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Abstract

We extend our previous work on symplectic semiclassical Gaussian wave packet dynamics to incorpo-

rate electromagnetic interactions by including a vector potential. The main advantage of our formulation

is that the equations of motion derived are naturally Hamiltonian. We obtain an asymptotic expansion

of our equations in terms of ~ and show that our equations have O(~) corrections to those presented

by Zhou, whereas ours also recover the equations of Zhou in the case of a linear vector potential and

quadratic scalar potential. One and two dimensional examples of a particle in a magnetic field are given

and numerical solutions are presented and compared with the classical solutions and the expectation val-

ues of the corresponding observables as calculated by the Egorov or Initial Value Representation (IVR)

method. We numerically demonstrate that the O(~) correction terms improve the accuracy of the classi-

cal or Zhou’s equations for short times in the sense that our solutions converge to the expectation values

calculated using the Egorov/IVR method faster than the classical solutions or those of Zhou as ~ → 0.

1 Introduction

1.1 Motivation

Gaussian wave packets have historically been used to solve the time-dependent semiclassical Schrödinger

equation [3, 6–9, 15]. While the Schrödinger equation is computationally non-trivial to solve in the semi-

classical regime, those methods using the Gaussian wave packets provide an alternative set of differential

equations that may be solved for the time-dependent parameters of the Gaussian wave packet. The Gaussian

wave packet is an ansatz for an exact solution in the case of linear vector potentials with quadratic scalar

potentials (see Hagedorn [6]), and gives a good short time approximation of the solution for other potentials

in the semiclassical regime as shown by Zhou [30].

However, the set of differential equations of Zhou for the parameters is not a Hamiltonian system in

general. Given that the equations of motion for a classical particle is a Hamiltonian system and also that

the Schrödinger equation is a (infinite-dimensional) Hamiltonian system as we will explain in a moment, it

is rather natural to seek a Hamiltonian formulation of the dynamics of the Gaussian wave packet. This was

the main motivation of our previous work [26] on the symplectic/Hamiltonian formulation of the Gaussian

wave packet dynamics.

In this paper, we utilize the same symplectic-geometric framework to derive a Hamiltonian system of

equations governing the evolution the wave packet parameters under the influence of electromagnetic fields

by taking into account a vector potential. Semiclassical dynamics under the influence of electromagnetic fields

has been of great interest recently because of its significance in quantum control and solid state physics.
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1.2 Hamiltonian Formulation of Classical Dynamics

It is well known that the equations of motion of a classical particle in Rd is a Hamiltonian system. From the

symplectic-geometric point of view, one takes the cotangent bundle T ∗Rd ∼= R2d = {(q, p) | q, p ∈ Rd} as the

phase space and define the classical symplectic form Ω0 := dqi ∧ dpi (the Einstein summation convention is

assumed). This renders T ∗Rd a symplectic manifold. We also define a Hamiltonian function H0 : T ∗Rd → R
as

H0(q, p) :=
1

2m
(p−A(q))2 + V (q), (1)

where V : Rd → R and A : Rd → Rd are scalar and vector potentials respectively, and we set the charge to

be 1 for simplicity.

Now let XH0 = q̇i
∂
∂qi

+ ṗi
∂
∂pi

be the vector field on T ∗Rd defined by iXH0
Ω0 = dH0 where i stands for the

contraction. Then the equation yields the equations of motion of the classical particle in the electromagnetic

field:

q̇ =
1

m
(p−A(q)), ṗ = − 1

2m
∇q

(
|A(q)|2 − 2A(q) · p

)
−∇V (q), (2)

where ∇q stands for the gradient with respect to the variable q, and | · | stands for the Euclidean distance

in Rd.

1.3 Hamiltonian Formulation of the Schrödinger Equation

We may generalize the notion of Hamiltonian system as follows: Let P be a symplectic manifold, i.e., a

manifold equipped with a closed non-degenerate 2-form Ω, and let H : P → R be a smooth function. Then

we define the Hamiltonian vector field XH on P corresponding to the Hamiltonian function H by setting

iXH
Ω = dH. The vector field XH then defines the evolution equation on P . We may take it as the definition

of a generalized Hamiltonian system; see, e.g., Marsden and Ratiu [17] for more details.

