∗Rn with
n := dim g. We first show how this works in coordinate calculations in Section 2.

In Section 3, we give a geometric interpretation of this setting. We also find a Lie subalgebra h
of sp(2n,R) that characterizes the intrinsic symmetry of the canonized Hamiltonian system (or the
canonized system for short). Its action on T ∗g gives rise to another momentum map J : T ∗g → h∗

that becomes invariants of the canonized system. We then prove in Theorem 3 that the momentum
maps M and J constitute a dual pair (in the sense of Weinstein [67]) under a certain condition.

Section 4 addresses the invariants of the canonized system. For any (real) Lie algebra g, the
momentum map J has at least two components including an invariant associated with the Killing
form on g. Additionally, if g is semisimple, then there is another invariant associated with the
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Killing form. Furthermore, we show that if the Lie–Poisson bracket on g∗ possesses a Casimir then
there is a corresponding Noether-type invariant (momentum map) in the canonized system as well.

In Section 5, we first briefly review the idea of the collective integrators, and then show some
numerical results. Assuming the dual pair from Theorem 3, symplectic Runge–Kutta methods
applied to our canonized system yields Lie–Poisson integrators that preserve the coadjoint orbits
and hence the Casimirs exactly. We demonstrate it using a couple of examples: the Kida vortex [23]
(see also Meacham et al. [42]) and the heavy top on a movable base with a stabilizing control [9].

2. Clebsch Canonization

2.1. Lie–Poisson Bracket. Let g be an n-dimensional Lie algebra, and {Ei}ni=1 be a basis for
it with the structure constants {ckij}1≤i,j,k≤n, i.e., [Ei, Ej ] = ckijEk; note that we use Einstein’s

summation convention throughout the paper. We may then define the dual basis {Ei
∗}ni=1 for g∗

by setting
〈
Ei

∗, Ej

〉
= δij under the standard dual pairing ⟨ · , · ⟩ : g∗ × g → R.

For any smooth f : g∗ → R, we define the derivative Df(µ) ∈ g evaluated at µ ∈ g∗ so that, for
any δµ ∈ g∗,

⟨δµ,Df(µ)⟩ = d

ds
f(µ+ sδµ)

∣∣∣∣
s=0

.

This results in the coordinate expression

Df(µ) =
∂f

∂µi
(µ)Ei.

Then one defines the (+)-Lie–Poisson bracket (see Section 3.3 for the (−)-Lie–Poisson bracket) on
g∗ as follows: For any f, g : g∗ → R,

{f, g}+ (µ) := ⟨µ, [Df(µ), Dg(µ)]⟩ = µkc
k
ij

∂f

∂µi

∂g

∂µj
. (1)

The Lie–Poisson equation for a Hamiltonian h : g∗ → R is the Hamiltonian system defined using
the above Poisson bracket, i.e.,

µ̇i = {µi, h}+ = µkc
k
ij

∂h

∂µj
, (2a)

or equivalently,

µ̇ = − ad∗Dh(µ) µ. (2b)

2.2. Clebsch Canonization in Coordinates. The main idea of the Clebsch canonization (see
Morrison [46, 48]) is the following: Given an n-dimensional Lie–Poisson bracket (2), we would like
to find a corresponding 2n-dimensional canonical Hamiltonian system. In other words, we would
like to find a relationship between the Poisson bracket (1) and the canonical Poisson bracket of the
form

{F,G} =
∂F

∂qi
∂G

∂pi
− ∂G

∂qi
∂F

∂pi
, (3)

where F,G : T ∗Rn → R.
Suppose that µ = µiE

i
∗ ∈ g∗ and (q, p) ∈ T ∗Rn are related as follows:

µi = ckijq
jpk. (4)

For any smooth f, g : g∗ → R, we may define F,G : T ∗Rn → R by setting F (q, p) := f(µ) where µ
and (q, p) are related as above; similarly for G as well. Then, by the chain rule, we have

∂F

∂qi
=

∂f

∂µj

∂µj
∂qi

=
∂f

∂µj
ckjipk,

∂F

∂pi
=

∂f

∂µj

∂µj
∂pi

=
∂f

∂µj
cijkq

k.
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As a result,

{F,G} =
∂F

∂qi
∂G

∂pi
− ∂G

∂qi
∂F

∂pi

= qlpm
(
ciklc

m
ji − cijlc

m
ki

) ∂f
∂µj

∂g

∂µk

= qlpm
(
−ciklcmij − ciljc

m
ik

) ∂f
∂µj

∂g

∂µk

= qlpmc
i
jkc

m
il

∂f

∂µj

∂g

∂µk

= µic
i
jk

∂f

∂µj

∂g

∂µk

= {f, g}+ (µ),

where the fourth equality follows from the Jacobi identity for the structure constants.
Therefore, given any Lie–Poisson bracket in terms of µ, one can obtain an canonized canonical

bracket via (4). The Hamiltonian of the canonized system will have the form H(q, p) = h(µ) with
µ given as in (4). If the resulting equations of the canonical system are solved for t 7→ (q(t), p(t)),
then t 7→ µ(t) constructed according to (4) solves the Lie–Poisson equation (2).

3. Geometry of Clebsch Canonization

This section gives a geometric interpretation of the canonization presented in Section 2.2. Par-
ticularly, we show that the map (4) is the momentum map associated with a natural g-action on
the cotangent bundle T ∗g.

3.1. Left g-action on T ∗g. Let T ∗g = g× g∗ be the cotangent bundle of g and define

g× T ∗g → T ∗g; (ξ, (q, p)) 7→ (adξ q,− ad∗ξ p) =: ξT ∗g(q, p).

In coordinates, we can write it as follows:

ξT ∗g(q, p) = ξickijq
j ∂

∂qk
− ξickijpk

∂

∂pj

= ξickij

(
qj

∂

∂qk
− pk

∂

∂pj

)
.

