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Abstract. We show that the symplectic reduction of the dynamics of N point vortices on the

plane by the special Euclidean group SE(2) yields a Lie–Poisson equation for relative configurations

of the vortices. Specifically, we combine symplectic reduction by stages with a dual pair associated

with the reduction by rotations to show that the SE(2)-reduced space with non-zero angular impulse

is a coadjoint orbit. This result complements some existing works by establishing a relationship

between the symplectic/Hamiltonian structures of the original and reduced dynamics. We also find

a family of Casimirs associated with the Lie–Poisson structure including some apparently new ones.

We demonstrate through examples that one may exploit these Casimirs to show that some shape

dynamics are periodic.

1. Introduction

1.1. Dynamics of N Point Vortices. The dynamics of N point vortices {xj = (xj , yj) ∈ R2}Nj=1

on the plane R2 with non-zero circulations {Γj ∈ R\{0}}Nj=1 is governed by the system of equations

ẋj = − 1

2π

∑
1≤k≤N
k 6=j

Γk
yj − yk
‖xj − xk‖2

, ẏj =
1

2π

∑
1≤k≤N
k 6=j

Γk
xj − xk
‖xj − xk‖2

(1)

for j ∈ {1, . . . , N}; see, e.g., Newton [21, Section 2.1] and Chorin and Marsden [9, Section 2.1].

This system of equations may be formulated as a Hamiltonian system as follows: Let us equip

R2N = {(x1, . . . ,xN )} with the symplectic form

Ω :=

N∑
j=1

Γjdxj ∧ dyj (2)

and define the Hamiltonian H as

H(x1, . . . ,xN ) := − 1

4π

∑
1≤j<k≤N

ΓjΓk ln ‖xj − xk‖2 .

We note in passing that, strictly speaking, one needs to remove those collision points, i.e., those

with xj = xk with j 6= k, from R2N . The vector field XH on R2N defined by the Hamiltonian

system iXHΩ = dH yields the above system of equations. A common and more succinct way of

describing the system is to identify R2 with C via (xj , yj) 7→ xj +iyj =: qj and write the symplectic

form on R2N ∼= CN = {q = (q1, . . . , qN )} as

Ω = −1

2

N∑
j=1

Γj Im(dqj ∧ dq∗j ) = −dΘ
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with

Θ := −1

2

N∑
j=1

Γj Im(q∗jdqj),

and the Hamiltonian as

H(q1, . . . , qN ) = − 1

4π

∑
1≤j<k≤N

ΓjΓk ln |qj − qk|2. (3)

Then the system is written as

q̇j =
i

2π

∑
1≤k≤N
k 6=j

Γk
qj − qk
|qj − qk|2

(4)

for j ∈ {1, . . . , N}.
This system has SE(2) = SO(2) nR2-symmetry under the action

SE(2)× CN → CN ; ((eiθ, a),q) 7→ eiθq + a1, (5)

where we identified R2 with C and defined 1 := (1, . . . , 1) ∈ CN .

It is well known (see, e.g., Newton [21, Equation (2.1.5) on p. 69]) that one may derive a set of

equations for the inter-vortex distances lij := |qi − qj | of the point vortices; they are often referred

to as the equations of relative motion or the shape dynamics; see (6) below. From the geometric

point of view, this corresponds to the reduction of the dynamics by the above SE(2)-symmetry:

This symmetry is essentially due to the uniformity of the ambient space, and hence “dividing”

the dynamics by this symmetry results in the shape dynamics. Such a reduction by symmetry—

called symplectic or Hamiltonian reduction—is one of the main topics of the geometric approach

to Hamiltonian dynamics; see, e.g., Abraham and Marsden [1], Marsden and Ratiu [16], Marsden

et al. [18], and references therein. The use of shape space/dynamics is particularly popular in

the N -body problem of classical mechanics; see, e.g., Iwai [14], Montgomery [20], and references

therein.

1.2. Motivating Examples. We would like to show some motivating examples before discussing

the main result of the paper. The first example is the case with N = 3 and Γ1 +Γ2 +Γ3 6= 0. Using

the inter-vortex distance lij := |qi − qj | between the vortices i and j and the signed area

A := −1

2
Im((q1 − q3)(q∗2 − q∗3) =

1

2

∣∣∣∣∣x1 − x3 x2 − x3

y1 − x3 y2 − x3

∣∣∣∣∣ .
of the triangle formed by the point vortices, we can derive, using (4), the equations of relative

motion mentioned above (see Newton [21, Equation (2.1.5) on p. 69], Aref [3, Eqs. (22) and (25)],

and also references therein):

d

dt
l2jk =

2Γi
π

(
1

l2ki
− 1

l2ij

)
A for (i, j, k) ∈ Z3,

Ȧ =
1

8π

∑
(i,j,k)∈Z3

(Γj + Γk)
l2ki − l2ij
l2jk

,

(6)

where Z3 := {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. These equations govern the shape dynamics of the point

vortices.

We will reformulate this set of equations as a Lie–Poisson equation on the dual of a certain Lie

algebra, just as in Borisov and Pavlov [8] and Bolsinov et al. [7] as a result of the SE(2)-reduction.
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Figure 1. Numerical solution of (1) with N = 3 and (8). The black triangle is the shape

formed by the initial positions of the point vortices. Blue is the trajectory of the first vortex,

orange the second, and green the third. The trajectories are not exactly periodic.

The Lie–Poisson formulation helps us find a family of Casimirs (conserved quantities) including the

following apparently new one:

C2 =
∑

(i,j,k)∈Z3

(
l4jk
Γ2
i

+
(l2ij − l2jk + l2ki)

2

2ΓjΓk

)
+ 8

Γ1 + Γ2 + Γ3

Γ1Γ2Γ3
A2. (7)

Figure 1 shows a numerical solution of (1) along with the triangle connecting the initial positions

of the three vortices with

(q1(0), q2(0), q3(0)) =

(
1− 2i, 2 + 4i,−5

3
− 2i

)
, (Γ1,Γ2,Γ3) = (5, 10, 15). (8)

This initial condition satisfies
∑3

j=1 Γjqj(0) = 0, which is a conserved quantity called linear impulse

of the system as we shall see below in (10). Figure 2 shows snapshots of the same solution along with

the triangle connecting the positions of the point vortices. The triangle seems to change its shape

periodically. We will show in Section 4.1 that the shape dynamics is indeed periodic exploiting the

Casimir (7). Note however that the trajectories of the vortices are actually not periodic: These

trajectories shown in Fig. 1 do not exactly come back to the initial positions.