We may now formulate the time-dependent Schrödinger equation as a Hamiltonian system as follows:

Let H := L2(Rd) with the standard (right-linear) inner product 〈 · , · 〉, and equip it with the symplectic form

ΩH(ψ1, ψ2) := 2~ Im 〈ψ1, ψ2〉, and take the expectation value 〈H〉 : H → R of the Hamiltonian operator as

the Hamiltonian function. Then the Hamiltonian vector field X〈H〉 on H defined by iX〈H〉ΩH = d〈H〉 yields

the usual time-dependent Schrödinger equation

i~
∂

∂t
ψ = Ĥψ, (3)

where Ĥ is the Hamiltonian operator defined below.

1.4 Geometry of Reduced Models

Given that the basic equations of classical and quantum dynamics are both Hamiltonian systems, it is natural

to expect that the basic equations of semiclassical dynamics—or more generally approximation/reduced

models of quantum dynamics—are Hamiltonian as well. Is there a way to exploit the above symplectic

structure ΩH on H = L2(Rd) to find a Hamiltonian formulation of reduced models?

Lubich [16] (see also Kramer and Saraceno [13]) came up with a general prescription to achieve this by

geometrically interpreting approximation models of quantum dynamics. Suppose that we have an ansatz

ϕ : M → H := L2(Rd); y 7→ ϕ(y; · ) for the solution of the Schrödinger equation, where M is a finite-

dimensional manifold (where the parameters for the ansatz live). The parameters y evolve in time according

to the dynamics in M to be determined, and the time evolution t 7→ ϕ(y(t); · ) gives an approximation

to the solution of the Schrödinger equation (3). Lubich [16] (see also Ohsawa and Leok [26]) showed that

one can achieve the best approximation in M as follows: Consider the embedding ι : M → H defined by

the ansatz ϕ as ι(y) := ϕ(y; · ). Then we can pull back the symplectic form ΩH to M to obtain a 2-form

Ω := ι∗ΩH on M . Under a certain technical condition (see [16] and [26, Proposition 2.1] for details), Ω
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defines a symplectic form on M . One may also define the pull-back H := 〈H〉 ◦ ι of the Hamiltonian

function, i.e., H(y) :=
〈
ϕ(y; · ), Ĥϕ(y; · )

〉
. Then we may define the Hamiltonian vector field XH on M by

setting iXH
Ω = dH. Lubich [16] showed that this gives the least squares approximation of the vector field

X〈H〉 in the following sense: For any y ∈M and any Vy ∈ TyM ,

‖X〈H〉(ι(y))− Tyι(XH(y))‖ ≤ ‖X〈H〉(ι(y))− Tyι(Vy)‖

in terms of the L2 norm in H = L2(Rd); see Fig. 1.

Figure 1: The Hamiltonian Vector Field XH gives the best approximation on M of the vector field X〈H〉.

2 Hamiltonian Dynamics of Gaussian Wave Packets in Electro-

magnetic Potentials

2.1 Gaussian Wave Packet in Electromagnetic Potentials

Our ansatz or approximation/reduced model is the Gaussian wave packet of Heller [7, 8, 9] and Hagedorn

[3, 6] (see also Littlejohn [15]):

χM (q, p,A,B, φ, δ;x) := exp

{
i

~

(
1

2
(x− q)T (A+ iB)(x− q) + p · (x− q) + φ+ iδ

)}
, (4)

where (q, p) ∈ T ∗Rd ∼= R2d is the phase space center, φ ∈ S1 is the phase factor, δ ∈ R controls the norm,

and A+ iB ∈ Σd := {A+ iB ∈ Cd×d | A,B ∈ Symd(R),B − positive definite}. Note that the above Gaussian

is not normalized:

N (B, δ) := ‖χ(y; · )‖2 =

√
(π~)d

detB
exp

(
−2δ

~

)
, (5)

where we set y = (q, p,A,B, φ, δ). We will address this issue later.

Following the geometric picture of Lubich [16] described above, we define M to be the space of the above

parameters:

M := T ∗Rd × Σd × S1 × R,

and consider the embedding ι : M → H defined as ι(y) := χM (y; · ). Then one can show that the pull-back

ΩM := ι∗ΩH is in fact a symplectic form on M ; see Ohsawa and Leok [26, Section 3].