Let us show that it is a left Lie algebra action, i.e., for any ξ, η ∈ g,

[ξ, η]T ∗g = −[ξT ∗g, ηT ∗g],

where the bracket on the left-hand side is the commutator in g whereas the one on the right is the
Jacobi–Lie bracket of vector fields on T ∗g. In fact, in the coordinate representation with respect
to the standard basis {∂/∂qi, ∂/∂pi}ni=1, we have,

DηT ∗g · ξT ∗g =

(
∂

∂q
(adη q) · adξ q, −

∂

∂p
(ad∗η p) · (− ad∗ξ p)

)
=

(
adη ◦ adξ q, ad∗η ◦ ad∗ξ p

)
=

(
[η, [ξ, q]], ad∗η ◦ ad∗ξ p

)
,
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where the second line follows because q 7→ adη q and p 7→ ad∗η p are linear. Therefore, we obtain

[ξT ∗g, ηT ∗g] = DηT ∗g · ξT ∗g −DξT ∗g · ηT ∗g

=
(
[η, [ξ, q]]− [ξ, [η, q]], ad∗η ◦ ad∗ξ p− ad∗ξ ◦ ad∗η p

)
=

(
[q, [ξ, η]], ad∗[ξ,η] p

)
=

(
− ad[ξ,η] q, ad

∗
[ξ,η] p

)
= −[ξ, η]T ∗g,

where we used the Jacobi identity of the commutator on g and the following dual version of it: for
any ξ, η ∈ g,

ad∗η ◦ ad∗ξ − ad∗ξ ◦ ad∗η = ad∗[ξ,η] . (5)

If g is the Lie algebra of a Lie group G, then we may first consider the left G-action on T ∗g as
follows:

Φ: G× T ∗g → T ∗g; (g, (q, p)) 7→ (Adg q,Ad
∗
g−1 p) := Φg(q, p).

Clearly this is the cotangent lift of the adjoint action of G on g. Then its infinitesimal generator
gives the above Lie algebra action:

d

ds
Φexp(sξ)(q, p)

∣∣∣∣
s=0

= (adξ q,− ad∗ξ p) = ξT ∗g(q, p).

3.2. Momentum Map M+. Let us find the momentum map associated with the above Lie algebra
action. For any ξ ∈ g, define Mξ : T

∗g → R by setting

XMξ
= ξT ∗g,

where XMξ
is the Hamiltonian vector field for Mξ with respect to the canonical symplectic form

on T ∗g, i.e.,

XMξ
=
∂Mξ

∂pi

∂

∂qi
−
∂Mξ

∂qj
∂

∂pj
.

It is a straightforward calculation to find

Mξ(q, p) = ⟨p, adξ q⟩ = −
〈
ad∗q p, ξ

〉
.

The momentum map M+ : T ∗g → g∗ is then defined so that〈
M+(q, p), ξ

〉
=Mξ(q, p),

which yields

M+(q, p) = − ad∗q p. (6)

We can obtain a coordinate expression for M+ using the dual basis {Ei
∗}ni=1 for g∗ as follows:

M+(q, p) = −qjckjipk Ei
∗ = ckijq

jpk E
i
∗, (7)

which is nothing but (4) obtained earlier.
The above momentum map is infinitesimally equivariant: For any η ∈ g and any (q, p) ∈ T ∗g,

T(q,p)M
+ · ηT ∗g(q, p) = − ad∗[η,q] p+ ad∗q ad

∗
η p

= ad∗η ad
∗
q p

= − ad∗η M
+(q, p),

where we again used the dual version (5) of the Jacobi identity. The infinitesimal equivariance
implies (see, e.g., Marsden and Ratiu [31, Theorem 12.4.1]) that M+ is a Poisson map with respect
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to the canonical Poisson bracket (3) on T ∗g ∼= T ∗Rn and the (+)-Lie–Poisson bracket (1) on g∗,
i.e., for any smooth f, g : g∗ → R,{

f ◦M+, g ◦M+
}
= {f, g}+ ◦M+. (8)

3.3. Right Action and (−)-Lie–Poisson bracket. In order to find a Poisson map M− with
respect to the (−)-Lie–Poisson bracket

{f, g}− (µ) = −⟨µ, [Df(µ), Dg(µ)]⟩ = −µkckij
∂f

∂µi

∂g

∂µj
(9)

on g∗, one starts instead with the following right Lie algebra action:

g× T ∗g → T ∗g; (ξ, (q, p)) 7→ (− adξ q, ad
∗
ξ p) =: ξT ∗g(q, p),

which satisfies [ξ, η]T ∗g = [ξT ∗g, ηT ∗g].
If g is the Lie algebra of a Lie group G, then we may consider the following right G-action on

T ∗g:

Φ: G× T ∗g → T ∗g; (g, (q, p)) 7→ (Adg−1 q,Ad∗g p) := Φg(q, p).

Then we have

d

dt
Φexp(tξ)(q, p)

∣∣∣∣
t=0

= (− adξ q, ad
∗
ξ p) = ξT ∗g(q, p).

The associated momentum map is

M−(q, p) = ad∗q p = −ckijqjpk Ei
∗, (10)

and satisfies, for any f, g : g∗ → R,{
f ◦M−, g ◦M−} = {f, g}− ◦M−. (11)

3.4. Clebsch Canonization. Summarizing the above arguments, we have the following special
class of symplectic realization or Clebsch variables (see, e.g., Marsden and Weinstein [33]):

Theorem 1 (Clebsch canonization of Lie–Poisson equations). Given a smooth function h : g∗ → R,
define H : T ∗g ∼= T ∗Rn → R as

H(q, p) := h ◦M±(q, p) = h
(
∓ ad∗q p

)
,

using M± : T ∗g → g∗ defined in (6) or (10), respectively. Let t 7→ (q(t), p(t)) be a solution to the
canonical Hamiltonian system (referred to as the canonized system)

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(12)

on T ∗g ∼= T ∗Rn. Then t 7→ µ(t) := M±(q(t), p(t)) gives a solution to the Lie–Poisson equation

µ̇ = ∓ ad∗Dh(µ) µ,

defined in terms of the (±)-Lie–Poisson bracket, (1) or (9), respectively.