The other motivating example is the case with N = 4 and

(q1(0), q2(0), q3(0), q4(0)) =

(
1− 2i, 2 + 4i, 5,

5

8
(5− i)

)
, (Γ1,Γ2,Γ3,Γ4) = (5, 10,−7,−8) (9)

so that that
∑4

j=1 Γj = 0 as well as
∑4

j=1 Γjqj(0) = 0. Figure 3 shows a numerical solution of

(1) along with snapshots of the quadrangle connecting the positions of the point vortices. The

two neighboring quadrangles slightly left from the center at the bottom are the initial and terminal

ones. Note that the terminal quadrangle appears to be congruent to the initial shape, but is located

at a slightly different position, again indicating that the shape dynamics may be periodic but the

trajectories of the vortices are not.
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Figure 2. Snapshots of numerical solution from Fig. 1 with the triangle connecting the point

vortices. The triangles in each column seem to be congruent, suggesting that the triangle

changes its shape periodically.

Figure 3. Numerical solution of (1) with N = 4 and (9). Blue is the trajectory of the first

vortex, orange the second, green the third, and violet the fourth. It also shows snapshots

of the quadrangle connecting the vortices in the numerical order; the shape dynamics again

seems periodic.
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1.3. Main Results. We perform SE(2)-reduction of the Hamiltonian dynamics of N point vortices

with non-zero angular impulse and show that the resulting dynamics can be written as a Lie–Poisson

equation in a coadjoint orbit. The main goal of this paper is to show that the SE(2)-reduction

naturally gives rise to the Lie–Poisson equation.

That one can write the reduced/shape dynamics of N point vortices as a Lie–Poisson equation

is not new. Borisov and Pavlov [8] found the Lie–Poisson bracket for the reduced dynamics in

a rather direct manner, and Bolsinov et al. [7] gave a Lie-algebraic interpretation of the result

by defining a so-called vortex algebra, and showed that it is isomorphic to the indefinite unitary

algebra u(n1, n2) for some n1, n2 ∈ {0, . . . , N−1} such that n1 +n2 = N−1, depending on the signs

of the circulations {Γj}Nj=1. More recently, Hernández-Garduño [12] (see also Hernández-Garduño

and Shashikanth [13]) showed that the reduced dynamics of three point vortices may be written

as a Lie–Poisson equation on u(2)∗ with the standard Lie–Poisson bracket by constructing a set of

covectors satisfying the Pauli commutation relations.

The main contributions of this paper are the following: (i) We identify the Lie–Poisson struc-

ture as the natural symplectic structure on the reduced space by performing symplectic reduction by

the SE(2)-symmetry, thereby establishing a clear connection between the original symplectic struc-

ture (2) with the Lie–Poisson structure (Theorem 3.4). The resulting Lie–Poisson equation yields

the equations (6) of relative motion. (ii) The Lie–Poisson structure naturally gives rise to Casimirs

that may provide additional conserved quantities (Corollary 3.6). Some of the Casimirs are appar-

ently new, while others are well-known conserved quantities. We exploit these Casimirs to show

that the shape dynamics from the above examples are in fact periodic.

1.4. Outline. Particularly, we perform the SE(2)-reduction by stages by first performing the re-

duction by R2 (see Section 2), and then by SO(2) (see Section 3). We note that Bolsinov et al.

[7] seem to work the other way around, i.e., first by rotations and then by translations, although

it is not particularly clear how one can perform the R2-reduction of the SO(2)-reduced space, nor

how the symplectic structures are related to each other. We stick to the former approach because

that is the procedure justified by the semidirect product reduction (see, e.g., Marsden et al. [18,

Theorem 4.2.2 on p. 122]).

Our work elucidates how the original symplectic structure Ω gives rise to a symplectic structure

ΩZ or ΩZ0 (Propositions 2.4 and 2.6) on the R2-reduced space, and also in turn, ΩZ or ΩZ0 gives

rise to the Lie–Poisson structure as a result of the SO(2)-reduction if the angular impulse is non-

zero (Theorem 3.4). As we shall see in Section 2, the two symplectic structures ΩZ and ΩZ0 on the

R2-reduced space correspond to those cases where the total circulation Γ :=
∑N

j=1 Γj is non-zero

and zero, respectively. These two cases result in slightly different geometries and hence require

separate treatments. Nevertheless, the resulting symplectic structures ΩZ and ΩZ0 have similar

structures, and hence the SO(2)-reduction to follow works the same way.

As an aside, we note that the initial inspiration came from the work of Montgomery [20] on

the reduction of the three-body problem (of celestial mechanics not of point vortices). The map

Φ defined in (25) (or πrot defined in (31)) in [20] used for reduction by rotational symmetry is

a momentum map if one thinks of the configuration space R2 ∼= C—not its cotangent bundle—

as a symplectic vector space in the standard manner. While this symplectic structure on the

configuration space has little significance in celestial mechanics, it is an essential ingredient in

point vortex dynamics as its Hamiltonian formulation employs a variant (2) of this symplectic
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structure. The corresponding momentum map in our context constitutes one leg of the dual pair

we will exploit in this paper; see Section 3.3.

2. Reduction by Translational Symmetry

The first stage of the SE(2)-reduction by stages is the reduction by the translational symmetry. As

mentioned above, we need slightly different treatments depending on whether the total circulation

Γ :=
∑N

j=1 Γj is zero or not.

2.1. Translational Symmetry and Momentum Map. Consider the translational part of the

SE(2)-action (5), i.e., C ∼= R2-action on CN as follows:

C× CN → CN ; (a,q := (q1, . . . , qN )) 7→ q + a1.

The corresponding infinitesimal generator for α ∈ C is then written as

αCN (q) =
N∑
j=1

(
α

∂

∂qj
+ α∗

∂

∂q∗j

)
,

Then one sees that

iαCN
Ω = dIα

with

Iα(q) := − i

2

N∑
j=1

Γj(α
∗qj − αq∗j )

=
1

2

−i
N∑
j=1

Γjqj

∗ α+ α∗

−i
N∑
j=1

Γjqj


=

〈
−i

N∑
j=1

Γjqj , α

〉
C

,

where we defined an inner product on C as 〈α, β〉C := Re(α∗β). Hence we have Iα(q) = 〈I(q), α〉
with the momentum map I : CN → C∗ ∼= C defined by

I(q) := −i

N∑
j=1

Γjqj . (10)

This is essentially the so-called linear impulse; see, e.g., Newton [21, Section 2.1] and Aref [3]. By

Noether’s Theorem (see, e.g., Marsden and Ratiu [16, Theorem 11.4.1]), this is a conserved quantity

of the system (4).