In this paper, we would like to incorporate the effect of electromagnetic fields to the dynamics of the

Gaussian wave packet. So we take Hamiltonian operator Ĥ to be

Ĥ :=
1

2m

(
− i~∇−A(x)

)2

+ V (x),
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where we assume that the scalar and vector potentials V : Rd → R and A : Rd → Rd are smooth functions; we

write the i-th component of Ai as opposed to the more conventional Ai in order to make it more conspicuous

and to avoid possible confusions with the components of A.

One may then evaluate the pull-back HM := 〈H〉 ◦ ι : M → R of the Hamiltonian 〈H〉 by evaluating the

expectation value of the Hamiltonian operator as follows:

HM (y) := 〈H〉 ◦ ι(y) =
〈
χM (y; · ), ĤχM (y; · )

〉
= N (B, δ)

(
p2

2m
+

~
4m

Tr
(
B−1(A2 + B2)

)
− 1

m
〈A(x) · p〉

+
~

2m

〈
Tr
(
DAT (x)AB−1

)〉
+

1

2m

〈
|A(x)|2

〉
+ 〈V (x)〉

)
,

(6)

where A is regarded as a column vector, DA(x) is the d× d matrix whose (i, j)-component is ∂Ai

∂xj
(x), and

〈 · 〉 stands for the expectation value of an observable with respect to the normalized Gaussian χM/‖χM‖:
For any smooth function U : Rd → R satisfying a certain growth condition (see Section 3.1),

〈U(x)〉 :=
1

N (B, δ)
〈χM (y; · ),U( · )χM (y; · )〉

=
1

N (B, δ)

∫
Rd

U(x) exp

(
−1

~
(x− q)TB(x− q)

)
dx.

(7)

2.2 Hamiltonian Formulation of Gaussian Wave Packet Dynamics

One may now certainly formulate a Hamiltonian system on M using the above pull-backs of the symplectic

form and the Hamiltonian. However, the pull-back of the symplectic form turns out to be very cumbersome;

neither does it provide much insight into its relationship with the symplectic form Ω0 of classical dynamics;

see Ohsawa and Leok [26, Eq. (10)].

Fortunately, there is a way around it to obtain a simpler and more appealing formulation by exploiting

the inherent symmetry of the system [26, Section 4]. First observe that the Hamiltonian (6) does not depend

on the phase factor variable φ; that is, the Hamiltonian is invariant under the following S1-action on the

manifold M :

S1 ×M →M ; (θ, (q, p,A,B, φ, δ)) 7→ (a, p,A,B, φ+ ~ θ, δ).

This action turns out to be symplectic and the corresponding momentum map (Noether conserved quantity)

is

N : M → R; N(y) := −~N (B, δ).

It is natural to look at the level set N−1(−~) because, in view of the definition (5) of N , this level set

corresponds to the choice of the parameter δ so that the Gaussian χM is normalized, i.e., ‖χ(y; · )‖ = 1.

Furthermore, one may eliminate the variables (φ, δ) from the formulation, because now we may apply the

Marsden–Weinstein reduction [18] (see also Marsden et al. [19, Sections 1.1 and 1.2]) to obtain the reduced

symplectic manifold

M := N−1(−~)/S1 = T ∗Rd × Σd.

See [26, Section 4] for the details of this reduction.

As a result, the symplectic form ΩM on M gives rise to the following symplectic form Ω~ on M :

Ω~ = dqi ∧ dpi +
~
4
B−1ik B

−1
lj dAij ∧ dBkl

= dqi ∧ dpi +
~
4
dB−1ij ∧ dAij .

(8)
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Notice that the symplectic form is very simple and also appealing because it has an additional O(~) correction

term compared to the classical symplectic form Ω0. It is also clear from the above expressions that B−1 and

A are conjugate variables. The corresponding Poisson Bracket is then

{F,G}~ :=
∂F

∂qi

∂G

∂pi
− ∂G

∂qi

∂F

∂pi
+

4

~

(
∂F

∂B−1jk

∂G

∂Ajk
− ∂G

∂B−1jk

∂F

∂Ajk

)
.

