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Abstract. We introduce a new density for the representation of quantum states on phase space.
It is constructed as a weighted difference of two smooth probability densities using the Husimi
function and first-order Hermite spectrograms. In contrast to the Wigner function, it is accessible
by sampling strategies for positive densities. In the semiclassical regime, the new density allows to
approximate expectation values to second order with respect to the high frequency parameter and is
thus more accurate than the uncorrected Husimi function. As an application, we combine the new
phase space density with Egorov’s theorem for the numerical simulation of time-evolved quantum
expectations by an ensemble of classical trajectories. We present supporting numerical experiments
in different settings and dimensions.
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1. Introduction. The wave functions describing the nuclear part of a molecular
quantum system are square integrable functions on Rd with specific properties. They
are smooth functions, but highly oscillatory and the dimension d is large. The fre-
quencies of oscillations are typically related to a small semiclassical parameter ε > 0,
which can be thought of as the square root of the ratio of the electronic versus the
average nuclear mass for the molecular system of interest. One expects∫

Rd

ψ(x) (−iε∇x)ψ(x) dx = O(1)

as ε→ 0 for most nuclear wave functions ψ ∈ L2(Rd). Often the semiclassical analysis
of a molecular quantum system requires a phase space representation of the nuclear
wave function, the most popular being the Wigner function

Wψ(z) := (2πε)−d
∫
Rd

ψ(q + y
2 )ψ(q − y

2 )e
iy·p/εdy, z = (q, p) ∈ R

2d.

The Wigner function is a square integrable real-valued function on the phase space
T ∗Rd ∼= R2d with many striking properties as for example∫

Rd

x|ψ(x)|2 dx =

∫
R2d

qWψ(z) dz,∫
Rd

ψ(x) (−iε∇x)ψ(x) dx =

∫
R2d

pWψ(z) dz.
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However, in most cases the Wigner function is not a probability density on phase
space, since it may attain negative values.

A guiding example is provided by the superposition of Gaussian wave packets.
The semiclassically scaled Gaussian wave packet gz0 with phase space center z0 =
(q0, p0) ∈ R

2d is defined as

gz0(x) := (πε)−d/4 exp
(− 1

2ε |x− q0|2 + i
εp0 · (x− 1

2q0)
)
, x ∈ R

d. (1.1)

It satisfies∫
Rd

x|gz0(x)|2 dx = q0 and

∫
Rd

gz0(x) (−iε∇x)gz0(x) dx = p0.

Its Wigner function is a nonnegative Gaussian function centered at the point z0.
However, the Wigner function of the superposition

ψ = gz1 + gz2 , z1, z2 ∈ R
2d,

has three regions of localization as seen in the left panel of Figure 1.1. There are
two regions around the points z1 and z2, respectively, where the Wigner function has
nonnegative Gaussian shape, whereas in between around the midpoint of z1 and z2
there is an oscillatory region with pronounced negative values.

Fig. 1.1. Contour plots of the Wigner function (left), the Husimi function (middle), and the
density µψ (right) for a Gaussian superposition ψ = gz1 + gz2 . We chose the phase space centers

z1 = (0, 1), z2 = (1,− 3
2
), and the semiclassical parameter ε = 0.14. Negative values are indicated

by blue color.

One way of obtaining a nonnegative phase space representation of a wave function
is to convolve its Wigner function with another Wigner function. One then calls the
nonnegative function

Wψ ∗Wφ, φ ∈ S(Rd),
a spectrogram of ψ. A widely used spectrogram is the Husimi function of ψ,

Hψ := Wψ ∗Wg0 ,
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which is the spectrogram of ψ with φ being the Gaussian wave packet g0 centered at the
phase space origin. For the superposition example, the smoothing of the convolution
removes the oscillations and widens the Gaussian profiles around the centers z1 and z2;
see the middle panel of Figure 1.1. However, the smoothing also destroys important
exact relations satisfied by the Wigner function; see also [11, §7]. Let a : Rd → R be
a smooth function with an appropriate decay property. Then,∫

Rd

a(x)|ψ(x)|2 dx =

∫
R2d

a(q)Wψ(z) dz,

while ∫
Rd

a(x)|ψ(x)|2 dx =

∫
R2d

a(q)Hψ(z) dz +O(ε)

as ε→ 0, where the error term depends on second and higher order derivatives of the
function a. Hence only the first moment of the position density x �→ |ψ(x)|2 is exactly
recovered by the Husimi function.

Our aim is now to systematically construct a new phase space density that main-
tains some of the key properties of the Wigner function, while being amenable to
sampling strategies for positive densities. We propose a proper reweighting of the
Husimi function and the spectrograms obtained from the first order Hermite func-
tions

ϕej (x) := (πε)−d/4
√

2
εxj exp

(− 1
2ε |x|2

)
, x ∈ R

d, j = 1, . . . , d.

We define a real-valued function µψ : R2d → R by

µψ := (1 + d
2 )Wψ ∗Wg0 − 1

2

d∑
j=1

Wψ ∗Wϕej
.

By construction, µψ is the difference of two nonnegative functions, a scalar multiple
of the Husimi function Wψ ∗ Wg0 on the one side, and half the sum of the Hermite
spectrograms Wψ ∗ Wϕe1

, . . . ,Wψ ∗ Wϕed
on the other side. For example, a single

Gaussian wave packet ψ = gz0 centered at the point z0 ∈ R2d results in

µgz0 (z) =
(
1 + d

2

)
(2πε)−d exp

(− 1
2ε |z − z0|2

)
− 1

2ε |z − z0|2 (2πε)−d exp
(− 1

2ε |z − z0|2
)
,

which is the difference of two well-localized positive densities. For the superposition
of two Gaussian wave packets ψ = gz1 + gz2 , we obtain a density µψ characterized by
two islands of positive values around the centers z1 and z2, which are surrounded by
a sea of negative values; see the contour plot in the right panel of Figure 1.1 and the
explicit formula in §5.2.

The new phase space function µψ allows for the exact representation of the mo-
ments of ψ up to order three in the following sense. If a : Rd → R is a polynomial of
degree less than or equal to three, then∫

Rd

a(x)|ψ(x)|2 dx =

∫
R2d

a(q)µψ(z) dz,∫
Rd

ψ(x)a(−iε∇)ψ(x) dx =

∫
R2d

a(p)µψ(z) dz.
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For arbitrary smooth functions a : R2d → R and the associated Weyl quantized
operator op(a), the quantum expectation value 〈ψ, op(a)ψ〉L2 of the observable op(a)
is approximated as∫

Rd

ψ(x) op(a)ψ(x) dx =

∫
R2d

a(z)µψ(z)dz +O(ε2) (1.2)

for ε → 0, where the error term depends on fourth and higher order derivatives of
the function a; see Theorem 3.2 later on. Phase space approximations of quantum
expectations and Wigner functions play a central role in the analysis of quantum
systems, in particular in the semiclassical regime; see [?, §IV] or [?, §7.1]. The idea of
combining different spectrograms can also be found in the time-frequency literature;
see e.g. [17] and the references given therein. However, the goal of [17] is cross-entropy
optimization within a chosen set of spectrograms and not the approximation of Wigner
functions or quantum expectations.