The above momentum map is not equivariant except for a special case:

Lemma 2.1. The momentum map I is equivariant if and only if the total circulation

Γ :=

N∑
j=1

Γj

vanishes.
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Proof. Since C is abelian, the coadjoint action is trivial; hence equivariance would be I(q + a1) =

I(q) for any a ∈ C. However, it is straightforward to see that, for any a ∈ C,

I(q + a1) = I(q)− iΓa. �

2.2. Reduction by Translational Symmetry. Let c ∈ C be arbitrary and consider the level set

I−1(−ic) =

(q1, . . . , qN ) ∈ CN |
N∑
j=1

Γjqj = c

 , (11)

which defines an affine subspace of CN . It has different symplectic-geometric properties depending

on the value of the total circulation Γ:

Lemma 2.2. The affine subspace I−1(−ic) ⊂ CN is symplectic if Γ 6= 0 whereas it is coisotropic if

Γ = 0.

Proof. Let us write A := I−1(−ic) for short and find the symplectic orthogonal complement (TA)Ω

of the tangent space TA of A. Let q ∈ A be arbitrary and v = (v1, . . . , vN ) ∈ CN be an arbitrary

element in TqA by identifying TqA with a subspace of CN in a natural manner for notational

simplicity. Then we have ΓNvN = −
∑N−1

j=1 Γjvj . For an arbitrary w = (w1, . . . , wN ) ∈ TqCN , we

have

Ω(v, w) = −
N∑
j=1

Γj
2

Im
(
vjw

∗
j − v∗jwj

)
=

N∑
j=1

Γj Im
(
v∗jwj

)

= Im

N−1∑
j=1

Γjv
∗
j (wj − wN )

 .

Since v1, . . . , vN−1 ∈ C are arbitrary, it follows that

(TqA)Ω =
{
w ∈ CN | w1 = · · · = wN

}
= C1,

where we defined

C1 :=
{
a1 ∈ CN | a ∈ C

}
.

Hence we see that

TqA ∩ (TqA)Ω =
{
a1 ∈ CN | a ∈ C, aΓ = 0

}
=

{
{0} Γ 6= 0,

C1 = (TqA)Ω Γ = 0.

Therefore, if Γ 6= 0 then A is symplectic, whereas if Γ = 0 then (TqA)Ω ⊂ TqA for any q ∈ A, and

so A is coisotropic. �

As a result, we obtain the reduced space as follows:

Proposition 2.3 (Reduction by translational symmetry).

(i) If Γ 6= 0, the reduced space by the translational symmetry is I−1(−ic) itself for any c ∈ C; the

affine subspace I−1(−ic) in turn may be identified with the subspace I−1(0) ∼= CN−1.

(ii) If Γ = 0, the reduced space is I−1(−ic)/C and may be identified with I−1(0)/C ∼= CN−2.
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Proof. Suppose first that Γ 6= 0. By Lemma 2.1, the momentum map I is not equivariant. Therefore,

we would like to invoke the non-equivariant symplectic reduction (see, e.g., [18, p. 17]). Based on

what we observed in the proof of Lemma 2.1, we define a cocycle σ : C→ C∗ ∼= C as

σ(a) := I(q + a1)− I(q) = −iΓa.

This gives rise to the new action Ξ: C× C∗ → C∗ defined by

Ξ(a,−ic) := −ic+ σ(a) = −i(c+ Γa).

The isotropy group of this action is clearly trivial, i.e., C−ic = {0}. Hence the (non-equivariant)

Marsden–Weinstein quotient is I−1(−ic) itself. However, one may shift the origin of CN so that

the affine space I−1(−ic) becomes the subspace I−1(0) ∼= CN−1. Note that this does not affect the

dynamics because of the translational symmetry of the Hamiltonian (3).

Now suppose that Γ = 0. Then, by Lemma 2.1, the momentum map I is equivariant. Since C is

abelian, the isotropy group is given by C−ic = C. Hence we obtain the Marsden–Weinstein quotient

I−1(−ic)/C. One sees from (11) that I−1(−ic) defines an affine space of (complex) codimension one.

Since C acts on it by translations in the direction of 1 inside I−1(−ic), one sees that the quotient

I−1(−ic) is an affine space of (complex) codimension two, i.e., I−1(−ic)/C ∼= CN−2. Alternatively,

for the same reason as above, one may identify I−1(−ic) with the subspace I−1(0). Then it is easy

to see that I−1(0)/C is a quotient of a vector space I−1(0) ∼= CN−1 by its subspace C1 and hence is

isomorphic to CN−2. This is nothing but the linear symplectic reduction of a coisotropic subspace;

see, e.g., McDuff and Salamon [19, Lemma 2.1.7]. �

2.3. Symplectic Forms on R2-Reduced Space. Let us first consider the case with Γ 6= 0. The

above proposition tells us that the reduced space by translational symmetry may be identified with

the subspace

I−1(0) =

(q1, . . . , qN ) ∈ CN |
N∑
j=1

Γjqj = 0

 .

We parametrize this subspace using the relative positions of the first N − 1 point vortices with

respect to the last one, i.e.,

z = (z1, . . . , zN−1) := (q1 − qN , . . . , qN−1 − qN ) ∈ CN−1. (12)

Then,

I−1(0) =

(z1, . . . , zN−1, 0) + qN1 ∈ CN | qN = − 1

Γ

N−1∑
j=1

Γjzj


∼= {(z1, . . . , zN−1) ∈ CN−1} = CN−1.

We remove the those points for N -tuple collisions q1 = · · · = qN or equivalently z = 0 to define

Z := I−1(0)\{N -tuple collisions} ∼= CN−1\{0}.

Let us find the symplectic form ΩZ induced on Z by Ω.

Proposition 2.4. If Γ 6= 0, then the symplectic form on the R2-reduced space Z can be written as

ΩZ = −dΘZ ,
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where ΘZ is the one-form on Z ∼= CN−1\{0} defined as

ΘZ :=
1

2
Im(z∗Kdz)

with

K :=
1

Γ


−Γ1(Γ− Γ1) Γ1Γ2 . . . Γ1ΓN−1

Γ2Γ1 −Γ2(Γ− Γ2) . . . Γ2ΓN−1
...

...
. . .

...

ΓN−1Γ1 ΓN−1Γ2 . . . −ΓN−1(Γ− ΓN−1)

 . (13)

Proof. The constraint
∑N

j=1 Γjqj = 0 for q to be in Z = I−1(0) is rewritten in terms of z as

N∑
j=1

Γjqj = 0 ⇐⇒
N−1∑
j=1

Γjzj + ΓqN = 0 ⇐⇒ qN = − 1

Γ

N−1∑
j=1

Γjzj ,

and thus we may write the embedding ι : Z ↪→ CN as

ι : (z1, . . . , zN−1) 7→ (z1 + qN , . . . , zN−1 + qN , qN ).