Proof. It easily follows from the property that M± is Poisson (see (8) and (11)) with respect to the
canonical Poisson bracket on T ∗g and the (±)-Lie–Poisson bracket on g∗, respectively. □
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3.5. Dual Pair. Moreover, there exists a dual pair of momentum maps in the sense of Weinstein
[67] associated with the above canonization. In order to define the other momentum map, let us
first write M+ from (7) (the case with M− is virtually the same) using its components as follows:
Writing z = (q, p) for short,

M+(z) =Mi(z)E
i
∗, Mi(z) := qTCip,

where {Ci}ni=1 are the n× n matrices defined in terms of the structure constants as

(Ci)jk := ckij .

However, we may also write Mi(z) as a bilinear form on T ∗g as follows:

Mi(z) =
1

2
zTMiz, (13)

where {Mi}ni=1 are the 2n× 2n symmetric matrices defined as

Mi :=

[
0 Ci
CT
i 0

]
.

Consider the symplectic algebra

sp(2n,R) :=
{
ξ̃ ∈ R2n×2n | ξ̃T J+ Jξ̃ = 0

}
where J :=

[
0 In

−In 0

]
.

It is well known that sp(2n,R) can be identified with the set sym(2n,R) of 2n× 2n real symmetric
matrices equipped with the Lie bracket

[ξ, η]J := ξJη − ηJξ

via the following map:

sym(2n,R) → sp(2n,R); ξ 7→ ξ̃ := Jξ.
Now, let us define a subalgebra h of sp(2n,R) as follows:

h :=
{
σ̃ ∈ sp(2n,R) | σ̃TMi +Miσ̃ = 0 ∀i ∈ {1, . . . , n}

}
∼= {σ ∈ sym(2n,R) | [σ,Mi]J = 0 ∀i ∈ {1, . . . , n}}

=
{
σ ∈ sym(2n,R) | (σJMi)

T = −σJMi ∀i ∈ {1, . . . , n}
}
.

(14)

More concretely, we may write

σ =

[
σ11 σ12
σT12 σ22

]
∈ sym(2n,R),

and see the following characterization of h:

σ ∈ h ⇐⇒


Ciσ11 = −σ11CT

i ,

Ciσ12 = σ12Ci,
σ22Ci = −CT

i σ22

∀i ∈ {1, . . . , n}. (15)

One can show that h is non-trivial for any Lie algebra g:

Proposition 2. Let κ be the n× n symmetric matrix defining the Killing form on g, i.e.,

κ(x, y) := tr(adx ◦ ady) = κijx
iyj ,

or, in terms of the structure constants, κij := clikc
k
jl. Then, the following elements of sym(2n,R)

are contained in h:

σ0 :=

[
0 In
In 0

]
, κ :=

[
κ 0
0 0

]
.
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Furthermore, if g is semisimple, then

κ∗ :=

[
0 0
0 κ−1

]
is also contained in h as well.

Proof. See Appendix A. □

Using the above subalgebra h, we can construct the following dual pair in the sense of Weinstein
[67] with some additional assumptions:

Theorem 3 (Dual pair associated with Clebsch canonization). Let h be the subalgebra of sp(2n,R) ∼=
sym(2n,R) defined in (14), and consider the h-action on T ∗g defined by

h → X(T ∗g); σ 7→ σT ∗g(z) := σ̃z = Jσz,

and let J : T ∗g → h∗ be its associated momentum map. Then:

(i) Jσ(z) := ⟨J(z), σ⟩ = 1
2z

Tσz for any z ∈ T ∗g and any σ ∈ h.

(ii) There exists a (possibly empty) open subset U ⊂ T ∗g such that M+ (or M−) and J are both
submersions.

(iii) If U is non-empty and dim h = dim g, then

h∗ U g∗J M+

is a dual pair with respect to the standard symplectic form Ω on T ∗g (restricted to U), i.e.,(
kerTzM

+
)Ω

= kerTzJ ∀z ∈ U,

and similarly with M− in place of M+, where ( · )Ω stands for the symplectically orthogonal
complement.

Proof. See Appendix B. □

4. Properties of Canonization

4.1. Subalgebra h and Momentum Map J. The dual pair constructed in Theorem 3 implies
that the momentum map J is an invariant of the canonized system (12). For example, for σ0,κ,κ∗ ∈
h from Proposition 2, the corresponding invariants are, writing z = (q, p) for short,

J0(z) := Jσ0(z) = p · q, (16)

and

Jκ(z) = qTκq = κ(q, q), Jκ∗(z) = pTκ−1p = κ−1(p, p), (17)

where we abused the notation by using κ and κ−1 for both the bilinear forms and the associated
matrices.

Note that, depending on the Lie algebra g, the subalgebra h ⊂ sym(2n,R) may be larger than
span{κ0,κ} or span{κ0,κ,κ∗}, and so there may be more invariants, as we shall see in the example
presented in Section 5.3, where dim h = 9.
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4.2. Casimirs and Momentum Maps. If the Lie–Poisson bracket possesses a Casimir, then
there must be a corresponding invariant for the canonical Hamiltonian system (12). We would like
to show that the invariant is indeed a Noether invariant (momentum map) of the canonized system:

Proposition 4. Suppose that f : g∗ → R is a Casimir of the Lie–Poisson bracket (1) or (9), and
define F : T ∗g → R by setting F := f ◦M±, i.e.,

F (q, p) := f
(
∓ ad∗q p

)
.

Let us also define

γ : T ∗g → g; γ(q, p) := Df(M±(q, p)) = Df
(
∓ ad∗q p

)
,

and consider the following R (Lie algebra) action

R× T ∗g → X(T ∗g); (s, (q, p)) 7→ (adsγ(q,p) q,− ad∗sγ(q,p) p) := sT ∗g(q, p),

where X(T ∗g) stands for the space of vector fields on T ∗g. Then the momentum map corresponding
to the action is F . Furthermore, the Hamiltonian H is infinitesimally invariant under the action,
and thus F is an invariant of the canonized system (12).