Since we are now looking at the normalized Gaussian, we have N (B, δ) = 1, and thus the reduced

Hamiltonian H : M → R becomes

H(q, p,A,B) =
p2

2m
+

~
4m

Tr
(
B−1(A2 + B2)

)
− 1

m
〈A(x) · p〉

+
~

2m

〈
Tr
(
DAT (x)AB−1

)〉
+

1

2m

〈
|A(x)|2

〉
+ 〈V (x)〉 .

(9)

The Hamiltonian vector field XH on M defined by the Hamiltonian system iXH
Ω~ = dH or equivalently

˙̄y = {ȳ, H}~ with ȳ = (q, p,A,B) gives the following set of ordinary differential equations:

q̇i =
1

m
(pi − 〈Ai(x)〉) ,

ṗi = − 1

2m

(〈
Di|A(x)|2

〉
− 2 〈DiAj(x)pj〉

)
− ~

2m

〈
Ak(x)AkjB−1ji

〉
− 〈DiV (x)〉 ,

Ȧij = − 1

m
(A2 − B2)ij +

1

m

〈
D2
ijAk(x)pk −DkAi(x)Akj −AikDjAk(x)− 1

2

〈
D2
ij |A(x)|2

〉〉
,

− ~
2m

〈
D2
ij(DlAk(x)AlmB−1mk)

〉
−
〈
D2
ijV (x)

〉
,

Ḃij = − 1

m
(AB + BA)ij +

1

m
〈BikDjAk(x) +DkAi(x)Bkj〉 ,

(10)

where (DA)ij = DjAi = ∂Ai

∂xj
, and D2

ijAk = ∂Ak

∂xi∂xj
.

3 Asymptotic Expansion

3.1 Asymptotic Expansion of Hamiltonian

While the above set (10) of equations is Hamiltonian by construction, it has the drawback that it is not in a

closed form: The potential terms—involving either the scalar potential V or the vector potential A—appear

as expectation values (with respect to the normalized Gaussian). Unfortunately, it is impossible to explicitly

evaluate these expectation values unless V and A are polynomials.

So we apply Laplace’s method to obtain an asymptotic expansions of the integrals as ~ → 0 (see, e.g.,

Miller [20, Chapter 3]). Assuming that the Gaussian is normalized, i.e., N (B, δ) = 1, each potential term is

of the form (see (7)):

〈U〉 (q,B) =

∫
Rd

U(x) exp

(
−1

~
(x− q)TB(x− q)

)
dx,

As is proved in Ohsawa and Leok [26, Proposition 7.1] (see also Miller [20, Section 3.7]), if U satisfies a

certain growth condition as |x| → ∞, then 〈U〉 has the following asymptotic expansion:

〈U〉 (q,B) = U(q) +
~
4

Tr
(
B−1D2U(q)

)
+O(~2) as ~→ 0, (11)

where D2U(q) is the Hessian matrix of U(x) evaluated at x = q. We note in passing that this asymptotic

expansion is exact (i.e., the O(~2) term vanishes) if U is quadratic.

5



As a result, we have the following asymptotic expansion for the Hamiltonian H from (6):

H = H~ +O(~2) as ~→ 0

with

H~(q, p,A,B) :=
1

2m
(p−A(q))2

+
~

4m
Tr

(
B−1

(
A2 + B2 −DAT (q)A−ADA(q)−D2(A(q) · p) +

1

2
D2|A(q)|2

))
+ V (q) +

~
4

Tr
(
B−1D2V (q)

)
.

(12)

Notice that, just as for the symplectic form Ω in (8), this semiclassical Hamiltonian H has an additional

O(~) correction term compared to the classical Hamiltonian H0 from (1).

One may now replace the Hamiltonian H by H~ to define the Hamiltonian vector field XH~ as iXH~
Ω~ =

dH~. Then the vector field XH~ yields

q̇i =
pi
m
− Ai(q)

m
− ~

4m
B−1jk D

2
kjAi(q),

ṗi = − 1

2m
Di

(
|A(q)|2 +

~
4

(B−1jk D
2
kj |A(q)|2)− 2Ak(q)pk −

~
2
B−1jk D

2
kjAl(q)pl

)
−Di

(
V (q) +

~
4

(B−1jk D
2
kjV (q))

)
,

Ȧij = − 1

m
(A2 − B2)ij +

1

m

(
DiAk(q)Akj +AikDjAk(q) +D2

ijAk(q)pk −
1

2
D2
ij |A(q)|2

)
−D2

ijV (q),

Ḃij = − 1

m
(AB + BA)ij +

1

m
(DiAk(q)Bkj + BikDjAk(q)).