Then, straightforward calculations yield the pull-back

ΘZ := ι∗Θ

=
1

2Γ

−N−1∑
j=1

Γj(Γ− Γj) Im(z∗jdzj) +
∑

1≤j,k≤N−1
j 6=k

ΓjΓk Im(z∗jdzk)


=

1

2
Im(z∗Kdz).

Hence the symplectic form on Z is given by

ΩZ = ι∗Ω = −d(ι∗Θ) = −dΘZ . �

Remark 2.5. The matrix K is invertible under our assumption that Γj 6= 0 for j ∈ {1, . . . , N}; see

Lemma B.1.

What if Γ = 0? In this case, we may write the embedding i0 : I−1(0) ↪→ CN as

i0 : (q1, . . . , qN−1) 7→

q1, . . . , qN−1,−
1

ΓN

N−1∑
j=1

Γjqj

 .

The pull-back of the canonical one-form Θ by i0 is then

i∗0Θ = − 1

2ΓN

N−1∑
j=1

Γj(ΓN + Γj) Im(q∗jdqj) +
∑

1≤j,k≤N−1
j 6=k

ΓjΓk Im(q∗jdqk)

 .

Let us set, with a slight abuse of notation,

z = (z1, . . . , zN−2) := (q1 − qN−1, . . . , qN−2 − qN−1) ∈ CN−2
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as in (12). Notice that z is in CN−2 as opposed to CN−1 here; compare with (12). Then z provides

a set of coordinates for the reduced space I−1(0)/C. Now, z = 0 again exactly corresponds to

N -tuple collisions here, and so we define

Z0 := (I−1(0)/C)\{N -tuple collisions} ∼= CN−2\{0}.

We may then rewrite the above pull-back in terms of z as follows:

i∗0Θ = − 1

2ΓN

N−2∑
j=1

Γj(ΓN + Γj) Im(z∗jdzj) +
∑

1≤j,k≤N−2
j 6=k

ΓjΓk Im(z∗jdzk)

 .

Hence we have

i∗0Ω = −i∗0dΘ = −di∗0Θ = π∗0ΩZ0 ,

where π0 : I−1(0)→ I−1(0)/C is the quotient map, and ΩZ0
:= −dΘZ0 with

ΘZ0
:=

1

2
Im(z∗K0 dz) (14)

and

K0 := − 1

ΓN


Γ1(ΓN + Γ1) Γ1Γ2 . . . Γ1ΓN−2

Γ2Γ1 Γ2(ΓN + Γ2) . . . Γ2ΓN−2
...

...
. . .

...

ΓN−2Γ1 ΓN−2Γ2 . . . ΓN−2(ΓN + ΓN−2)

 . (15)

To summarize, we have:

Proposition 2.6. If Γ = 0, then the symplectic form on the R2-reduced space Z0
∼= CN−2\{0} is

given by ΩZ0 = −dΘZ0 where ΘZ0 is the one-form defined in (14) along with (15).

Remark 2.7. Comparing the matrices K from (13) and K0 from above, one notices that the sym-

plectic form ΩZ0 is identical to that of ΩZ for N − 1 (as opposed to N) vortices with Γ replaced by

−ΓN . That is, after the R2-reduction, the symplectic structure for N point vortices with vanishing

total circulation (i.e., Γ = 0) is the same as that for (the first) N − 1 point vortices whose total

circulation is −ΓN 6= 0. We note that Aref [2] observed that three-vortex motion with zero total cir-

culation can be effectively reduced to a two-vortex problem. Similarly, Aref and Stremler [4] showed

that four-vortex motion with zero total circulation—which is known to be integrable [10]—can be

reduced to a three-vortex one as well.

3. Reduction by Rotational Symmetry

Let us perform the further reduction by rotational symmetry. This is the second stage of the

semidirect product reduction by SE(2) = SO(2)nR2, and is more involved than that by translations.

The key ingredient is the pair of momentum maps R and J found in the two subsections to

follow:

R Z u(K)∗.R J (16)

The first momentum map R is the conserved quantity corresponding to the SO(2)-symmetry, and

hence its role is clear from the point of view of symplectic reduction: The reduced space by the

rotational symmetry is the Marsden–Weinstein quotient R−1(c0)/S1 for an arbitrary regular value

c0 ∈ R. The problem is that this quotient is not easy to describe and parametrize, and hence is

not amenable to writing down the reduced dynamics explicitly.
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Instead, we exploit the other momentum map J, which corresponds to the natural action of the

unitary group U(K) (see Section 3.2 below) on the R2-reduced space Z. Note that this is not a

conserved quantity because U(K) is not a symmetry group of the system. We show that R and J

constitute a so-called dual pair (see, e.g., Weinstein [28] and Ortega and Ratiu [25, Chapter 11])

on a certain open subset of Z. The dual pair helps us identify the reduced space R−1(c0)/S1 with

a coadjoint orbit in u(K)∗, hence resulting in the Lie–Poisson formulation of the reduced dynamics.

Throughout the section, we will describe the results for the case with Γ 6= 0 with the symplectic

manifold Z and the symplectic structure ΩZ defined in terms of the matrix K. Similar results hold

for the case with Γ = 0 and Z0 by replacing N by N − 1 and the matrix K by K0.

3.1. Rotational Action on Z. Let S1 =
{
eiθ ∈ C | θ ∈ [0, 2π)

} ∼= SO(2) and consider the action

Ψ: S1 × Z → Z;
(
eiθ, z = (z1, . . . , zN−1)

)
7→
(
eiθz1, . . . , e

iθzN−1

)
. (17)

This is the rotational action induced on Z by the SE(2) action defined in (5) after the translational

R2-reduction performed above. The one-form ΘZ is clearly invariant under the action Ψ and hence

so is the symplectic form ΩZ obtained in Proposition 2.4, i.e., Ψ∗
eiθ

ΘZ = ΘZ and hence Ψ∗
eiθ

ΩZ = ΩZ

for any eiθ ∈ S1.

The corresponding infinitesimal generator is defined for any ω ∈ so(2) ∼= R as follows:

ωZ(z) :=
d

ds
Ψexp(isω)(z)

∣∣∣∣
s=0

= iω
N−1∑
j=1

(
zj

∂

∂zj
− z∗j

∂

∂z∗j

)
.