Proof. Notice first that

XF (q, p) =

(
∂F

∂p
, −∂F

∂q

)
= ±

(
adγ(q,p) q, − ad∗γ(q,p) p

)
,

and so, for any s ∈ R,

XsF = sT ∗g.

This shows that F is the momentum map corresponding to the above symmetry.
Let us show that M± is infinitesimally invariant under the above R-action: First note that, since

f is a Casimir, its derivative Df satisfies ad∗Df(µ) µ = 0 for any µ ∈ g∗; see, e.g., Marsden and Ratiu

[31, Corollary 14.4.3]. Therefore, setting µ = − ad∗q p in particular, we have

− ad∗γ(q,p) ad
∗
q p = ad∗

Df(− ad∗q p)(− ad∗q p) = 0

for any (q, p) ∈ T ∗g. Then, for any s ∈ R, the directional derivative of M± along the vector field
sT ∗g yields

sT ∗g[M
±](q, p) = ∓s

(
ad∗[γ(q,p),q] p− ad∗q ad

∗
γ(q,p) p

)
= ∓s

(
ad∗γ(q,p) ad

∗
q p− ad∗q ad

∗
γ(q,p) p+ ad∗q ad

∗
γ(q,p) p

)
= ∓s

(
ad∗γ(q,p) ad

∗
q p

)
= 0,

where we used the dual version (5) of the Jacobi identity in the second equality.
This implies that the Hamiltonian H := h ◦M± is infinitesimally invariant under the R-action

as well. That F is an invariant of (12) follows easily from either that M± is Poisson or Noether’s
Theorem (see, e.g., Marsden and Ratiu [31, Theorem 11.4.1]). □
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5. Collective Integrators via Clebsch Canonization

5.1. Collective Lie–Poisson Integrators via Clebsch Canonization. Let Ψ∆t : T
∗g → T ∗g

be an integrator with time step ∆t for the canonized system (12). In order for the resulting Lie–
Poisson integrator to be collective in the sense of McLachlan et al. [39, 40], the method Ψ∆t must
“descend” to a Lie–Poisson integrator ψ∆t on g∗ such that ψ∆t ◦M± = M± ◦ Ψ∆t and also that
preserves coadjoint orbits in g∗ (and hence its Casimirs) exactly.

According to McLachlan et al. [39, Theorem 7], one of the possible realizations of collective
integrators is to have a dual pair of momentum maps M± and J where J is quadratic, and use
any symplectic Runge–Kutta method for Ψ∆t. Since Theorem 3 gives the desired form of dual
pair, the symplectic Runge–Kutta methods applied to our setting gives a collective integrators on
M±(U) ⊂ g∗.

We use the Gauss–Legendre methods—a family of implicit Runge–Kutta methods based on
the points of Gauss–Legendre quadrature—as the symplectic integrator Ψ∆t for the canonized
system (12). The order of a Gauss–Legendre method is 2s if it is based on s points [16, Theorem
5.2]; the simplest is of order 2 and is the Implicit Midpoint Method. In this paper, we will use the
4th order Gauss–Legendre method; see, e.g., Leimkuhler and Reich [26, Table 6.4 on p. 154].

5.2. Example 1: Kida Vortex. The Kida vortex [23] is an elliptical vortex patch of constant
vorticity in a two-dimensional flow. The equations of motion obtained by Kida describe the time
evolution of the semi-major axis a and semi-minor axis b and of the angle ϕ of orientation of the
ellipse in a steady shear background flow:

ȧ =
ϵ

2
a sin(2ϕ), ḃ = − ϵ

2
b sin(2ϕ), ϕ̇ =

ab

(a+ b)2
+
ω

2
+
ϵ

2

a2 + b2

a2 − b2
cos(2ϕ),

where ϵ > 0 is the constant rate of strain of the background shear flow. Defining the aspect ratio
λ := b/a, the equations reduce to

λ̇ = −ϵλ sin(2ϕ), ϕ̇ =
λ

(1 + λ)2
+
ω

2
+
ϵ

2

1 + λ2

1− λ2
cos(2ϕ). (18)

It is then not difficult to see that the above system of equations is Hamiltonian [43, 44].
Furthermore, Meacham et al. [42] showed that (18) follows from a Lie–Poisson equation on

so(2, 1)∗ obtained by projecting the Lie–Poisson structure for the 2D incompressible Euler equation
onto quadratic moments of the vorticity. Specifically, let so(2, 1) be the Lie algebra of the Lie group

SO(2, 1) :=
{
R ∈ R3×3 | RTKR = K

}
with K :=

1 0 0
0 1 0
0 0 −1

 .
A basis for so(2, 1) is given by {E1 =

[
0 0 0
0 0 1
0 1 0

]
, E2 =

[
0 0 1
0 0 0
1 0 0

]
, E3 =

[
0 −1 0
1 0 0
0 0 0

]
}, for which the structure

constants {ckij}1≤i,j,k≤3 satisfy, for any µ ∈ so(2, 1)∗ ∼= R3,

µkc
k
ij =

 0 µ3 µ2
−µ3 0 −µ1
−µ2 µ1 0

 .
This is the (class A) type VIII Lie algebra of the Bianchi classification [11, 69]. The Casimir of the
corresponding Lie–Poisson bracket (1) is then

f1(µ) := µ21 + µ22 − µ23, (19)

which is essentially the area of the ellipse.
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The Killing form in this case is

κ(x, y) = 2(x1y1 + x2y2 − x3y3).

It is clearly non-degenerate, and thus there are two additional invariants (see (17)):

J1(q, p) :=
1

2
κ(q, q) = q21 + q22 − q23, J2(q, p) :=

1

2
κ−1(p, p) = p21 + p22 − p23. (20)

It is also easy to show that h = span{σ0,κ,κ∗} using (15) (see also Proposition 2); hence J0 from
(16) along with these two invariants are the components of the momentum map J.