(13)

If we define those terms involving scalar and vector potentials with O(~) corrections as

V~(q,B) := V (q) +
~
4

Tr
(
B−1D2V (q)

)
,

A~,i(q,B) := Ai(q) +
~
4

Tr
(
B−1D2Ai(q)

)
, |A|2~(q,B) := |A(q)|2 +

~
4

Tr
(
B−1D2|A(q)|2

)
,

we can rewrite the first two of the above set of equations in a slightly more succinct form:

q̇ =
1

m
(p−A~(q,B)) ,

ṗ = − 1

2m
∇q

(
|A|2~(q,B)− 2A~(q,B) · p

)
−∇qV~(q,B).

Notice also its similarity to the classical equations (2).

3.2 Linear Vector Potential with Quadratic Scalar Potential

As mentioned in the Introduction, when the vector potential A is linear (A(x) = Ax, where A is a constant

d× d matrix) and the scalar potential V is quadratic, the Gaussian wave packet (4) gives an exact solution

to the Schrödinger equation if the parameters satisfy the following set of equations (along with additional

equations for φ and δ):

q̇i =
1

m
(pi −Ai(q)),

ṗi = − 1

2m
Di

(
|A(q)|2 − 2Aj(q)pj

)
−DiV (q),

Ȧij =
1

m
(DiAk(q)Akj +AikDjAk(q))− 1

2m
D2
ij |A(q)|2 − 1

m
(A2 − B2)ij −D2

ijV (q),

Ḃij =
1

m
(BikDjAk(q) +DiAk(q)Bkj)−

1

m
(AB + BA)ij .

(14)
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This result is a special case of the more general result of Hagedorn [6] on quadratic Hamiltonians, and also

is equivalent to the set of equations given by Zhou [30]; see also the earlier work by Kim and Weiner [12] in

which the authors obtained a similar set of equations for the expectation values of the tensor products of x̂

and p̂−A(q) in this particular special case where A is linear and V is quadratic.

We note that both Hagedorn and Zhou use, instead of (A,B), parameters (Q,P ) that are d× d complex

matrices satisfying QTP − PTQ = 0 and Q∗P − P ∗Q = 2iId; more precisely, Hagedorn uses parameters

A,B ∈ Cd×d, which are related to Q and P as A = Q and B = −iP . In fact, these two sets of parameters

are related by A + iB = PQ−1; see Ohsawa [25] for the geometric interpretation of these two different

parametrizations. It is straightforward calculations using this relation to check that Zhou’s equations imply

the above set of equations.

Our set of equations, either (10) or (13), recovers the above set of equations under the above assumptions

on the potentials. In fact, as mentioned above, the asymptotic expansion (11) is exact if U is quadratic. This

implies that the Hamiltonian (9) and its O(~2) approximation (12) coincide, and thus so do the equations (10)

and (13). Now, if the vector potential A is linear and the scalar potential V is quadratic, many of the terms

in (13) involving the Hessians of the potentials vanish, hence recovering (14).

4 Semiclassical Angular Momentum in Electromagnetic Poten-

tials

One advantage of the Hamiltonian formulation using the language of symplectic geometry is that it is

amenable to the geometric treatment of symmetry. Specifically, if the Hamiltonian function of the system is

invariant under some Lie group action, it is desirable to investigate any conserved quantities in the system

via Noether’s Theorem. Particularly, in this section, we show that the semiclassical angular momentum

found in our previous work [24] is conserved if the electromagnetic potentials possess a rotational symmetry.

4.1 Symmetry in Electromagnetic Potentials

Suppose that the scalar and vector potentials V and A possess the rotational symmetry in the following

sense: For any R ∈ SO(d) and any x ∈ Rd,

V (Rx) = V (x) and A(Rx) = RA(x); (15)

that is, V is SO(d)-invariant whereas A is SO(d)-equivariant. We note that the latter condition implies

DA(Rx) = RA(x)RT for any R ∈ SO(d) and any x ∈ Rd.
As is done in [24], we define the action of the rotation group SO(d) on the symplectic manifold M =

T ∗Rd × Σd as follows:

Γ: SO(d)×M →M ; (q, p,A,B) 7→ ΓR(q, p,A,B) :=
(
Rq,Rp,RART , RBRT

)
.