Hence the corresponding momentum map is R : Z → R defined as

R(z)ω = 〈ΘZ(z), ωZ(z)〉

=
ω

2
Im(iz∗Kz)

= −ω
2
z∗Kz

for any ω ∈ so(2) ∼= R. Therefore, we have

R(z) = −1

2
z∗Kz. (18)

Since our system has S1-symmetry, R is a conserved quantity of the dynamics. In fact, this is the

so-called angular impulse; see, e.g., Newton [21, Section 2.1] and Aref [3].

3.2. Lie Group U(K) and Lie Algebra u(K). Let us define a Lie group U(K) that naturally acts

on Z symplectically; then the other leg J of the dual pair follows from this action. This subsection

essentially reproduces the treatment of the vortex algebra of Bolsinov et al. [7]. The difference is

that our group acts on the R2-reduced space Z (or Z0 if Γ = 0) whereas theirs acts on the original

configuration space CN . This difference stems from the fact we perform R2-reduction first whereas

they perform SO(2)-reduction first; see Section 1.4 for the reason why we prefer to do so.

Let us define the Lie group

U(K) :=
{
U ∈ C(N−1)×(N−1) | U∗KU = K

}
.

It acts on Z as follows:

Φ: U(K)× Z → Z; (U, z) 7→ Uz. (19)
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Clearly Φ leaves the one-form ΘZ invariant and hence is symplectic with respect to the symplectic

form ΩZ .

The Lie algebra of U(K) is given by

u(K) :=
{
ξ̃ ∈ C(N−1)×(N−1) | ξ̃∗K +Kξ̃ = 0

}
.

In what follows, we will not directly work with u(K) because it turns out to be more convenient to

instead work with the Lie algebra

vK :=
{
ξ ∈ C(N−1)×(N−1) | ξ∗ = −ξ

}
equipped with the non-standard Lie bracket

[ξ, η]K := ξK−1η − ηK−1ξ. (20)

In fact, we see that the map

u(K)→ vK; ξ̃ 7→ Kξ̃ =: ξ (21)

is a Lie algebra isomorphism. Hence we will use u(K) and vK interchangeably in what follows. Note

that, as a vector space, vK is a subspace of u(N −1), but is not a subalgebra of u(N −1) in general.

Remark 3.1. Under certain conditions on the circulations {Γj ∈ R\{0}}Nj=1, one can show that vK
is isomorphic to u(N − 1); see Bolsinov et al. [7, Proposition 4].

Given an arbitrary ξ̃ ∈ u(K), its infinitesimal generator is given by

ξ̃Z(z) :=
d

ds

∣∣∣∣
s=0

Φexp(sξ̃)(z) = ξ̃z.

Alternatively, given an arbitrary ξ ∈ vK, one defines its infinitesimal generator by

ξZ(z) := K−1ξz.

What is the corresponding momentum map J : Z → u(K)∗ ∼= v∗K? First equip vK with the inner

product 〈 · , · 〉 : vK × vK → R by

〈ξ, η〉 :=
1

2
tr(ξ∗η),

and identify v∗K with vK via the inner product. Let ξ ∈ vK be arbitrary. Then the momentum map

J : Z → v∗K is defined by

〈J(z), ξ〉 = 〈ΘZ(z), ξZ(z)〉

=
1

2
Im(z∗KK−1ξz)

=
1

2
Im(z∗ξz)

=
1

2
tr((izz∗)∗ξ)

= 〈izz∗, ξ〉 ,

that is,

J(z) = izz∗. (22)

We continue our treatment of U(K) and u(K)—especially the associated coadjoint action and

representation—in Appendix A.
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3.3. Reduction by Rotations via a Dual Pair. Now that we have the pair of canonical actions

Ψ and Φ on Z and the corresponding momentum maps R and J, the last piece of the puzzle is to

identify the Marsden–Weinstein quotient R−1(c0)/S1 with a coadjoint orbit in v∗K. To that end, let

us prove two lemmas that are essential for our purpose:

Lemma 3.2. Each level set of J is an S1-orbit, i.e., for any z ∈ Z, J−1(J(z)) = S1 · z.

Proof. Let z ∈ Z be arbitrary, and let us show that J−1(J(z)) ⊂ S1 · z. First observe that, in view

of (22),

J−1(J(z)) = {w ∈ Z | ww∗ = zz∗} .

Hence if w ∈ J−1(J(z)) then ww∗ = zz∗; but then it implies that |wj | = |zj | for any j ∈ I :=

{1, . . . , N − 1} as well as that wjw
∗
k = zjz

∗
k for any j, k ∈ I with j 6= k. The former implies that

wj = eiθjzj with some θj ∈ [0, 2π) for any j ∈ I. Now, let

I0 := {j ∈ I | zj = 0} .

If j ∈ I0, then zj = 0 and thus it follows that wj = 0. On the other hand, for any j, k ∈ I\I0

with j 6= k, the equality wjw
∗
k = zjz

∗
k implies eiθj = eiθk . Therefore, for any j ∈ I\I0 we have

wj = eiθzj for some θ ∈ [0, 2π); in fact, this equality is trivially satisfied for any j ∈ I0 as well. As

a result, we have w = eiθz, i.e., w ∈ S1 · z. Hence we have J−1(J(z)) ⊂ S1 · z. The other inclusion

S1 · z ⊂ J−1(J(z)) is trivial. �

Lemma 3.3. Each non-zero level set of R is a U(K)-orbit, i.e., for any z ∈ Z\R−1(0), R−1(R(z)) =

U(K) · z.

Proof. See Appendix B. �

These results imply that we may identify the Marsden–Weinstein quotient R−1(c0)/S1 for c0 6= 0

with a coadjoint orbit Oµ0 in u(K)∗ ∼= v∗K equipped with the (+)-Kirillov–Kostant–Souriau (KKS)

symplectic structure, i.e., for any µ ∈ Oµ0 and ξ, η ∈ u(K) ∼= vK,

ΩOµ0 (µ)(− ad∗ξ µ,− ad∗η µ) := 〈µ, [ξ, η]K〉 , (23)

where [ · , · ]K is the Lie bracket on vK defined in (20); see, e.g., Kirillov [15, Chapter 1] and Marsden

and Ratiu [16, Chapter 14] and references therein. More specifically, we have the following:

Theorem 3.4 (Further reduction by rotational symmetry). Let z0 ∈ Z\R−1(0) and set c0 :=

R(z0) 6= 0. Then the reduced space by rotational symmetry, i.e., the Marsden–Weinstein quotient

R−1(c0)/S1, is symplectomorphic to the coadjoint orbit Oµ0 ⊂ v∗K through µ0 := J(z0) ∈ v∗K, i.e.,

there exists a diffeomorphism J : R−1(c0)/S1 → Oµ0 such that the diagram

Z\R−1(0)

R−1(c0)

R−1(c0)/S1 Oµ0

ic0

πc0
J|R−1(c0)

J
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commutes as well as that J
∗
ΩOµ0 = Ωc0, where ΩOµ0 is the (+)-KKS structure (23) on Oµ0,

and Ωc0 is the reduced symplectic form on R−1(c0)/S1, i.e., i∗c0ΩZ = π∗c0Ωc0 with the inclusion

ic0 : R−1(c0) ↪→ Z\R−1(0) and the quotient map πc0 : R−1(c0)→ R−1(c0)/S1.