The second order accuracy with respect to ε in the expectation value approxima-
tion suggests using the new density in the context of molecular quantum dynamics.
We consider the time-dependent Schrödinger equation

iε∂tψ(t) =
(
− ε2

2 ∆+ V
)
ψ(t), ψ(0) = ψ0,

with a smooth potential function V : Rd → R as provided by the time-dependent
Born–Oppenheimer approximation. Let us denote by Φt : R

2d → R2d the flow of the
corresponding classical equations of motion

q̇ = p, ṗ = −∇V (q).

Then, by Egorov’s theorem, we have

〈ψ(t), op(a)ψ(t)〉L2 =

∫
R2d

(a ◦ Φt)(z)Wψ0(z)dz +O(ε2) (1.3)

as ε → 0, where the error depends on third and higher order derivatives of the func-
tions a◦Φt and V as well as the L2-norm of the initial wave function ψ0. The Egorov
approximation is computationally advantageous, in particular in high dimensions,
since it allows to simulate the time-evolution of quantum expectations by an ensem-
ble of classical trajectories. Over decades, it has been widely used in the physical
chemistry literature under the name linearized semiclassical initial value representa-
tion (LSC-IVR) or Wigner phase space method.

Our new phase space density comes into play here, since the combination of the
approximations in (1.2) and (1.3) provides

〈ψ(t), op(a)ψ(t)〉L2 =

∫
R2d

(a ◦ Φt)(z)µψ0(z)dz +O(ε2),

which can be read as a new method for the computation of time-evolved quantum
expectations by initial sampling from a difference of nonnegative phase space distri-
butions; see Theorem 4.1 and the numerical experiments in §6.

1.1. Outline. Our investigation proceeds along the following lines. In §2 we
briefly review phase space distributions as the Wigner function, spectrograms, and
the Husimi function. §3 derives the new phase space density µψ and proves our main
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result, that is, the second order approximation of expectation values by the phase
space integration with respect to the new density function. §4 applies this result
to the quantum propagation of expectation values. Then, several explicit formulas
for the density µψ are derived in §5. The numerical experiments in §6 illustrate the
applicability of the new approach for the dynamics of molecular quantum systems in
dimensions d = 1, d = 2, and d = 32. Appendix A presents a sampling strategy for
the density µψ via the Gamma distribution used for the numerical experiments, while
Appendix B provides further computational details.

2. Phase space distributions. In this section we review different possibilities
for representing a square integrable function ψ ∈ L2(Rd) via real-valued distributions
on the classical phase space T ∗Rd ∼= R2d. Considering functions with frequencies of
the order 1/ε for a small parameter 0 < ε 
 1, we work with the ε-rescaled Fourier
transform

Fεψ(p) := (2πε)−d/2
∫
Rd

ψ(q)e−ip·q/εdq, p ∈ R
d.

We also use the Heisenberg–Weyl operator in ε-scaling:
Definition 2.1. The Heisenberg–Weyl operator associated with a phase space

point z = (q, p) ∈ R
2d is defined as

Tzψ := eip·(•−q/2)/εψ(• − q), ψ ∈ L2(Rd).

Among its many striking properties, the following two will be important for us
later on. We have

T †
z = T−z, z ∈ R

2d,

and

Tz1Tz2 = exp
(− i

2εΩ(z1, z2)
)
Tz1+z2 , z1, z2 ∈ R

2d,

where Ω : R2d × R
2d → R denotes the standard symplectic form on R

2d, i.e.,

Ω(z1, z2) := zT1 Jz2 = qT1 p2 − pT1 q2 with J =

[
0 Id

−Id 0

]
. (2.1)

All phase space distributions considered here turn the action of the Heisenberg–
Weyl operator Tz on a wave function into a phase space translation by z, which is
often referred to as a covariance property; see, e.g., (2.6) below.

Remark 2.2. The Gaussian wave packet (1.1) with its phase space center at
z0 ∈ R2d is obtained by applying the Heisenberg–Weyl operator Tz0 to the Gaussian

g0(x) := (πε)−d/4 exp
(− 1

2ε |x|2
)

centered at the origin, i.e., gz0 = Tz0g0.

2.1. Wigner functions. We start our discussion with the celebrated Wigner
function and recapitulate some basic relations.

Definition 2.3. The Wigner function of a function ψ ∈ L2(Rd) is defined as
Wψ : R2d → R,

Wψ(z) := (2πε)−d
∫
Rd

ψ(q + y
2 )ψ(q − y

2 )e
iy·p/εdy, z = (q, p) ∈ R

2d.
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Wigner functions are continuous square-integrable functions on phase space; how-
ever, they need not be integrable. The marginals are the position and momentum
density of the state, respectively. With a proper interpretation of the possibly not
absolutely convergent integrals this means∫

Rd

Wψ(q, p)dp = |ψ(q)|2,
∫
Rd

Wψ(q, p)dq = |Fεψ(p)|2,

and in particular ∫
R2d

Wψ(z)dz = ‖ψ‖2.

Wigner transformation preserves orthogonality in the sense that∫
R2d

Wψ(z)Wφ(z)dz = (2πε)−d |〈ψ, φ〉| , ψ, φ ∈ L2(Rd),

and it turns the action of the Heisenberg–Weyl operator into a phase space translation,
i.e.,

WTzψ = Wψ(• − z), z ∈ R
2d,

which is an example of the covariance property alluded above.
Moreover, given a Schwartz function a : R2d → R, one can use Wigner functions

to express expectation values of Weyl quantized linear operators

(op(a)ψ)(q) = (2πε)−d
∫
R2d

a( q+y2 , p)ψ(y)ei(q−y)·p/εdy dp (2.2)

via the weighted phase space integral

〈ψ, op(a)ψ〉 =
∫
R2d

a(z)Wψ(z)dz. (2.3)

We note that the oscillatory integral formula (2.2) can be extended to more general
classes of symbols a : R2d → R with controlled growth properties at infinity; see for
example [25, §4], [18, §2] or [9, §2].

2.2. Spectrograms. Except for Gaussian states, Wigner functions attain nega-
tive values (see [23]), and thus cannot be treated as probability densities. For example,
any odd function ψ ∈ L2(Rd) satisfies

Wψ(0) = −(2πε)−d
∫
Rd

|ψ(y2 )|2 dy ≤ 0.

One way to obtain nonnegative phase space representations of a quantum state is to
convolve its Wigner function with another Wigner function.

Definition 2.4. Let ψ ∈ L2(Rd) and φ ∈ S(Rd). Then, Wψ ∗ Wφ is called a
spectrogram of ψ.