The variables (µ1, µ2, µ3) are related to the original variables (λ, ϕ) as follows:

µ2 =
π

16

(
λ− 1

λ

)
cos(2ϕ), µ3 = − π

16

(
λ+

1

λ

)
cos(2ϕ), µ21 + µ22 − µ23 = −π

2

64
. (21)

With the Hamiltonian (the “excess energy” of the elliptical vortex patch [42]) h : so(2, 1)∗ ∼= R3 → R
defined as

h(µ) := ϵµ2 + ωµ3 −
π

8
ln
(π
8
− µ3

)
, (22)

the Lie–Poisson equation µ̇ = − ad∗Dh(µ) µ from (2) yields

µ̇1 = ωµ2 + ϵµ3 +
πµ2

π − 8µ3
, µ̇2 = −µ1

(
ω +

π

π − 8µ3

)
, µ̇3 = ϵµ1. (23)

One can then show that, using (21), the above Lie–Poisson equation gives rise to the original
equation (18) of Kida.

The map (6) yields (lowering the indices for q for simplicity),

M+(q, p) = (q2p3 + q3p2, −q3p1 − q1p3, −q1p2 + q2p1). (24)

Following the proof (in Appendix B) of Theorem 3, we can show that there exists an open set U that
is dense in T ∗g on which M+ and J are submersions. We also saw above that dim h = 3 = dim g.
Hence we have a dual pair as described in Theorem 3.

We then have the Hamiltonian

H(q, p) := h(M+(q, p))

= −ϵ(q3p1 + q1p3)− ω(q1p2 − q2p1)−
π

8
ln
(π
8
+ q1p2 − q2p1

)
.

The canonized system (12) is therefore

q̇1 = ωq2 − ϵq3 +
π

8

q2
q1p2 − q2p1 + π/8

, q̇2 = −ωq1 −
π

8

q1
q1p2 − q2p1 + π/8

, q̇3 = −ϵq1,

ṗ1 = ωp2 + ϵp3 +
π

8

p2
q1p2 − q2p1 + π/8

, ṗ2 = −ωp1 −
π

8

p1
q1p2 − q2p1 + π/8

, ṗ3 = ϵp1.

(25)

Figure 1 shows numerical results with parameters ϵ = 1/2 and ω = −1 with initial condition
determined by µ1(0) = 1, f1(µ(0)) = −1/4 and h(µ(0)) = 1; this is a case from Meacham et al. [42,
Fig. 2]. It shows the time evolution of the solution to (23) computed by the collective integrator as
well as the trajectory of the solution in so(2, 1)∗ plotted with the level sets of the Hamiltonian h
and the Casimir f1; see (22) and (19). We used the 4th order Gauss–Legendre method to solve the
canonized system (25) with the initial condition (q(0), p(0)) obtained by solving M+(q(0), p(0)) =
µ(0); we additionally imposed q(0) = (1, 0, 0) and p1(0) = 0 to obtain the unique solution.

For comparison, we also solved the Lie–Poisson equation (23) directly using the 4th order explicit
Runge–Kutta method. Figure 2 compares the time evolutions of the relative errors in the Hamil-
tonian h and the Casimir f1 along these numerical solutions. The explicit Runge–Kutta solution
exhibits a drift that seems to be detrimental in the long run. Notice also that it exhibits a more
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(a) Time evolution (b) Lie–Poisson dynamics and invariants

Figure 1. (a) Time evolution of µ computed using the canonized system (25). The solutions
are shown for the time interval 0 ≤ t ≤ 100 with time step ∆t = 0.1. (b) The red curve is the
Lie–Poisson dynamics of the Kida vortex in g∗ = so(2, 1)∗ ∼= R3 computed using the canonized
system (25) and mapped by M+ in (24). The green and orange surfaces are the level sets of
the Hamiltonian h and the Casimir f1 from (22) and (19), respectively.

significant drift in the Casimir. On the other hand, the solution of the collective integrator does
not exhibit drifts in either the Hamiltonian or the Casimir; note that the latter is preserved exactly
in theory.

Lie-Poisson (Runge-Kutta)

Canonized (Gauss-Legendre)

200 400 600 800 1000

-1.2×10-7

-1.×10-7

-8.×10-8

-6.×10-8

-4.×10-8

-2.×10-8

2.×10-8

(a) Hamiltonian h from (22)

200 400 600 800 1000

0.00002

0.00004

0.00006

0.00008

0.00010

(b) Casimir f1 from (19)

Figure 2. Time evolutions of relative errors in Hamiltonian h and Casimir f1 from the Kida
system. The dashed blue curve is the 4th order explicit Runge–Kutta method directly applied
to Lie–Poisson equation (23) whereas the solid red curve is the 4th order Gauss–Legendre
method applied to the canonized system (25). The solutions are shown for the time interval
0 ≤ t ≤ 1000 with time step ∆t = 0.1. Note that, in (b), the red line is made thicker to
make it visible; the actual variation is so small that it is barely visible if plotted with the same
thickness as the blue line or as in (a).

Figure 3 shows how well the collective integrator preserves the components of the momentum
map J. This is because the Gauss–Legendre methods preserve these invariants exactly in theory.
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However, being an implicit method, it introduces an error in each step when solving nonlinear
equations—the likely culprit of the small errors observed in the figures.

200 400 600 800 1000

-4.×10
-15

-2.×10
-15

2.×10
-15

(a) Component J0

200 400 600 800 1000

-4.×10
-14
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-14
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-14

-1.×10
-14

1.×10
-14

(b) Component J1
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-14
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-14
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-14
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-14

1.×10
-14

(c) Component J2

Figure 3. Time evolutions of absolute or relative errors in components of momentum map
J from (16) and (20) computed by the 4th order Gauss–Legendre method applied to the
canonized Kida system (25). The solutions are shown for the time interval 0 ≤ t ≤ 1000 with
time step ∆t = 0.1.