It is easy to check that Γ is symplectic, i.e., Γ∗RΩ = Ω for any R ∈ SO(d). Then our Hamiltonian, either (9)

or (12), is invariant under this action, i.e., for any R ∈ SO(d), H ◦ ΓR = H and H~ ◦ ΓR = H~. In fact, for

the Hamiltonian (12), it follows from a straightforward calculation using the above symmetry assumptions

on V and A. For the Hamiltonian (9), note that the expectation values of the potentials maintain the same

symmetry, i.e.,

〈V 〉 (Rq,RBRT ) = 〈V 〉 (q,B), and 〈A〉 (Rq,RBRT ) = R 〈A〉 (q,B).
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4.2 Semiclassical Angular Momentum

The momentum map J~ : M → so(d)∗ corresponding to the action Γ defined above is given by (see Ohsawa

[24, Section 3] for the derivation)

J~(q, p,A,B) = q � p− ~
2

[B−1,A], (16)

where (q � p)ij = qjpi − qipj (see Holm [11, Remark 6.3.3]), and we identified so(d)∗ with so(d) via an inner

product. Setting ~ = 0 reduces the above to the classical angular momentum, hence we call the above

the semiclassical angular momentum. Interestingly, this semiclassical angular momentum coincides with the

expectation value of the angular momentum with respect to the normalized Gaussian, i.e., for d = 3,

〈x̂× p̂〉 = J~(q, p,A,B).

Now, assuming the symmetry (15) in the potentials, by Noether’s Theorem (see, e.g., Marsden and Ratiu

[17, Theorem 11.4.1]), we conclude that the semiclassical angular momentum (16) is a conserved quantity of

our semiclassical equation (10) or (13).

5 Numerical Examples

Given that our set of equations (13) differs from that of Zhou by O(~) correction terms, a natural question

is whether these correction terms improve the accuracy of approximation. Specifically, we are interested

in comparing the time evolution t 7→ z(t) = (q(t), p(t)) of the phase space variables of our semiclassical

equations with that of the expectation values 〈ẑ〉 of the position and momentum operators ẑ = (x̂, p̂), i.e.,

t 7→ 〈ẑ〉(t) = 〈ψ(t, · ), ẑψ(t, · )〉, where t 7→ ψ(t, · ) is a solution of the Schrödinger equation (3).

In the following, we compare numerical solutions of the classical equations (2), the semiclassical equa-

tions (13), as well as the time-dependent expectation values of observables as calculated by the Egorov

[1, 2, 14] or Initial Value Representation [21–23, 28] (Egorov/IVR) method; see Section 5.1 below. Note that

the time evolution of (q, p) of Zhou’s equations (14) is identical to that of the classical equations (2). In all

of the following, we solved our equations and the classical equations by the explicit Runge–Kutta method

with a time step of 0.01. For the Egorov/IVR computations, we used 106 samples for each value of ~, with

the exception of ~ = 0.01 for which we used 107 samples.

5.1 The Egorov/IVR Method

It is computationally prohibitive to solve for the highly oscillatory wave functions numerically in the semi-

classical regime ~ � 1. Therefore, we employ the Egorov/IVR method instead of solving the Schrödinger

equation (3) directly.

Let us first briefly describe Egorov’s Theorem [2]. Given a wave function ψ ∈ L2(Rd), define the corre-

sponding Wigner function Wψ : T ∗Rd → R on the phase space T ∗Rd ∼= R2d as follows:

Wψ(z) :=
1

(2π~)d

∫
Rd

e−
i
~p·x ψ(q − x/2)ψ(q + x/2) dx.

The Wigner function is used to define, for a given (classical) observable a : T ∗Rd → R (such as the position,

momentum, and energy in the classical sense), the corresponding operator â on the Hilbert space L2(Rd)
such that

〈ψ, âψ〉 =

∫
T∗Rd

a(z)Wψ(z) dz.