In time-frequency analysis, spectrograms are typically introduced as the modulus
squared of a short-time Fourier transform (see, e.g., the introduction in [8]) so that the
representation via the convolution of two Wigner transforms is derived subsequently.
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Spectrograms also form a sub-class of Cohen’s class of phase space distributions [6,
§3.2.1.]. They satisfy

(Wψ ∗Wφ)(z) = (2πε)−d |〈Tzφ−, ψ〉|2 , z ∈ R
2d, (2.4)

where φ−(x) := φ(−x) for x ∈ Rd; see also [9, Proposition 1.99]. Thus, spectrograms
are nonnegative and smooth by construction. The integrability follows from (2.4)
by the square integrability of general Fourier-Wigner transforms z �→ 〈Tzφ, ψ〉 with
φ, ψ ∈ L2(Rd), see Proposition 1.42 in [9]. Normalization is preserved according to∫

R2d

(Wψ ∗Wφ)(z)dz = ‖ψ‖2 · ‖φ‖2. (2.5)

Spectrograms also inherit the covariance property from the Wigner function, i.e.,

WTzψ ∗Wφ = (Wψ ∗Wφ)(• − z), z ∈ R
2d. (2.6)

A particular spectrogram is obtained by convolving with the Wigner function of a
Gaussian wave packet, which we will discuss next.

2.3. Husimi functions. The most commonly used nonnegative phase space
distribution is the Husimi function; see e.g. [2, §4.1]. We consider the Wigner function

Wg0(z) = (πε)−de−|z|2/ε, z ∈ R
2d,

of the Gaussian wave packet g0 centered at the phase space origin and define:
Definition 2.5. The Husimi function of ψ ∈ L2(Rd) is defined as the spectrogram

Hψ(z) := (Wψ ∗Wg0)(z) =

∫
R2d

Wψ(w) (πε)
−de−|z−w|2/ε dw.

The Husimi function of ψ is the spectrogram (2.4) with φ being the Gaussian
wave packet g0, and since g0 is even, we have

Hψ(z) = (2πε)−d |〈Tzg0, ψ〉|2 , z ∈ R
2d.

Also, since g0 is normalized, i.e., ‖g0‖ = 1, (2.5) gives∫
R2d

Hψ(z)dz = ‖ψ‖2.

That is, for ψ ∈ L2(Rd) with ‖ψ‖ = 1, the Husimi function is a smooth probability
density on phase space.

Remark 2.6. The Husimi function of ψ ∈ L2(Rd) is the modulus squared of
the so-called Fourier–Bros–Iagolnitzer (FBI) transform, which associates with ψ the
mapping

R
2d → C, z �→ (2πε)−d/2〈Tzg0, ψ〉.

In contrast to the Wigner function and the spectrograms, the FBI transform is a linear,
albeit complex-valued phase space representation; see [18, Chapter 3].
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Integrating a Schwartz function a : R2d → R against the Husimi function, we
obtain∫

R2d

a(z)Hψ(z)dz =

∫
R2d

a(z)(Wψ ∗Wg0)(z)dz =

∫
R2d

(a ∗Wg0)(z)Wψ(z)dz

= 〈ψ, op(a ∗Wg0)ψ〉 ,
where the last equation uses the duality relation (2.3) between Weyl quantized oper-
ators and the Wigner transform. Therefore,∫

R2d

a(z)Hψ(z)dz = 〈ψ, opaw(a)ψ〉,

where

opaw(a) := op(a ∗Wg0), a ∈ S(R2d),

denotes the anti-Wick quantized operator of the function a; see for example [9, §2.7]
and [4, §11.4]. Weyl and anti-Wick quantization are ε-close in the following sense:

Lemma 2.7. Let a : R2d → R be a Schwartz function and ε > 0. Then, there are
two families of Schwartz functions rε1, r

ε
2 : R2d → R that depend on fourth and higher

order derivatives of a, so that

opaw(a) = op(a+ ε
4∆a) + ε2 op(rε1),

opaw(a− ε
4∆a) = op(a) + ε2 op(rε2),

where supε>0 ‖ op(rεj )‖L2→L2 <∞ for both j = 1, 2.
Proof. The lemma is essentially proven in [16, Proposition 2.4.3] or [12, Lemma

1], and hence we only sketch the proof for the second of the two equivalent identities.
We write out the definition

opaw(a− ε
4∆a) = op

(Wg0 ∗ (a− ε
4∆a)

)
and Taylor expand a− ε

4∆a around z in the integral

Wg0 ∗ (a− ε
4∆a) = (πε)−d

∫
R2d

(a− ε
4∆a)(ζ)e

−|z−ζ|2/εdζ.

Due to the symmetry of the Gaussian, all Taylor expansion terms with odd derivatives
of (a− ε

4∆a) vanish. The computation

(πε)−d
∑
|α|=1

∫
R2d

1

(2α)!
(∂2α(a− ε

4∆a))(ζ − z)2αe−|z−ζ|2/εdζ =
ε

4
∆(a− ε

4∆a)

implies the second order approximation

Wg0 ∗ (a− ε
4∆a) = (a− ε

4∆a) +
ε
4∆(a− ε

4∆a) +O(ε2)

= a+O(ε2),

where the O(ε2) term is of Schwartz class. Applying the Calderón–Vaillancourt The-
orem (see, e.g., [9, §2.5]) concludes the proof.

Remark 2.8. The result of Lemma 2.7 can formally be read in terms of the heat
semigroup {exp(t∆)}t≥0 as

a ∗Wg0 = exp( ε4∆)a = a+ ε
4∆a+O(ε2),

where a : R2d → R is a Schwartz function.
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3. The new phase space density. We learn from the preceding discussion of
phase space distributions, in particular from Lemma 2.7, that the Husimi function
allows to approximate an expectation value according to

〈ψ, op(a)ψ〉 =
∫
R2d

(a− ε
4∆a)(z)Hψ(z)dz +O(ε2)

as ε→ 0, where the error depends on the fourth and higher order derivatives of a and
the L2-norm of ψ. An integration by parts provides

〈ψ, op(a)ψ〉 =
∫
R2d

a(z) (Hψ − ε
4∆Hψ)(z) dz +O(ε2),

and motivates us to define the following new phase space density.
Definition 3.1. For ψ ∈ L2(Rd) we define the phase space density µψ : R2d → R,

µψ := Hψ − ε
4∆Hψ.

We summarize the key property of the new density as follows:
Theorem 3.2. Let a : R2d → R be a Schwartz function. Then, there exists a

constant C ≥ 0 depending on fourth and higher order derivatives of a such that for
all ψ ∈ L2(Rd) ∣∣∣∣〈ψ, op(a)ψ〉 −

∫
R2d

a(z)µψ(z)dz

∣∣∣∣ ≤ Cε2‖ψ‖2,

where the density µψ : R2d → R was defined in Definition 3.1.
Proof. By Lemma 2.7, we have

〈ψ, op(a)ψ〉 =
∫
R2d

(a− ε
4∆a)(z)Hψ(z)dz + ε2〈ψ, op(rε)ψ〉

with

|〈ψ, op(rε)ψ〉| ≤ C‖ψ‖2,
where the constant C > 0 depends on the fourth and higher order derivatives of a.
The Husimi function Hψ is smooth and bounded since

Hψ(z) = (2πε)−d |〈gz, ψ〉|2 ≤ (2πε)−d‖gz‖2‖ψ‖2 = (2πε)−d‖ψ‖2.
Hence, integration by parts implies∫

R2d

(a− ε
4∆a)(z)Hψ(z)dz =

∫
R2d

a(z)(Hψ − ε
4∆Hψ)(z)dz =

∫
R2d

a(z)µψ(z)dz.