Proof. The left half of the diagram and the relationship i∗c0ΩZ = π∗c0Ωc0 are from the symplectic

reduction of Marsden and Weinstein [17] (see also [18, Sections 1.1 and 1.2]).

The existence of the symplectomorphism J̄ and the commutativity of the triangle in the diagram

follow from Balleier and Wurzbacher [5, Theorem 2.9 (iii)] (see also Skerritt [26, Proposition 3.5])

under the following conditions: (i) The S1-action Ψ and the U(K)-action Φ commute, (ii) Ψ and

Φ are canonical actions in the sense that Ψ∗ΩZ = ΩZ and Φ∗ΩZ = ΩZ , (iii) the momentum maps

R and J are equivariant, and (iv) each level set of J is an S1-orbit, and each level set of R is a

U(K)-orbit.

Note that, due to the result of Lemma 3.3, we first restrict the definitions of the actions Ψ and

Φ and the momentum maps R and J to the open subset Z\R−1(0); we do not change the notation

to avoid unnecessary complications. Then, (i) and (ii) are clear from the definitions (17) and (19)

of Ψ and Φ as well as that of the symplectic form ΩZ in Proposition 2.4; (iii) is also clear from

the definitions (18) and (22) of the momentum maps; (iv) follows from Lemmas 3.2 and 3.3 from

above. �

Remark 3.5. Clearly, both Ψ and Φ are free; note that Z := CN−1\{0}. Then the conditions we

checked above implies (see Skerritt [26, Proposition 3.7]) that the momentum maps R and J form a

dual pair on Z\R−1(0) in the sense of Weinstein [28] (see also Ortega and Ratiu [25, Chapter 11]),

i.e., the pair of Poisson maps (16) satisfies (kerTzR)ΩZ = kerTzJ for any z ∈ Z\R−1(0).

3.4. Lie–Poisson Equation for Reduced Dynamics. Theorem 3.4 implies that the dynamics

of N point vortices with non-zero circulations defined by (4) is reduced to a Lie–Poisson equation

on u(K)∗ ∼= v∗K. More specifically, we have the following:

Corollary 3.6 (Reduced dynamics of N point vortices). Consider the dynamics of N point vortices

with non-zero circulations {Γj ∈ R\{0}}Nj=1 defined by (4). Suppose that the total circulation is

non-zero, i.e., Γ :=
∑N

j=1 Γj 6= 0, and let q(0) ∈ CN be the initial condition for (4), z0 ∈ Z be the

corresponding element defined by (12), and µ0 := J(z0). If R(z0) 6= 0 (i.e., the angular impulse is

non-zero), then:

(i) The SE(2)-reduced dynamics in the coadjoint orbit Oµ0 is described by µ = J(z) satisfying the

Lie–Poisson equation

µ̇ = − ad∗δh/δµ µ, (24)

where h : v∗K → R is a collective Hamiltonian, i.e., HZ = h ◦ J.

(ii) In addition to the Hamiltonian h, the Casimirs {Cj : v∗K → R | j ∈ N} defined by

Cj(µ) := tr((iKµ)j) (25)

are conserved in the reduced dynamics.

Proof. (i) It is a direct consequence of Theorem 3.4. (ii) Clearly the Hamiltonian h is conserved.

As for the Casimirs, note first that the expression (A.1) for the coadjoint action of U(K) on v∗K
suggests that the functions {Cj}j∈N are all Ad∗-invariant, i.e., Cj(Ad∗U−1 µ) = Cj(µ) for any µ ∈ v∗K
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as verified easily. Since any Ad∗-invariant differentiable function is a Casimir of the (+)-Lie–Poisson

bracket (see, e.g., [16, Corollary 14.4.3])

{f, h} (µ) :=

〈
µ,

[
δf

δµ
,
δh

δµ

]
K

〉
on v∗K, we conclude that {Cj}j∈N are Casimirs and hence are conserved quantities of the reduced

dynamics. �

Remark 3.7. A more concrete expression for the Lie–Poisson equation (24) is, using (A.2),

µ̇ = − ad∗δh/δµ µ = −µδh
δµ
K−1 +K−1 δh

δµ
µ, (26)

where the derivative δh/δµ ∈ vK is defined so that, for any µ, ν ∈ v∗K,〈
ν,
δh

δµ

〉
=

1

2
tr

(
ν∗
δh

δµ

)
=

d

ds

∣∣∣∣
s=0

h(µ+ sν).

Remark 3.8. The Casimir C1 is essentially the angular impulse R. In fact, we have

C1 ◦ J(z) = tr(−Kzz∗) = −z∗Kz = 2R(z).

Remark 3.9. As mentioned in the beginning of the section, the results of both Theorem 3.4 and

Corollary 3.6 apply to the case with vanishing total circulation by replacing N by N − 1 and K by

K0.

4. Back to the Examples

Now we would like to apply the above results to the motivating examples from Section 1.2. We

show that the shape dynamics in these examples are indeed periodic exploiting the Lie–Poisson

formulation and the Casimirs found above.

4.1. N = 3 with Γ 6= 0. We may write the elements in vK as

vK =

{
i

[
µ2 µ3 + iµ4

µ3 − iµ4 µ1

]
| µ1, µ2, µ3, µ4 ∈ R

}
,

which can be identified with R4 = {(µ1, µ2, µ3, µ4)}. By setting µ = J(z), we have

µ1 = |z2|2 = |q2 − q3|2, µ2 = |z1|2 = |q1 − q3|2,
µ3 + iµ4 = z1z

∗
2 = (q1 − q3)(q∗2 − q∗3).

The derivative δh/δµ is then

δh

δµ
= i

[
2∂h/∂µ2 ∂h/∂µ3 + i ∂h/∂µ4

∂h/∂µ3 − i ∂h/∂µ4 2∂h/∂µ1

]
=

(
2
∂h

∂µ1
, 2
∂h

∂µ2
,
∂h

∂µ3
,
∂h

∂µ4

)
.