5.3. Example 2: Heavy Top on a Movable Base. As a higher-dimensional and more practical
example, consider the system shown in Figure 4 from Contreras and Ohsawa [9]: It is a heavy top
with mass m placed on a movable base—point mass M for simplicity—under gravity g.

As the base is free to move, the system is defined by the rotational motion of the heavy top and
the linear motion of the base. Hence the natural configuration space is the matrix Lie group

SE(3) =

{
(R,x) :=

[
R x
0 1

]
| R ∈ SO(3),x ∈ R3

}
,

where R ∈ SO(3) gives the orientation of the top and x is the position of the base. The left

translation of the tangent vector (Ṙ, ẋ) ∈ T(R,x)SE(3) to the identity yields[
Ω̂ v
0 0

]
:=

[
R x
0 1

]−1 [
Ṙ ẋ
0 0

]
=

[
R−1Ṙ R−1ẋ

0 0

]
∈ se(3),

which are the angular velocity of the top and the base velocity with respect to the body frame of

the top. Note that we identify se(3) = so(3)⋉ R3 with R3 × R3 via the hat map ˆ( · ) : R3 → so(3);
see, e.g., [31, Eq. (9.2.7) on p. 289].

Let m̄ := m+M be the total mass of the system, l the distance from the junction point of the
top and the base to the center of mass of the heavy top, χ the unit vector in that direction in
the body frame, and I0 := diag(I1, I2, I3) the inertia mass matrix of the top with respect to the
junction point (we assume I1 = I2); see Figure 4.

Using the body angular momentum Π and the linear impulse P related to Ω and v as

Π = I0Ω+mlχ× v, P = −mlχ×Ω+ m̄v,

the Hamiltonian of the system is

h(Π,P,Γ, x3) :=
1

2

(
Π · (I−1Π) + 2kmlΠ · (P× χ) +P · (M−1P)

)
+mglχ · Γ+ m̄gx3

with

I := diag

(
I1 −

m2l2

m̄
, I1 −

m2l2

m̄
, I3

)
, M := diag

(
m̄− m2l2

I1
, m̄− m2l2

I1
, m̄

)
.
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Figure 4. Heavy top on a movable base.

Then the equations of motion are written as the Lie–Poisson equation on (se(3)⋉R4)∗:

Π̇ = Π× ∂h

∂Π
+P× ∂h

∂P
+ Γ× ∂h

∂Γ
, Ṗ = P× ∂h

∂Π
− ∂h

∂x3
Γ,

Γ̇ = Γ× ∂h

∂Π
, ẋ3 = Γ · ∂h

∂P
.

(26)

The main goal of [9] is to stabilize the upright position of the heavy top by applying control u to
the base, i.e., the second equation of (26) is replaced by

Ṗ = P× ∂h

∂Π
− ∂h

∂x3
Γ+ u,

Specifically, the control u was broken into two as u = up + uk, corresponding to the potential
and kinetic shaping, with the potential part being up = ∂h

∂x3
Γ = m̄gΓ, so that the Lie–Poisson

equation (26) now becomes

Π̇ = Π× ∂h

∂Π
+P× ∂h

∂P
+ Γ× ∂h

∂Γ
, Ṗ = P× ∂h

∂Π
+ uk, Γ̇ = Γ× ∂h

∂Π
, (27)

where we dropped the equation for x3 because it is now decoupled from the rest. In [9], it is found,
via the method of controlled Lagrangians [4, 5], applying the control

uk = (ρ− m̄)(v̇ − v ×Ω) where v :=
∂h

∂P

with ρ ∈ R renders the system (27) the Lie–Poisson equation on
(
se(3)⋉R3

)∗
with a new control

Hamiltonian hc : (se(3)⋉R3)∗ → R given by

hc(Π,P,Γ) =
1

2

(
Π · (I−1

c Π) + 2kcmlΠ · (P× χ) +P · (M−1
c P)

)
+mglχ · Γ (28)

with

Ic := diag

(
I1 −

m2l2

ρ
, I1 −

m2l2

ρ
, I3

)
, Mc := diag

(
ρ− m2l2

I1
, ρ− m2l2

I1
, ρ

)
Then the equations of motion are given by the Lie–Poisson equation

µ̇ = {µ, hc}−
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with µ = (Π,P,Γ) ∈
(
se(3)⋉R3

)∗
and the following (−)-Lie–Poisson bracket on

(
se(3)⋉R3

)∗
:

For any smooth f, g : (se(3)⋉R3)∗ → R,

{f, g}− (Π,P,Γ) = −
〈
Π,

∂f

∂Π
× ∂g

∂Π

〉
−
〈
P,

∂f

∂Π
× ∂g

∂P
− ∂g

∂Π
× ∂f

∂P

〉
−
〈
Γ,

∂f

∂Π
× ∂g

∂Γ
− ∂g

∂Π
× ∂f

∂Γ

〉
,

(29)

which, incidentally, is identical to the Lie–Poisson bracket given in Thiffeault and Morrison [63] for
a rigid body insulator that is acted on by an electric field as well as gravity (see also Thiffeault and
Morrison [64, 65]). More explicitly, we have

Π̇ = Π× ∂hc
∂Π

+P× ∂hc
∂P

+ Γ× ∂hc
∂Γ

, Ṗ = P× ∂hc
∂Π

, Γ̇ = Γ× ∂hc
∂Π

. (30)

Noting that (29) is a (−)-Lie–Poisson bracket (9), we find that the corresponding structure
constants {ckij}1≤i,j,k≤9 satisfy

µkc
k
ij = −

Π̂ P̂ Γ̂

P̂ 0 0

Γ̂ 0 0

 .
One can also show that the Lie–Poisson bracket (29) possesses the following Casimirs:

f1 = ∥P∥2, f2 = P · Γ, f3 = ∥Γ∥2. (31)