Therefore,∣∣∣∣〈ψ, op(a)ψ〉 −
∫
R2d

a(z)µψ(z)dz

∣∣∣∣ = ε2|〈ψ, op(rε)ψ〉| ≤ C ε2‖ψ‖2,

which concludes the proof.
Remark 3.3. Whenever a : R2d → R is a polynomial of degree less than or

equal to three, the constant C ≥ 0 of Theorem 3.2 vanishes so that the phase space
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integration with respect to µψ exactly reproduces the expectation value. Moreover,
using higher order Hermite spectrograms, one can also construct densities which yield
approximations of expectation values with higher order errors in ε, or, equivalently,
which are exact for polynomial symbols a : R2d → R of higher degree. We refer to the
thesis [?, §10.5] for the next order result and an outline on how to prove higher order
approximations.

Our next aim is to derive an alternative expression for the new density showing
that it is a linear combination of spectrograms.

3.1. The new density in terms of Hermite functions. The Laplacian of
the Husimi function can be related to the Wigner function of the ε-rescaled first order
Hermite functions as follows:

Proposition 3.4. Let ε > 0, j ∈ {1, . . . , d}, and

ϕej (x) := (πε)−d/4
√

2
εxj exp

(− 1
2ε |x|2

)
, x ∈ R

d,

be the first order Hermite functions. Then, for all ψ ∈ L2(Rd),

∆Hψ = 2
ε

d∑
j=1

Wψ ∗Wϕej
− 2d

ε Hψ

and consequently

µψ = Hψ − ε
4∆Hψ = (1 + d

2 )Hψ − 1
2

d∑
j=1

Wψ ∗Wϕej
.

Proof. Let z ∈ R2d. We compute

∆Wg0(z) = (πε)−d∆e−|z|2/ε = (πε)−d∇ ·
(
− 2
εz e

−|z|2/ε
)

= (πε)−d
(− 4d

ε + 4
ε2 |z|2

)
e−|z|2/ε.

Moreover, by direct computation or [15, Theorem 1],

Wϕej
(z) = −(πε)−d

(
1− 2

ε |zj |2
)
e−|z|2/ε,

such that

d∑
j=1

Wϕej
(z) = −(πε)−d

(
2d− d− 2

ε |z|2
)
e−|z|2/ε

= −(πε)−d
(
2d− 2

ε |z|2
)
e−|z|2/ε + d · Wg0(z)

and

∆Wg0(z) = − 2
ε (πε)

−d (2d− 2
ε |z|2

)
e−|z|2/ε = 2

ε

d∑
j=1

Wϕej
(z)− 2d

ε Wg0(z).

To conclude the proof we note that ∆Hψ = ∆(Wψ ∗Wg0) = Wψ ∗∆Wg0 .
Remark 3.5. For any ψ ∈ L2(Rd), the real-valued density µψ is a weighted sum

of spectrograms and therefore smooth and integrable. It satisfies the normalization
condition ∫

R2d

µψ(z)dz = ‖ψ‖2
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and the covariance property

µTzψ = µψ(• − z), z ∈ R
2d.

Next, we add a further characterization of the new density that does not explicitly
require a convolution.

3.2. The new density in terms of ladder operators. The Gaussian wave
packet g0 centered at the origin and the first order Hermite functions ϕe1 , . . . , ϕed can
be characterized by the raising and lowering operators

A† = 1√
2ε
(x− ε∇x) and A = 1√

2ε
(x+ ε∇x),

respectively. On the one hand, we have

span{g0} =
{
ψ ∈ L2(Rd) | Ajψ = 0 for all j = 1, . . . , d

}
,

for the kernel of the lowering operator A = (A1, . . . , Ad). On the other hand, the
components of the raising operator applied to the Gaussian wave packet g0 generate
the first order Hermite functions in the sense that

ϕej = A†
jg0, j = 1, . . . , d.

Proposition 3.6. For all ψ ∈ L2(Rd), j = 1, . . . , d, and z = (q, p) ∈ R2d, we
have

(Wψ ∗Wϕej
)(z) = (2πε)−d |〈TzA†

jg0, ψ〉|2

= (2πε)−d
∣∣∣〈gz,(Aj − 1√

2ε
zCj

)
ψ
〉∣∣∣2 ,

where zC := q + ip ∈ Cd and gz is the Gaussian wave packet defined in (1.1). Conse-
quently,

µψ(z) = (2πε)−d


(1 + d

2 )
∣∣〈Tzg0, ψ〉∣∣2 − 1

2

d∑
j=1

∣∣〈TzA†
jg0, ψ〉

∣∣2



= (2πε)−d


(1 + d

2 )
∣∣〈gz , ψ〉∣∣2 − 1

2

d∑
j=1

∣∣∣〈gz,(Aj − 1√
2ε
zCj

)
ψ
〉∣∣∣2


 .

Proof. The relation (2.4) implies

(Wψ ∗Wϕej
)(z) = (2πε)−d |〈Tz(ϕej )−, ψ〉|2

= (2πε)−d |〈TzA†
jg0, ψ〉|2,

since (ϕej )−(x) = ϕej (−x) = −ϕej (x) for x ∈ Rd. For the second representation of
the Hermite spectrogram we compute

ε∂j ◦ Tz = ipjTz + Tz ◦ ε∂j
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and deduce

Tz ◦A†
j =

1√
2ε

((xj − qj)Tz − Tz ◦ ε∂j)
= 1√

2ε
((xj − qj)Tz + ipjTz − ε∂j ◦ Tz)

=
(
A†
j − 1√

2ε
(qj − ipj)

)
◦ Tz

so that

〈TzA†
jg0, ψ〉 = 〈A†

jgz, ψ〉 − 1√
2ε
(qj + ipj)〈gz , ψ〉.

Proposition 3.6 will be used for explicit expressions of µψ later on in §5, when ψ
is a superposition of Gaussian wave packets or a higher order Hermite function.

4. Quantum dynamics. As an application of the new density we consider the
approximation of expectation values for the solution of the time-dependent semiclas-
sical Schrödinger equation

iε∂tψ(t) = Hψ(t), ψ(0) = ψ0,

where the Schrödinger operator H = op(h) is the Weyl quantization of a smooth
function h : R2d → R of subquadratic growth, that is, all derivatives of the function h
of order two and higher are bounded. Then, H is essentially self-adjoint (see [22,
Exercise IV.12]) so that for all square integrable initial data ψ0 ∈ L2(Rd) there is a
unique global solution

ψ(t) = e−iHt/εψ0, t ∈ R.

The classical counterpart to the Schrödinger equation is the Hamiltonian ordinary
differential equation

ż(t) = J∇h(z(t)) with J =

[
0 Id

−Id 0

]
∈ R

2d×2d.