Specifically, one obtains â = x̂i for a = qi for â = x̂i, and â = p̂i for a = pi. This procedure is called the Weyl

quantization and is a standard quantization scheme on phase space T ∗Rd. Egorov’s Theorem [2] states that,
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under some technical conditions on the Hamiltonian H and the observable a, the dynamics t 7→ 〈ψ(t), âψ(t)〉
of the expectation value of â is approximated as follows: Given the initial wave function ψ0 ∈ L2(Rd),

〈ψ(t), âψ(t)〉 =

∫
T∗Rd

(a ◦ Φt)(z)Wψ0(z) dz +O(~2), (17)

where Φ(·) : R× T ∗Rd → T ∗Rd is the flow of the classical Hamiltonian system (2).

The Egorov/IVR method (see, e.g., [14]) numerically implements the above approximation by first sam-

pling N initial conditions {z(k)}Nk=1 ⊂ T ∗Rd on the phase space, solve the classical Hamiltonian system (2)

to obtain the solutions {Φt(z(k))}Nk=1, and then take the average to approximate the above integral, i.e.,∫
T∗Rd

(a ◦ Φt)(z)Wψ0
(z) dz '

N∑
k=1

a ◦ Φt(z
(k)),

where the error of this Monte Carlo numerical integration is known to be proportional to 1/
√
N .

The Egorov/IVR method is different from the well-known Herman–Kluk propagator [10] in the sense

that it directly approximates the expectation values of observables without approximating the wave function

or the propagator. We note that the Herman–Kluk propagator is known to have O(~) error—as opposed

to O(~2)—in the propagator in terms of the operator norm in L2(Rd) [27]; see also [29]. The Egorov/IVR

method is also suited for our purposes because we are interested in the time evolution of expectation values.

5.2 1D Example

Here we let d = 1, m = 1, V (x) = 1− 1
2 cos2(x), A(x) = cos(x), subject to the initial conditions q(0) = 0.5,

p(0) = −1, A(0) = 0, B(0) = 1; the scalar and vector potentials are taken from Zhou [30, Example 1]. In

order to see how the error converges as ~→ 0, we ran the computations for ~ = 0.5, 0.3, 0.1, 0.05, 0.03, 0.01.

Figure 2 shows the solutions on the classical phase space T ∗R = R2 from t = 0 to t = 3 as well as the

error |〈ẑ〉(t)− z(t)| at t = 1.6 in terms of the Euclidean norm on the classical phase space. As can be seen,

our solutions are closer to the Egorov/IVR than the classical solutions. Furthermore, as ~→ 0, our solutions

converge to the Egorov/IVR solutions faster than the classical equations.

Figure 3 shows the time evolutions of the Hamiltonians for the classical, semiclassical, and Egorov/IVR

solutions. Note that the Hamiltonians for all these three cases are different: It is H0 in (1) for the classical

case and H~ in (12) for the semiclassical case, whereas for the Egorov/IVR case, it is the expectation value

〈Ĥ〉 of the Hamiltonian operator Ĥ. In each of these cases, the corresponding Hamiltonian is a conserved

quantity. Notice that the semiclassical Hamiltonian gives a better approximation to the expectation value

of the Hamiltonian.

5.3 2D Example

Here we let d = 2, V (x) = 1
2 |x|

2 + 1
4 |x|

4, A(x) = (−x2, x1), subject to the initial conditions q(0) = (1, 0),

p(0) = (0, 1), A(0) =

(
−3 −6

−6 −6

)
, B(0) =

(
1 1/2

1/2 1

)
.

Figure 4 shows the solutions on the classical configuration space R2 = {(q1, q2)} from t = 0 to t = 10

as well as the error |〈ẑ〉(t) − z(t)| at t = 2 in terms of the Euclidean norm on the classical phase space

T ∗R2 ∼= R4. Figure 5 shows the time evolutions of the Hamiltonians for the classical, semiclassical, and

Egorov/IVR solutions just as in the 1D case. The same observations as above apply to these 2D results as

well.

For this 2D example, the scalar and vector potentials chosen above satisfy the symmetry condition (15).