Furthermore, we can write the momentum map M− as

M−(q, p) = −(q1 × p1 + q2 × p2 + q3 × p3, q1 × p2, q1 × p3),

where we used the identification g = se(3)⋉R3 ∼= R3×R3×R3 and wrote q = (q1,q2,q3) ∈ g ∼= R9

and p = (p1,p2,p3) ∈ g∗ ∼= R9 with qi,pi ∈ R3 for i ∈ {1, 2, 3}. Defining the Hamiltonian
H : T ∗(se(3)⋉R3) → R as H(q, p) = hc(M

−(q, p)), we have the canonized system (12).
Let us find the other momentum map (invariant) J. Using (15), we find that h is the 9-

dimensional subalgebra of sym(18,R) consisting of matrices of the form

σ =

[
σ11 σ12
σT12 σ22

]
∈ sym(18,R)

with

σ12 ∈ span

I9,
0 I3 0
0 0 0
0 0 0

 ,
0 0 I3
0 0 0
0 0 0

 ,

σ11 ∈ span


I3 0 0
0 0 0
0 0 0

 ,
 0 I3 0
I3 0 0
0 0 0

 ,
 0 0 I3
0 0 0
I3 0 0

 ,

σ22 ∈ span


0 0 0
0 I3 0
0 0 0

 ,
0 0 0
0 0 I3
0 I3 0

 ,
0 0 0
0 0 0
0 0 I3

 .

Hence the components of the momentum map J are

J0 := p · q, J1 := q1p4 + q2p5 + q3p6, J2 := q1p7 + q2p8 + q3p9,

J3 := q21 + q22 + q23, J4 := q1q4 + q2q5 + q3q6, J5 := q1q7 + q2q8 + q3q9,

J6 := p24 + p25 + p26, J7 := p4p7 + p5p8 + p6p9, J8 := p27 + p28 + p29.

(32)
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We may now follow the proof of Theorem 3 in Appendix B to show that there exists an open set
U that is dense in T ∗g on which M− and J are submersions. We also saw above that dim h = 9 =
dim g. Hence we have a dual pair as described in Theorem 3.

Following [9], the parameters are chosen as follows: M = 0.44 [kg], m = 0.7 [kg], I1 = I2 =
0.2 kg ·m2, I3 = 0.24 kg ·m2, l = 0.215 [m], g = 9.8 [m/s2]. The parameter ρ was chosen such
that ρ = 0.9m2l2/I1 to ensure stability of the upright position. The initial condition is Ω(0) =
(0.1, 0.2, 0.1),v(0) = 0, and Γ(0) = (cos θ0 sinφ0, sin θ0 sinφ0, cosφ0) with θ0 = π/3 and φ0 = π/20.

To get the initial conditions for the canonized system, we set q1(0) = Γ(0)×P(0),p1(0) = (0, 0, 0)
and solved M−(q(0), p(0)) = (Π(0),P(0),Γ(0)) for the remaining values q2(0), q3(0), p2(0), p3(0)
of (q(0), p(0)).

We solved the canonized system using the 4th order Gauss–Legendre method, and also solved the
Lie–Poisson system (30) directly using the 4th order explicit Runge–Kutta method for comparison.

Figure 5 shows the time evolutions of the relative errors of the Hamiltonian hc and the Casimirs
f1, f2, f3. Just as in the Kida vortex case, we observe drifts in addition to oscillations in all the
invariants for the explicit Runge–Kutta solution, whereas we see that the proposed collective inte-
grator preserves these invariants: the Hamiltonian oscillates in a thin band, whereas the Casimirs
are preserved exactly in theory.

The errors for the components of the momentum map J are shown in Figure 6. Since all of them
are quadratic in (q, p), they are invariants of the Gauss–Legendre method, any error must be due
to roundoff and/or the nonlinear solver used in each step.
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Appendix A. Proof of Proposition 2

Clearly σ0 satisfies the condition in (15), and so σ0 ∈ h.
Let us next show that κ ∈ h. According to (15), it suffices to show Ciκ = −κCT

i for any
i ∈ {1, . . . , n}. To that end, first recall that the Jacobi identity for the Lie bracket in g is equivalent
to the following relationship for the structure constants:

cmil c
l
jk + cmjl c

l
ki + cmklc

l
ij = 0.
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Lie-Poisson (Runge-Kutta)

Canonized (Gauss-Legendre)
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Figure 5. Time evolutions of relative errors in Hamiltonian h and three Casimirs f1, f2, f3
from the heavy top on a movable base system. The dashed blue curve is the Runge–Kutta
method directly applied to Lie–Poisson equation (30) whereas the solid red curve is the 4th

order Gauss–Legendre method applied to the canonized system. The solutions are shown for
the time interval 0 ≤ t ≤ 30 with time step ∆t = 0.01. Note that, in (b)–(d), the red line
is made thicker to make it visible; the actual variation is so small that it is barely visible if
plotted with the same thickness as the blue line or as in (a).

Using this identity, we see that, for any i, j, l ∈ {1, . . . , n},

(Ciκ)jl = (Ci)jkκkl = ckijc
r
kmc

m
lr

= (−crmkc
k
ij)c

m
lr

= (crikc
k
jm + crjkc

k
mi)c

m
lr

= crikc
k
jmc

m
lr + crjk(−ckimcmlr )

= cmirc
r
jkc

k
lm + crjk(c

k
lmc

m
ri + ckrmc

m
il )

= −(crjkc
k
mr)c

m
il

= −κjmcmil
= −κjm(Ci)lm
= −(κCT

i )jl.
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Figure 6. Time evolutions of errors in components of momentum map J from (32) computed
by the 4th order Gauss–Legendre method applied to the canonized system for heavy top on a
movable base. Note that we used the absolute error for J0 because J0(0) = 0, whereas all the
others use relative errors. The solutions are shown for the time interval 0 ≤ t ≤ 30 with time
step ∆t = 0.01.