The associated Hamiltonian flow Φt : R
2d → R2d is globally defined and smooth for

all times t ∈ R, since h is smooth and subquadratic.
In this setup we obtain the following quasiclassical approximation of time evolved

quantum expectations using the new phase space density.
Corollary 4.1. Suppose h : R2d → R is a smooth function of subquadratic

growth and H = op(h). Let ψ ∈ L2(Rd) with ‖ψ‖L2 = 1. Then, for all Schwartz
functions a : R2d → R, and t ∈ R, there exists a constant C = C(a, h, t) ≥ 0 such that∣∣∣∣〈e−iHt/εψ, op(a)e−iHt/εψ

〉
−
∫
R2d

(a ◦ Φt)(z)µψ(z)dz
∣∣∣∣ ≤ Cε2

with the density µψ from Definition 3.1, where Φt : R
2d → R2d is the Hamiltonian

flow associated with h.
Proof. The crucial element of our argument is Egorov’s theorem [3, Theorem 1.2],

which provides

eiHt/ε op(a)e−iHt/ε = op(a ◦ Φt) +O(ε2),
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where the error depends on third and higher order derivatives of a ◦Φt and h, respec-
tively. This means for the expectation value〈

e−iHt/εψ, op(a)e−iHt/εψ
〉
=

〈
ψ, op(a ◦ Φt)ψ

〉
+O(ε2).

Now it remains to apply Theorem 3.2 to obtain〈
e−iHt/εψ, op(a)e−iHt/εψ

〉
=

∫
R2d

(a ◦ Φt)(z)µψ(z)dz +O(ε2).

Remark 4.2. Replacing the new density by the Husimi function in Corollary 4.1
deteriorates the approximation in the sense that〈

e−iHt/εψ, op(a)e−iHt/εψ
〉
=

∫
R2d

(a ◦ Φt)(z)Hψ(z)dz +O(ε)

as ε → 0. It requires an additional system of coupled ODEs involving higher order
derivatives of the Hamilton function h to retain second order accuracy with respect to
ε; see [12, Theorem 3].

Remark 4.3. Since the Hamiltonian h is preserved by the classical flow Φt, the
constant C(h, h, t) = C(h, h) of Corollary 4.1 does not depend on time, so that the
approximation error of the total energy expectation value is of size O(ε2) but time-
independent.

Remark 4.4. In the special case of a harmonic oscillator h(z) = zTAz, with
A ∈ R2d×2d positive definite, generating a flow Φt that is a linear orthogonal map on
phase space, one can easily see that

µψ(t) = µψ0 ◦ Φ−t.

In other words, µψ(t) satisfies the classical Liouville equation. In general, the time
evolution of µψ(t) is much more intricate, see the equations for the Husimi function
derived in [2, Theorem 4.5 and §4.2].

5. Examples of Phase Space Densities. In this section we explicitly compute
the new density µψ from Definition 3.1 in three different cases, namely when ψ is a
Gaussian wave packet, a Gaussian superposition, or a multivariate Hermite function.

5.1. Gaussian wave packets. The Gaussian wave packet

gz(x) = (πε)−d/4 exp
(− 1

2ε |x− q|2 + i
εp · (x− 1

2q)
)
, x ∈ R

d.

centered at z = (q, p) ∈ R
2d has the Wigner function

Wgz(w) = (πε)−d exp
(− 1

ε |w − z|2) , w ∈ R
2d. (5.1)

Its Husimi function is a Gaussian function, too, but broader, that is,

Hgz (w) = (2πε)−d exp
(− 1

2ε |w − z|2) , w ∈ R
2d.

The Hermite spectrograms of gz can be related to another Husimi function. Indeed,
by the covariance property of the spectrograms,

(Wgz ∗Wϕej
)(w) = (Wg0 ∗Wϕej

)(w − z) = Hϕej
(w − z)

= (2πε)−d 1
2ε |wj − zj|2 exp

(− 1
2ε |w − z|2)
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for all w = (w1, . . . , wd) ∈ R2d with w1, . . . , wd ∈ R2 and all j = 1, . . . , d. Summing
all the Hermite spectrograms then yields

µgz (w) = (2πε)−d
(
1 + d

2 − 1
4ε |w − z|2) exp(− 1

2ε |w − z|2) , w ∈ R
2d.

Figure 5.1 plots the new density µgz(w) together with the corresponding Wigner and
Husimi function in terms of the distance |w − z|. Its polynomial prefactor puts the
density µgz in between the Wigner and the Husimi Gaussian.

0 0.2 0.4 0.6 0.8 1

0

1

2

|w−z|

 

 
Wigner
Husimi
Spectrogram

Fig. 5.1. Plots of the Wigner function (black dashed), the Husimi function (blue dashed),
and the new density µψ (red solid) for Gaussian wave packet ψ = gz in dimension d = 1 with
semiclassical parameter ε = 0.14. We plot the three functions in terms of the distance |w − z|.

5.2. Gaussian superposition. Next we compute the new density µψ for a
Gaussian superposition, that is, for

ψ = gz1 + gz2 , z1, z2 ∈ R
2d.

Writing the value of the Husimi function at a point z ∈ R2d as

Hψ(z) = (2πε)−d |〈gz, gz1〉+ |〈gz, gz2〉|2
= (2πε)−d

(|〈gz, gz1〉|2 + |〈gz, gz2〉|2 + 2Re (〈gz1 , gz〉〈gz, gz2〉)
)

motivates us to derive an explicit formula for the inner product of two Gaussian wave
packets.

Lemma 5.1. For any z1, z2 ∈ R2d, we have

〈gz1 , gz2〉 = exp
(
− |z1−z2|2

4ε + i
2εΩ(z1, z2)

)
,

where Ω is the standard symplectic form on T ∗Rd ∼= R2d as defined in (2.1).
Proof. By a direct calculation one can show

〈g0, gz〉 = 〈g0, Tzg0〉 = exp
(
− |z|2

4ε

)
, z ∈ R

2d.
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For the general case we then have

〈gz1 , gz2〉 = 〈Tz1g0, Tz2g0〉 = 〈g0, T−z1Tz2g0〉
= exp

(
i
2εΩ(z1, z2)

)〈g0, Tz2−z1g0〉 = exp
(

i
2εΩ(z1, z2)− |z2−z1|2

4ε

)
.

By Lemma 5.1 we have

〈gz1 , gz〉〈gz, gz2〉 = exp
(
− |z−z1|2+|z−z2|2

4ε

)
exp

(
i
2εΩ(z1 − z2, z)

)
and obtain for the Husimi function

Hψ(z) = (2πε)−d
(
exp

(
− |z−z1|2

2ε

)
+ exp

(
− |z−z2|2

2ε

)
+2 exp

(
− |z−z1|2+|z−z2|2

4ε

)
cos

(
1
2εΩ(z1 − z2, z)

))
.

For the Hermite spectrograms we first use Lemma 3.6 to obtain

(Wψ ∗Wϕej
)(z) = (2πε)−d

∣∣∣∣∣
2∑
k=1

〈
gz,

(
AjTzk − zCj√

2ε
Tzk

)
g0

〉∣∣∣∣∣
2

.