Therefore, based on the result of Section 4, the semiclassical angular momentum (16) is also a conserved

quantity of the semiclassical system (13) as well. Figure 6 shows the time evolutions of the classical angular

momentum along the classical solutions, the semiclassical angular momentum (16) along the semiclassical

9



(a) ~ = 0.5 (b) ~ = 0.1

(c) ~ = 0.05 (d) ~ = 0.01

(e) Convergence of errors as ~ → 0

Figure 2: Results of 1D computations with m = 1, V (x) = 1− 1
2 cos2(x), A(x) = cos(x). (a)–(d): Parametric

plots of t 7→ q(t) = (q1(t), q2(t)) in the classical phase space T ∗R ∼= R2 for ~ = 0.5, 0.1, 0.05, 0.01 from t = 0

to t = 3. Our solutions are closer to the Egorov/IVR than the classical solutions. (e): The error |〈ẑ〉(t)−z(t)|
for several values of ~ at t = 1.6. As ~→ 0, our solutions converge to the Egorov/IVR solutions faster than

the classical equations. The equation of the best fit line for the semiclassical error is exp(−0.190) ∗ ~1.864,

and exp(−0.125) ∗ ~0.894 for the classical.
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(a) ~ = 0.5 (b) ~ = 0.1

(c) ~ = 0.05 (d) ~ = 0.01

Figure 3: Time evolution of the Hamiltonian for the above 1D system solutions for ~ = 0.5, 0.1, 0.05, 0.01.

The semiclassical Hamiltonian (12) more closely approximates the Egorov/IVR expectation value 〈Ĥ〉 of the

Hamiltonian operator than the classical Hamiltonian (1).
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solutions, and the expectation value of the angular momentum operator along the Egorov/IVR solutions.

We see that the semiclassical angular momentum gives a better approximation to the expectation value of

the angular momentum than the classical one does.

6 Conclusion and Future Work

We extended our earlier work on the Hamiltonian formulation of Gaussian wave packets to incorporate

electromagnetic fields. Many of the results are extensions of our previous works to incorporate the electro-

magnetic effects. These results greatly expand the range of applications of semiclassical dynamics because

of its importance in quantum control and solid state physics.

As seen in the above numerical results, our solutions converge to the the expectation value of the operator

z = (q, p) along the Egorov/IVR solution faster than the classical solution. Since the equations for q and p

given by Zhou [30] are identical to the classical equations, our solutions also converge faster than those of

Zhou. These results demonstrate that the O(~) correction terms in our semiclassical equations (13) indeed

improve the accuracy of the approximations of expectation values.

Our preliminary studies (under certain technical assumptions and without electromagnetic fields) indicate

that the errors in the observables of the classical solution is O(~) whereas O(~3/2) for the semiclassical

solution, despite the well-known fact that the Gaussian wave packet dynamics gives O(~1/2) approximation

in terms of the wave functions in L2-norm established by Hagedorn [3, 4, 5, 6]. Our numerical results seem

to support these claims. A proof of this error estimate remains for a future work.
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(a) ~ = 0.5 (b) ~ = 0.1

(c) ~ = 0.05 (d) ~ = 0.01

(e) Convergence of errors as ~ → 0

Figure 4: Results of 2D computations with d = 2, V (x) = 1
2 |x|

2 + 1
4 |x|

4, A(x) = (−x2, x1). (a)–(d):

Parametric plots of t 7→ q(t) = (q1(t), q2(t)) in the classical configuration space R2 for ~ = 0.5, 0.1, 0.05, 0.01

from t = 0 to t = 3. (e): The error |〈ẑ〉(t) − z(t)| for several values of ~ at t = 2. Again, as ~ → 0, our

solutions converge to the Egorov/IVR solutions faster than the classical equations. The equation of the best

fit line for the semiclassical error is exp(1.544)~1.3612, and exp(1.41845)~0.752 for the classical.
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(a) ~ = 0.5 (b) ~ = 0.1

(c) ~ = 0.05 (d) ~ = 0.01

Figure 5: Time evolution of the Hamiltonian for the above 2D system solutions for ~ = 0.5, 0.1, 0.05, 0.01.

The semiclassical Hamiltonian (12) more closely approximates the Egorov/IVR expectation value 〈Ĥ〉 of the

Hamiltonian operator than the classical Hamiltonian (1).
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(a) ~ = 0.5 (b) ~ = 0.1

(c) ~ = 0.05 (d) ~ = 0.01

Figure 6: Time evolution of the classical angular momentum along the classical solution, the semiclassical

angular momentum along the semiclassical solution, and the expectation value of the angular momentum

operator for the 2D system. The semiclassical angular momentum is in far closer agreement than the angular

momentum along the classical solutions.
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