We define the collective Hamiltonian h as

h(µ) := − 1

4π
(Γ1Γ2 ln(µ1 + µ2 − 2µ3) + Γ2Γ3 lnµ1 + Γ3Γ1 lnµ2) .
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The Lie–Poisson equation (24) or (26) then gives

µ̇1 =
Γ1

π
f1(µ)µ4, µ̇2 =

Γ2

π
f2(µ)µ4, µ̇3 =

1

2π

 3∑
j=1

Γjfj(µ)

µ4,

µ̇4 = − 1

2π
(Γ1f1(µ)(µ3 − µ2) + Γ2f2(µ)(µ3 − µ1) + Γ3f3(µ)µ3) ,

where

f1(µ) :=
1

µ1 + µ2 − 2µ3
− 1

µ2
, f2(µ) :=

1

µ1
− 1

µ1 + µ2 − 2µ3
, f3(µ) :=

1

µ1
− 1

µ2
.

The linear Casimir C1 (essentially the angular impulse R; see Remark 3.8) is written in terms of

µ as follows:

C1(µ) =
Γ2(Γ1 + Γ3)µ1 + Γ1(Γ2 + Γ3)µ2 − 2Γ1Γ2µ3

Γ1 + Γ2 + Γ3
.

It is easy to see that the three conserved quantities—the Hamiltonian h, the linear and quadratic

Casimirs C1 and C2 (see (25))—are independent.

The variables µ = (µ1, µ2, µ3, µ4) are related to the inter-vortex distance lij := |qi − qj | and the

signed area A of the triangle introduced in Section 1.2 as follows:

(l223, l
2
31, l

2
12, A) =

(
µ1, µ2, µ1 + µ2 − 2µ3,−

1

2
µ4

)
=

(
|q2 − q3|2, |q1 − q3|2, |q1 − q2|2,−

1

2
Im((q1 − q3)(q∗2 − q∗3))

)
.

Rewriting the the Lie–Poisson equation and the Casimir C2 in the new variables, we obtain the

equations (6) of relative motion as well as the expression (7) for the Casimir C2.

Since C1 is linear in (µ1, µ2, µ3), its level set C−1
1 (2c0) defines an affine subspace of codimension

1 in v(K); hence we may parametrize the level set of C−1
1 (2c0) by (µ1, µ2, µ4). One may then

restrict the collective Hamiltonian h and the quadratic Casimir C2 in this affine subspace. Then

the Lie–Poisson dynamics is in the intersection of the level sets of h and C2 in the affine subspace

C−1
1 (2c0). Figure 4 (a) shows the Lie–Poisson shape dynamics of three point vortices with the

parameters and initial condition specified in (8). The shape dynamics is in the one-dimensional

manifold defined as the intersection of the Casimir C2 and the Hamiltonian. This confirms the

periodicity of the shape dynamics alluded in Section 1.2.

4.2. N = 4 with Γ = 0. Let us next consider the four-vortex case with zero total circulation Γ.

Just like the general three-vortex case, this is an integrable case as well; see Eckhardt [10].

As discussed in Propositions 2.3 and 2.6 (see also Remark 2.7), the R2-reduced space Z0 in this

case is C2\{0}, and so the Lie algebra vK0 is essentially the same as vK from Section 4.1 with

N = 3. Hence one can formulate the Lie–Poisson dynamics as well as demonstrate the periodicity

of the shape dynamics just as in the above example; see Fig. 4 (b).

5. Conclusion and Outlook

5.1. Conclusion. We applied symplectic reduction by SE(2) to the Hamiltonian dynamics of N

point vortices on the plane, and came up with the Lie–Poisson formulation of the shape dynamics

of the vortices. As stated in the introduction, the approach is similar to that of Bolsinov et al. [7]

and the result is essentially the same, but our work clarifies how the symplectic/Poisson structure

of the shape dynamics is inherited by applying symplectic reduction by stages, first by R2 and
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(a) N = 3 with (8); see Section 4.1. The level set of the

quadratic Casimir C2 (green) defines an ellipsoid.

(b) N = 4 with (9); see Section 4.2. The level set of the

quadratic Casimir C2 (green) defines a paraboloid.

Figure 4. Lie–Poisson dynamics shape dynamics (red) of point vortices for (a) N = 3 with

(8) and (b) N = 4 with (9) from Section 1.2. The level set of the linear Casimir C1 defines an

affine subspace of vK = {(µ1, µ2, µ3, µ4)} with codimension 1, and hence can be parametrized

by (µ1, µ2, µ4). The green and orange surfaces are the level sets of the quadratic Casimir C2

and Hamiltonian h, respectively, in R3 = {(µ1, µ2, µ4)}.

then by SO(2). The second stage uses a dual pair; this facilitates the reduction and naturally

gives rise to the Lie–Poisson structure. We also found a family of Casimirs of the Lie–Poisson

structure. Some of those Casimirs apparently have been overlooked in the existing literature. The

examples provided demonstrate the use of the Lie–Poisson formulation and the Casimirs to show

that some shape dynamics are periodic although the trajectories of the vortices on the plane are

not. The non-periodicity of the trajectories is due to the reconstruction phase picked up by the

full dynamics when the reduced/shape dynamics undergoes a periodic motion; see Hernández-

Garduño and Shashikanth [13] for more details. It is an interesting future work to investigate the

reconstruction phase using our geometric setting and the Lie–Poisson formulation.

5.2. Outlook. As illustrated in the SO(2)-reduction in this paper, a dual pair facilitates a symplec-

tic reduction by deducing that the reduced dynamics is a Lie–Poisson dynamics. This approach in

general is particularly useful if the Marsden–Weinstein quotient turns out to be complicated: One

can sidestep the difficulty by formulating the reduced dynamics as as Lie–Poisson equation, which

is defined on a vector space. In other words, a dual pair significantly simplifies the description of

the seemingly complicated reduced dynamics; this facilitates numerical computations as well.

In the last few years, there have been some new developments and applications of dual pairs.

Skerritt [26] constructed a dual pair to give a different perspective of the realization of the Siegel

upper half space as a Marsden–Weinstein quotient by the author [23]; this work was originally
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motivated by the dynamics of semiclassical wave packets. Recently, the author [24] also used a

dual pair constructed by Skerritt and Vizman [27] to the symmetric representation of the rigid

body equation [6] to show that it is related to the generalized rigid body equation via a symplectic

reduction. Furthermore, the extension of this paper to the dynamics of N point vortices on the

sphere is under way [22], and again we use a dual pair constructed by Skerritt and Vizman [27]. The

same idea may be used to analyze the dynamics of relative configurations of interacting quantum

spin systems, because its geometric structure is similar to that of the N point vortices on the

sphere.