We notice that, for j = 1, . . . , d and m = 1, 2,

AjTzm =
zCm,j√

2ε
Tzm + TzmAj ,

where zCm,j := qm,j + ipm,j ∈ C. This implies that

〈
gz,

(
AjTzm − zCj√

2ε
Tzm

)
g0

〉
=

〈
gz,

(
zCm,j−zCj√

2ε
Tzm + TzmAj

)
g0

〉

=
zCm,j−zCj√

2ε
〈gz, gzm〉.

Consequently, since |zCm,j − zCj | = |zm,j − zj | for each m and j, we have

(2πε)d (Wψ ∗Wϕej
)(z) =

∣∣∣∣ zC1,j−zCj√
2ε

〈gz, gz1〉+ zC2,j−zCj√
2ε

〈gz, gz2〉
∣∣∣∣
2

= 1
2ε

(
|z1,j − zj |2|〈gz, gz1〉|2 + |z2,j − zj |2|〈gz, gz2〉|2

)
+ 1

ε Re
[
(zC1,j − zCj )(z

C

2,j − zCj )〈gz1 , gz〉〈gz, gz2〉
]
.

Now observe that

d∑
j=1

(zC1,j − zCj )(z
C

2,j − zCj ) =

d∑
j=1

[(q1,j − qj)− i(p1,j − pj)][(q2,j − qj) + i(p2,j − pj)]

= (z − z1) · (z − z2) + iΩ(z − z1, z − z2).
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Therefore,

d∑
j=1

(Wψ ∗Wϕej
)(z)

= 1
(2πε)d

{
|z−z1|2

2ε exp
(
− |z−z1|2

2ε

)
+ |z−z2|2

2ε exp
(
− |z−z2|2

2ε

)
+ 1

ε exp
(
− |z−z1|2+|z−z2|2

4ε

)[
(z − z1) · (z − z2) cos

(
1
2εΩ(z1 − z2, z)

)
− Ω(z − z1, z − z2) sin

(
1
2εΩ(z1 − z2, z)

)]}
.

Combining the Husimi function and the Hermite spectrograms gives the density µψ
as plotted before in Figure 1.1 in the Introduction.

5.3. Hermite functions. Let us consider the higher order Hermite functions

ϕk :=
1√
k!
(A†)kg0, k = (k1, . . . , kd) ∈ N

d,

which result from the k-fold application of the raising operator A† to the Gaussian
wave packet g0 centered at the origin. The FBI transform of a Hermite function is
known as

(2πε)−d/2〈gz, ϕk〉 = 1√
(2πε)dk!

(
1√
2ε
(q − ip)

)k
exp

(− 1
4ε |z|2

)
(5.2)

for z ∈ R2d; see [7, §2] or [15, Proposition 5]. Hence, the Husimi function satisfies

Hϕk
(z) =

1

(2πε)dk!

∣∣∣ 1√
2ε
z
∣∣∣2k exp

(− 1
2ε |z|2

)
=

d∏
j=1

hkj (zj), (5.3)

where

hn(w) := Hϕn(w), w ∈ R
2,

denotes the Husimi function of the univariate n-th Hermite function ϕn, n ∈ N. For
the multivariate Hermite spectrograms we obtain the following:

Lemma 5.2. For all k ∈ Nd and j = 1, . . . , d and z ∈ R2d, we have

(Wϕk
∗Wϕej

)(z)

=
(
kjhkj−1(zj)− 2kjhkj (zj) + (kj + 1)hkj+1(zj)

) · ∏
n�=j

hkn(zn).

Proof. Since Ajϕk =
√
kjϕk−ej , Proposition 3.6 implies

(Wϕk
∗Wϕej

)(z) = (2πε)−d
∣∣∣〈gz , Ajϕk〉 − 1√

2ε
zCj 〈gz, ϕk〉

∣∣∣2
= (2πε)−d

∣∣∣√kj〈gz, ϕk−ej 〉 − 1√
2ε
zCj 〈gz, ϕk〉

∣∣∣2 .
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By the formula (5.2) for the FBI transform, we obtain

(Wϕk
∗Wϕej

)(z) =
exp

(− 1
2ε |z|2

)
(2πε)dk!

∣∣∣∣kj ( 1√
2ε
(q − ip)

)k−ej − 1√
2ε
zCj

(
1√
2ε
(q − ip)

)k∣∣∣∣
2

=
exp

(− 1
2ε |z|2

)
(2πε)dk!

(
kj − 1

2ε |zj |2
)2 ∣∣∣∣( 1√

2ε
z
)k−ej ∣∣∣∣

2

.

Then it remains to observe that

exp
(− 1

2εz
2
j

)
(2πε)kj !

(
kj − 1

2ε |zj |2
)2 ∣∣∣ 1√

2ε
zj

∣∣∣2kj−2

= kjhkj−1(zj)− 2kjhkj (zj) + (kj + 1)hkj+1(zj).

The combination of the Husimi function (5.3) and the Hermite spectrograms of
Lemma 5.2 gives an explicit formula for the density µψ when ψ = ϕk for k ∈ N

d.

6. Numerical Experiments. We present numerical experiments1 for comput-
ing expectation values for the solution of the time-dependent Schrödinger equation

iε∂tψ(t) = (− ε2

2 ∆+ V )ψ(t), ψ(0) = ψ0,

with three different potentials V : Rd → R. The various setups shall illustrate im-
portant aspects of our new algorithm, such as the second order accuracy with respect
to ε, the good applicability in higher dimensions, and the capability of describing
fundamental quantum effects.

6.1. Discretization. For the algorithmic discretization of Corollary 4.1 we pro-
ceed similarly as in [14, 10, 12]. We consider various smooth functions a : R2d → R

and evaluate the phase space integral on the right hand side of the semiclassical ap-
proximation

〈ψ(t), op(a)ψ(t)〉 =
∫
R2d

(a ◦ Φt)(z)µψ0(z)dz +O(ε2)

for normalized initial data ψ0 ∈ L2(Rd), ‖ψ0‖ = 1, via the quadrature formula∫
R2d

(a ◦ Φt)(z)µψ0(z)dz = (1 + d
2 )

∫
R2d

(a ◦ Φt)(z)Hψ0(z)dz

− 1
2

d∑
j=1

∫
R2d

(a ◦ Φt)(z)(Wψ0 ∗Wϕej
)(z)dz

≈ 1 + d
2

N

N∑
k=1

(a ◦ Φt)(zk)− d

2N

N∑
k=1

(a ◦ Φt)(wk),

where one samples the quadrature points according to the probability measures

z1, . . . , zN ∼ Hψ0 , w1, . . . , wN ∼ 1
d

d∑
j=1

Wψ0 ∗Wϕej
;

1All experiments have been performed with Matlab 8.3 on a 3.33 GHz Intel Xeon X5680 pro-
cessor.
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see also §A for the sampling strategies used for the Hermite spectrograms. The rate
of convergence for the above quadrature rule is proportional to N−1/2 for Monte
Carlo samplings. For low discrepancy (Quasi-Monte Carlo) sampling the convergence
is faster, that is, of the order log(N)2d/N . However, the literature on non-uniform
Quasi-Monte Carlo sampling is scarce, and it seems to be an open question whether
the transformed Halton sequences employed in our numerical experiments form indeed
a low discrepancy set or just come very close to being so in practice, see also [1].