Finally, suppose that g is semisimple. Then the Killing form is non-degenerate, i.e., κ is invertible,
and so κ∗ is defined. Now, according to (15), it suffices to show κ−1Ci = −CT

i κ
−1 for any i ∈

{1, . . . , n}. But then this is equivalent to Ciκ = −κCT
i that we have shown above. Hence κ∗ ∈ h as

well.

Appendix B. Proof of Theorem 3

We prove it only for M+ because the same argument applies to M− as well. We break down
the proof into a couple of lemmas on the properties of the momentum maps M+ and J. Note also
that, throughout the proof, we identify T ∗g with T ∗Rn ∼= R2n using the standard bases {Ei}ni=1

and {Ei
∗}ni=1 for g and g∗, respectively.

Lemma B.1. Define subspace

W (z) := span{JMiz}ni=1 ⊂ TzT
∗g. ∀z ∈ T ∗g. (B.1)

Then, kerTzM
+ and W (z) are symplectically orthogonal complements to each other, i.e.,(

kerTzM
+
)Ω

=W (z) ∀z ∈ T ∗g.
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Proof. Let us first show that W (z) and kerTzM
+ are complementary in dimensions. To that end,

let us write the tangent map of M+ : T ∗g → g∗ using the components (13) for M+:

TzM
+(ż) =

⟨dM1(z), ż⟩
...

⟨dMn(z), ż⟩

 =

z
TM1ż
...

zTMnż

 = A(z)ż with A(z) :=

z
TM1
...

zTMn

 ∈ Rn×2n (B.2)

for any z = (q, p) ∈ Tg∗ and any ż = (q̇, ṗ) ∈ TzT
∗g. Therefore, we find

kerTzM
+ = kerA(z).

Now, by the fundamental theorem of linear algebra, we see that

im
(
A(z)T

)
= span{Miz}ni=1 ⊂ TzT

∗g ∼= R2n

gives a complementary subspace to kerTzM
+ in TzT

∗g ∼= R2n, i.e.,

dim
(
im

(
A(z)T

))
+ dim

(
kerTzM

+
)
= 2n.

But then, since J is non-degenerate, we see that dimW (z) = dim
(
im

(
A(z)T

))
. Therefore,

dimW (z) + dim
(
kerTzM

+
)
= 2n ∀z ∈ T ∗g.

It remains to show that W (z) is symplectically orthogonal to kerTzM
+. Let ż ∈ kerTzM

+ =
kerA(z) be arbitrary. Then zTMiż = 0 for any i ∈ {1, . . . , n}, but then this implies

Ω(JMiz, ż) = (JMiz)
T Jż

= zTMiż

= 0. □

Let us next prove some properties of the other momentum map J in the pair.

Lemma B.2. The momentum map J : T ∗g → h∗ satisfies the following for any z ∈ T ∗g:

(i) Jσ(z) := ⟨J(z), σ⟩ = 1
2z

Tσz for any σ ∈ h;

(ii) W (z) ⊂ kerTzJ,

where W (z) is the subspace of TzT
∗g defined in (B.1).

Proof. Let us first show (i). By the definition of momentummap, we seek Jσ( · ) := ⟨J( · ), σ⟩ : T ∗g →
R satisfying, for any σ ∈ h and any z ∈ T ∗g,

σT ∗g(z) = XJσ(z),

where XJσ(z) is the Hamiltonian vector field defined by Jσ, i.e.,

XJσ(z) = J∇Jσ(z).

Therefore, we have σz = ∇Jσ(z), and thus Jσ(z) =
1
2z

Tσz.
For (ii), it suffices to show that W (z) ⊂ kerdJσ(z) for any z ∈ T ∗g and any σ ∈ h. First recall

from (14) that σ ∈ h if and only if σJMi is skew-symmetric for any i ∈ {1, . . . , n}. Therefore, we
see that, for any i ∈ {1, . . . , n},

⟨dJσ(z), JMiz⟩ = zTσJMiz = 0.

Since W (z) is spanned by {JMiz}ni=1, we have W (z) ⊂ kerdJσ(z). □

We are now ready to prove Theorem 3.

(i) This is Lemma B.2 (i).
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(ii) In order to find the open subset U ⊂ T ∗g, notice first that TzM
+ = A(z) (see (B.2)) is

full-rank if and only if A(z)A(z)T is non-singular. However,

A(z)A(z)T =

z
TM1
...

zTMn

 [
M1z . . .Mnz

]
=

 ∥M1z∥2 . . . zTM1Mnz
...

. . .
...

zTMnM1z . . . ∥Mnz∥2

 .
Since each entry is quadratic in z, the function dA(z) := det

(
A(z)A(z)T

)
is a polynomial of

z as well. Hence the pre-image U1 := d−1
A (R\{0}) ⊂ T ∗g is an open set on which TM+ is

full-rank. Let {σj}m−1
j=0 be a basis for h, and define

B(z) :=

 zTσ0
...

zTσm−1

 .
Then, running the same argument with B(z) in place of A(z), one can find U2 := d−1

B (R\{0})
on which TJ is full-rank. Then U := U1 ∩ U2 gives the desired open set (which is possibly
empty).

(iii) Note first that M+ and J being submersions imply that they are submersions onto open sets
M+(U) ⊂ g∗ and J(U) ⊂ h∗, respectively. Therefore, we have, for any z ∈ U ,

dim
(
kerTzM

+
)
= 2n− dim

(
imTzM

+
)
= 2n− dim g,

and

dim(kerTzJ) = 2n− dim(imTzJ) = 2n− dim h.

Thus the assumption dim h = dim g = n implies that dim(kerTzM
+) = dim(kerTzJ) = n for

any z ∈ U . However, using Lemma B.1 and Lemma B.2 (ii), we have(
kerTzM

+
)Ω ⊂ kerTzJ ∀z ∈ T ∗g.

But then dim (kerTzM
+)

Ω
= n = dim(kerTzJ) for any z ∈ U , and thus we obtain(
kerTzM

+
)Ω

= kerTzJ ∀z ∈ U.
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