Appendix A. More on Lie Group U(K) and Lie Algebra u(K)

A.1. Coadjoint Action and Casimirs. The adjoint action Ad: U(K)× u(K)→ u(K) is defined

as

AdU η̃ := Uη̃U−1.

Since we identify u(K) with vK via the map (21), the corresponding action of U(K) on vK is given

by, with an abuse of notation,

AdU η := KAdU η̃

= KUK−1ηK−1U∗K

= (U−1)∗ηU−1,

where we used the relation U−1 = K−1U∗K. Hence AdU−1 η = U∗ηU and thus we obtain the

coadjoint action of U(K) on v∗K as follows:

Ad∗U−1 µ = UµU∗. (A.1)

A.2. Coadjoint Representation. From the above expression of the adjoint action on vK, we

have the adjoint representation of u(K) on vK as

adξ̃ η = −ξ̃∗η − ηξ̃

Again we abuse the notation and define the adjoint representation of vK on itself as

adξ η := adξ̃ η = ξK−1η − ηK−1ξ,

which coincides with the Lie bracket (20) on vK. As a result, we obtain the coadjoint representation

of vK on v∗K as follows:

ad∗ξ µ = µξK−1 −K−1ξµ. (A.2)

Appendix B. Proof of Lemma 3.3

Lemma B.1. The determinant of the matrix K defined in (13) is given by

detK =
(−1)N−1

Γ

N∏
j=1

Γj = (−1)N−1 Γ1 · · ·ΓN
Γ1 + · · ·+ ΓN

.

Proof. From the expression (13) for K, we see that

detK =
1

ΓN−1

N−1∏
j=1

Γj


∣∣∣∣∣∣∣∣∣
Γ1 − Γ Γ1 . . . Γ1

Γ2 Γ2 − Γ . . . Γ2
...

...
. . .

...

ΓN−1 ΓN−1 . . . ΓN−1 − Γ

∣∣∣∣∣∣∣∣∣ .
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However, setting Γ = (Γ1, . . . ,ΓN−1) and 1 = (1, . . . , 1) in RN−1, the determinant on the right-hand

side can be written as∣∣∣∣∣∣∣∣∣
Γ1 − Γ Γ1 . . . Γ1

Γ2 Γ2 − Γ . . . Γ2
...

...
. . .

...

ΓN−1 ΓN−1 . . . ΓN−1 − Γ

∣∣∣∣∣∣∣∣∣ = det
(
Γ1T − ΓI

)

= (−Γ)N−1 det

(
I − 1

Γ
Γ1T

)
= (−Γ)N−1

(
1− 1

Γ
ΓT1

)
= (−1)N−1ΓN−2ΓN ,

where we used the fact that det(I + xyT ) = 1 + xTy for any n × n identity matrix I and any

x,y ∈ Rn. �

Remark B.2. Similarly, we have

detK0 =
(−1)N−1

ΓN

N−1∏
j=1

Γj = (−1)N
Γ1 · · ·ΓN−1

Γ1 + · · ·+ ΓN−1
,

where Γ =
∑N

j=1 Γj = 0 is assumed. If follows easily by replacing N by N − 1 and Γ by −ΓN ; see

Remark 2.7.

Proof of Lemma 3.3. It suffices to show that the Lie group U(K) acts transitively on the level set

R−1(c) of the momentum map (18) for any c ∈ R\{0} because that implies that R−1(R(z)) ⊂
U(K) · z whereas the other inclusion U(K) · z ⊂ R−1(R(z)) is trivial.

By the assumption and the above lemma, we have detK 6= 0. Therefore, the inner product on

CN−1 ⊃ Z defined by

〈v, w〉K := v∗Kw

for any v, w ∈ CN−1 is non-degenerate in the sense that 〈v, w〉K = 0 for any w ∈ CN−1 implies that

v = 0. This implies that one can find a basis for CN−1 with respect to which K is expressed as[
In1 0
0 −In2

]
for some n1, n2 ∈ {0, . . . , N−1} such that n1+n2 = N−1; as a result, one sees that U(K)

is isomorphic to the indefinite unitary group (see, e.g., Goodman and Wallach [11, Lemma 1.1.7

and Proposition 1.1.8])

U(n1, n2) :=
{
U ∈ C(N−1)×(N−1) | U∗

[
In1 0
0 −In2

]
U =

[
In1 0
0 −In2

]}
.

Then the momentum map R is written as

R(z) =

n1∑
j=1

|zj |2 −
n2∑
k=1

|zn1+k|2

in terms of the coordinates with respect to this basis.

Let us consider the level set R−1(c) with c > 0. The level set may be written as

R−1(c) =
⋃
b≥c
Sc(b),



20 TOMOKI OHSAWA

where

Sc(b) :=

z ∈ CN−1 |
n1∑
j=1

|zj |2 = b,

n2∑
k=1

|zn1+k|2 = b− c

 .

Let b ≥ c be arbitrary and set w = (w̃, ŵ) ∈ Sc(b) with w̃ = (
√
b, 0, . . . , 0) ∈ Cn1 and ŵ =

(
√
b− c, 0, . . . , 0) ∈ Cn2 . Then, given any point z = (z̃, ẑ) ∈ Sc(b), one sees that z̃ ∈ S2n1−1√

b
⊂ Cn1

and z̃ ∈ S2n2−1√
b−c ⊂ Cn2 ; where Snr stands for the n-sphere with radius r > 0 centered at the origin.

Therefore, one can find W̃ ∈ U(n1) and Ŵ ∈ U(n2) such that z̃ = W̃ w̃ and ẑ = Ŵ ŵ. Then, setting

W :=
[
W̃ 0
0 Ŵ

]
, one sees that W ∈ U(n1, n2) and z = Ww.

Now, pick v = (
√
c, 0, . . . , 0) ∈ Sc(c). For any b ≥ c there exists tb ≥ 0 such that cosh tb =

√
b/c

and sinh tb =
√

(b− c)/c. Therefore, by setting

Ub :=


cosh tb 0 sinh tb 0

0 In1−1 0 0

sinh tb 0 cosh tb 0

0 0 0 In2−1

 ∈ U(n1, n2),

we have w = Ubv. As a result, any z ∈ Sc(b) is written as z = WUbv with WUb ∈ U(n1, n2). Since

b ≥ c is arbitrary, U(K) ∼= U(n1, n2) acts transitively on the level set R−1(c) for any c > 0.

One can argue similarly for c < 0 as well. �
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