For the discretization of the Hamiltonian flow Φt, we apply the eighth-order sym-
plectic splitting method from [24, Table 2.D], which is a suitable composition of the
linear flows of {

q̇ = p

ṗ = 0
and

{
q̇ = 0

ṗ = −∇V (q)
.

Since our algorithm evolves an ensemble of classical trajectories, the use of symplectic
time integrators is crucial; see also [14, Fig. 4.2].
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Fig. 6.1. Average errors (6.2) of the expectation values of various observables on the time
interval [0, 20] for the new spectrogram method with initial Halton (left) and Monte Carlo (middle)
sampling and results for the naive Husimi method with Halton sampling (right) for the torsional
potential and Gaussian initial data centered at z = (1, 0, 0, 0).

6.2. Two-dimensional torsional potential. Our first numerical experiments
are conducted for the two-dimensional torsional potential

V (q1, q2) = 2− cos(q1)− cos(q2), q ∈ R
2,

and different values of the semiclassical parameter ε. As the initial state we consider
the Gaussian wave packet ψ0 = gz with phase space center z = (1, 0, 0, 0). This setup
has already been considered in [5, 14, 12, 10]. We investigate the dynamics of the
following symbols a : R4 → R,

1. Position: a(q, p) = q1 and a(q, p) = q2,
2. Momentum: a(q, p) = p1 and a(q, p) = p2,
3. Kinetic and potential energy: a(q, p) = 1

2 |p|2 and a(q, p) = V (q),
4. Total energy: a(q, p) = 1

2 |p|2 + V (q),
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and compare the outcome of the new algorithm with the naive, first-order Husimi
approximation

〈ψ(t), op(a)ψ(t)〉 =
∫
R2d

(a ◦ Φt)(z)Hψ0(z)dz +O(ε). (6.1)

The left and middle panel of Figure 6.1 confirm the second order accuracy of
the new method for both Monte Carlo and Halton type samplings of the initial den-
sity µψ0 . The right panel illustrates that the naive Husimi method is indeed only of
first order in ε. The time-averaged errors

1

20

∫ 20

0

∣∣∣〈ψref(t), op(a)ψref(t)〉−
1 + d

2

N

N∑
k=1

(a ◦Φt)(zk)+ d

2N

N∑
k=1

(a ◦Φt)(wk)
∣∣∣dt (6.2)

are taken with respect to highly accurate grid based reference solutions ψref(t) ≈ ψ(t)
of the Schrödinger equation; for details see Appendix B.1.

The total energy error in Figure 6.1 is smaller than the errors for other expectation
values. Firstly, this can be explained by the fact that the total energy error is time
independent, as explained in Remark 4.3, and symplectic integrators are practically
energy preserving on the time scales considered here. Secondly, the leading O(ε2)
term in the asymptotic expansion of the error

〈gz, op(h)gz〉 −
∫
R2d

h(w)µgz (w)dw =

∫
R2d

h(w)(Wgz − (1− ε
4∆)Hgz )(w)dw

=

∫
R2d

h(w)
(
Wgz − (1− ε

4∆)(1 + ε
4∆+ ε2

32∆
2)Wgz

)
(w)dw +O(ε3)

= ε2

32

∫
R2d

h(w)∆2Wgz (w)dw +O(ε3)

can be bounded by the small constant

∣∣ 1
32

∫
R2d

∆2h(w)Wgz (w)dw
∣∣ ≤ 1

16 ,

which follows from the special form of the torsional potential and the initial state.
The total energy errors for small values of ε are larger in the left panel of Figure 6.1
than in the middle panel, since the relatively small number of Halton points gives rise
to perceptible quadrature errors.

6.3. Henon–Heiles dynamics for d = 32. Henon–Heiles type systems have
been used for benchmark simulations with the multiconfiguration time-dependent
Hartree method (MCTDH); see [19]. We follow the presentation in [13, §5.B] by
using the potential

V32(q) =
1
2 |q|2 + 1.8436

31∑
j=1

(q2j qj+1 − 1
3q

3
j+1) + 0.4

31∑
j=1

(q2j + q2j+1)
2

and the semiclassical parameter ε = 0.0029, which is a model for the dynamics of a
hydrogen atom on a high-dimensional potential energy surface that exhibits regions
of chaotic motion. The quartic confinement guarantees that none of the classical
trajectories escapes to infinity. Moreover, as in [19, 13], the initial state is a Gaussian



20 J. KELLER, C. LASSER, AND T. OHSAWA

0 25 50 75 100
0

0.1

0.2

0.3

0.4

time [fs]

po
te

nt
ia

l e
ne

rg
y 

[E
h]

 

 
Wigner algorithm
Spectrogram alg.
naive Husimi alg.

Fig. 6.2. The approximate dynamics of the potential energies for the 32-dimensional Henon–
Heiles system obtained by the Wigner, Spectrogram, and naive Husimi algorithms.

wave packet ψ0 = gz centered at z = (q, p) with p = 0 and qj = 0.1215 for all
j = 1, . . . , 32.

Since grid-based reference solutions are not available for this high-dimensional
setting, we compare our method with the results obtained by the second order ap-
proximation

〈ψ(t), op(a)ψ(t)〉 =
∫
R2d

(a ◦ Φt)(z)Wψ0(z)dz +O(ε2).

Note that, in this particular case, the initial Wigner function Wψ0(z) is the Gaus-
sian (5.1), and hence the Wigner algorithm does not pose a difficulty in the initial
sampling. Figure 6.2 shows the good agreement of the results from the Wigner and
the spectrogram methods by means of the potential energy, and a considerable dis-
crepancy with respect to the naive Husimi approximation (6.1).

6.4. Escape from a cubic potential well. Finally, we explore whether the
new method is capable of describing the evolution of a quantum system that moves
out of a potential well. For this purpose we consider the semiclassical Schrödinger

operator H = − ε2

2 ∆+ V with the one-dimensional barrier potential

V (q) = 2.328 · q2 + q3 + 0.025q4, q ∈ R,

and ε = 0.4642; see also Figure 6.3. This Hamiltonian can be derived from the
Schrödinger operator

− 1
2�

2∆+ 1
2x

2 + 0.1x3

with � = 1 from [20, 21] by applying the space rescaling x �→ 3
√
0.1x and adding

the confinement term 0.025 · q4. The confinement prevents phase space trajectories
from finite time blow up and guarantees that H is essentially self-adjoint. The global
potential energy minimum V (xglob) ≈ −4765 is attained at xglob ≈ −28.4, and the
confinement is very small in the region of interest close to the origin.

As initial states we consider translated Hermite functions

ψ0 = Tz0ϕk, k ∈ {0, 1, 3, 6}
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Fig. 6.3. The cubic barrier potential V with the barrier energy Vb and the energy h(z0) of the
trapped classical particle.

localized around z0 = (0.4642,−1), which corresponds to the initial phase space center
used in [20]. Since the associated classical energy h(z0) lies below the barrier energy
Vb ≈ 2.03, the classical particle is trapped in the well for all times. In contrast, the
quantum energy of the initial state gz0 is approximately 2.09, and the energies of the
excited states are even higher. Consequently, the expected phase space center of the
quantum particle will escape from the classical trapping region after short time.

Figure 6.4 displays the trajectories of the expected phase space centers obtained
by the purely classical, the full quantum, and the semiclassical spectrogram dynamics
for the four different initial states. The results from the spectrogram algorithm show
decent qualitative agreement with the behavior of the quantum solution even though
the semiclassical parameter ε = 0.4642 is rather large. We also note that the results
become more accurate for initial states of higher energy.

The spectrogram algorithm is also capable of describing the evolution of the
probability that the quantum particle escapes the potential well and is found in the
region (−∞, xmax], where xmax ≈ −1.62 is the local maximum of the barrier potential.
To illustrate this property, we introduce the approximate escape probability

P (t) = 〈ψt, op(r)ψt〉 ≈ ‖ψtχ(−∞,xmax]‖2L2

with the smooth symbol r(q, p) = exp(−0.01/(q − xmax)
2)χ(−∞,xmax](q), where χA

denotes the characteristic function of the set A. P (t) can easily be approximated
by the spectrogram algorithm, and accurate numerical references are available; see
Appendix B.3. Figure 6.5 shows by means of two different initial states that the
spectrogram algorithm yields a good qualitative picture of the evolution of escape
probabilities.

Appendix A. Sampling by the Gamma distribution.

A.1. Using the Gamma distribution. We consider the Hermite functions
translated by the Heisenberg–Weyl operator,

ψ = Tzϕk, k ∈ N
d, z ∈ R

2d.

Then, by the covariance property (2.6), the Hermite spectrogram takes the form

(WTzϕk
∗Wϕej

)(w) = (Wϕk
∗Wϕej

)(w − z), w ∈ R
2d,
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Fig. 6.4. Trajectories of the expected phase space centers obtained from quantum references
and the new spectrogram algorithm for different initial states ψ0 = Tz0ϕk. The dashed black line
shows the periodic classical orbit associated with z0, and the solid black line illustrates the border of
the trapping region.
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Fig. 6.5. Approximate escape probabilities P (t) computed from a highly accurate numerical
quantum reference, and results of the spectrogram and Wigner algorithms for the initial states Tz0ϕ1,
and Tz0ϕ3.

and by Lemma 5.2, we only have to consider the two-dimensional probability densities

wj �→ hn(wj − zj) =
1

2πε · n!
∣∣∣ 1√

2ε
(wj − zj)

∣∣∣2n exp(− 1
2ε |wj − zj |2

)
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with n ∈ {k1, . . . , kd}. Specifically, we first translate by −zj and then use the uniform
distribution on [0, 2π] for the angular part combined with sampling from

r �→ r2n+1

2nεn+1n!
exp

(− 1
2εr

2
)

for the radial part. Since

∫ b

a

r2n+1

2nεn+1n!
exp

(− 1
2εr

2
)
dr =

∫ b2

a2

τn

(2ε)n+1n!
exp

(− 1
2ετ

)
dτ

for all a, b > 0, we use the Gamma distribution with parameters n+ 1 and 2ε for the
radial sampling.

In the particular case k = 0, ϕ0 = g0 and so Tzϕ0 = gz is a Gaussian wave packet
and

µgz (w) = (2πε)−d
(
1 + d

2 − 1
4ε |w − z|2) exp(− 1

2ε |w − z|2) , w ∈ R
2d;

see §5.1. One can directly sample this 2d-dimensional probability density without
factorizing its summands. After translation by −z, one decomposes into a radial part
and an independent angular variable which is uniformly distributed on S2d−1. The
radial density is given by

r �→ rd

(2ε)d+1d!
exp(−r/2ε) ,

which corresponds to a Gamma distribution with parameters d+ 1 and 2ε.

A.2. Monte Carlo sampling. Pseudorandom numbers uniformly distributed
on a multi-dimensional unit sphere are obtained by sampling from multivariate normal
distributions and subsequent normalization, while Gamma distributed pseudorandom
samples only require the uniform distribution on the unit cube together with the
(numerical) inverse of the cumulative Gamma distribution function. Hence a Monte-
Carlo sampling of µTzϕk

is straightforward.

A.3. Quasi-Monte Carlo sampling. For the generation of Quasi-Monte Carlo
points we have heuristically mimicked the Monte-Carlo procedure of §A.2 by replac-
ing the pseudorandom samples from the uniform distribution on the unit cube by a
Halton sequence. Whether the resulting points are of low discrepancy with respect
to the distribution µTzϕk

seems to be an open question not answered by the current
literature, see e.g. [1].
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Appendix B. Numerical data.

B.1. Two-dimensional torsional system. Table B.1 contains the number of
initial sampling points and the computational time for the new spectrogram algorithm.
In the case of Monte Carlo integration, the results in Figure 6.1 are averaged over ten
independent runs. For the time propagation we apply the above mentioned eighth-
order symplectic integrator with time stepping 10−1. The parameters of the grid-based
reference solver are collected in Table B.2.

ε MC points comp. time Halton points comp. time
10−1 5 · 104 23s 5 · 104 16s

5 · 10−2 3 · 105 1m59s 105 33s
10−2 6 · 105 7m16s 2 · 105 1m59s

5 · 10−3 1.5 · 106 14m15s 8 · 105 6m50s
10−3 10 · 106 68m30s 2 · 106 18m31s

Table B.1

Computational data for the execution of the new spectrogram algorithm for the two dimensional
torsional potential and Gaussian initial data on the time interval [0, 20]. The computation times
are for one run only. They scale linearly with respect to the number of initial sampling points.

ε #timesteps comp. domain space grid
10−1 5 · 103 [−3, 3]× [−3, 3] 1536× 1536

5 · 10−2 5 · 103 [−3, 3]× [−3, 3] 1536× 1536
10−2 7.5 · 103 [−2, 2]× [−2, 2] 2048× 2048

5 · 10−3 104 [−2, 2]× [−2, 2] 2048× 2048
10−3 104 [−2, 2]× [−2, 2] 2048× 2048

Table B.2

Parameters of the grid-based reference solutions for the two-dimensional torsional potential.
The discretization has been done by Fourier collocation in R2 and Strang splitting in time.

B.2. Henon–Heiles system for d = 32. For the initial sampling we used
217 Halton type points for all three initial densities, that is, the Wigner and the
Husimi functions and the new density µψ0 . The time stepping of the eighth order
time integrator is 2 · 10−2.

B.3. One-dimensional cubic well. For the spectrogram algorithm we em-
ployed 214 Halton points and the eighth-order integrator with time stepping 10−2,
which results in a computational time of 2 seconds. The quantum references are gen-
erated by means of a Strang splitting with 215 Fourier modes on the interval [−40, 4].
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