
SYMPLECTIC SEMICLASSICAL WAVE PACKET DYNAMICS II:

NON-GAUSSIAN STATES

TOMOKI OHSAWA

Abstract. We generalize our earlier work on the symplectic/Hamiltonian formulation of the dy-

namics of the Gaussian wave packet to non-Gaussian semiclassical wave packets. We find the sym-

plectic forms and asymptotic expansions of the Hamiltonians associated with these semiclassical

wave packets, and obtain Hamiltonian systems governing their dynamics. Numerical experiments

demonstrate that the dynamics give a very good approximation to the short-time dynamics of

the expectation values computed by a method based on Egorov’s Theorem or the Initial Value

Representation.

1. Introduction

1.1. Dynamics of Gaussian and Semiclassical Wave Packets. The Gaussian wave function

is one of the most ubiquitous wave functions in quantum mechanics. The most familiar form of

Gaussian wave function appears as the ground state of the harmonic oscillator. Gaussians also

appear in many forms and play significant roles in quantum dynamics or time-dependent quantum

mechanics as well; see, e.g., Tannor [28]. One of the most significant results regarding Gaussians

in quantum dynamics is that the Gaussian wave packet

χ0(q, p,A,B, φ, δ;x) = exp

{
i

~

[
1

2
(x− q)T (A+ iB)(x− q) + p · (x− q) + (φ+ iδ)

]}
(1)

gives an exact solution of the Schrödinger equation if the potential is quadratic and the parameters

(q, p,A,B, φ, δ) satisfy the following set of ordinary differential equations (see Heller [10, 11, 12],

Hagedorn [5, 8], and Littlejohn [14]):

q̇ =
p

m
, ṗ = −DqV (q),

Ȧ = − 1

m
(A2 − B2)−D2V (q), Ḃ = − 1

m
(AB + BA),

φ̇ =
p2

2m
− V (q)− ~

2m
trB, δ̇ =

~
2m

trA.

(2)

The parameters (q, p) ∈ T ∗Rd may be thought of as the position and momentum in the classical

sense: In fact the first two equations are nothing but the classical Hamiltonian system and is

decoupled from the rest; they also give the expectation values of the position and momentum

operators with respect to the Gaussian (1) if it is normalized, i.e., if ‖χ0‖ = 1 then 〈χ0, x̂χ0〉 = q

and 〈χ0, p̂χ0〉 = p, where 〈 · , · 〉 is the standard inner product on L2(Rd), x̂ is position operator,

Date: February 20, 2018.

2010 Mathematics Subject Classification. 37J15, 37J35, 70G45, 70H06, 70H33, 81Q05, 81Q20, 81Q70, 81S10.

Key words and phrases. Semiclassical mechanics, Semiclassical wave packets, Hamiltonian dynamics, Symplectic

geometry.

1



2 TOMOKI OHSAWA

i.e., the multiplication by the position vector x, and p̂ = −i~∂/∂x is the momentum operator. The

matrices (A,B) quantify the uncertainties in the position and momentum, and live in the so-called

Siegel upper half space [27]

Σd :=
{
A+ iB ∈ Md(C) | A,B ∈ Md(R), AT = A, BT = B, B > 0

}
, (3)

i.e., the set of symmetric (in the real sense) d×d complex matrices with positive-definite imaginary

parts; this guarantees that χ0 is an element in L2(Rd). The parameter φ ∈ S1 is the phase factor

and δ ∈ R controls the norm of χ0 as the square of the norm of χ0 is given by

N~(B, δ) := ‖χ0‖2 =

√
(π~)d

detB exp

(
−2δ

~

)
. (4)

Hagedorn [5, 8] came up with an orthonormal basis {χn}n∈Nd
0

for L2(Rd) whose ground state

with n = 0 is the normalized version of the Gaussian (1); see Section 2.2 below for a brief summary

of its construction by ladder operators. It was also shown that each χn gives an exact solution

of the Schrödinger equation with quadratic potential if the parameters evolve according to (2).

Moreover, even with non-quadratic potentials, Hagedorn gave, under some technical assumptions,

an asymptotic error estimate as ~ → 0 of the approximations by certain linear combinations of

the basis elements—each of which is evolving in time according to (2)—to the solution of the

Schrödinger equation.

1.2. Previous Work and Motivation. In our previous work [24], we followed Faou and Lubich [3]

and Lubich [15] to come up with the symplectic-geometric/Hamiltonian formulation of the dynamics

of the Gaussian wave packet (1) as follows: The parameters (q, p,A,B, φ, δ) associated with the

Gaussian (1) live in the manifold M := T ∗Rd × Σd × S1 × R. But then we can induce a natural

symplectic structure Ω
(0)
M and a Hamiltonian function H(0) on M by exploiting the Hamiltonian

formulation of the Schrödinger equation (see Section 3.1 below). This results in the Hamiltonian

system iX
H(0)

Ω
(0)
M = dH(0), and gives almost the same set of equations as (2)—the only difference

being that the second equation is replaced by

ṗ = −DqV
(0)
~ (q,B), (5)

where the potential V
(0)
~ has an O(~) correction term to the classical one:

V
(0)
~ (q,B) := V (q) +

~
4

tr
(
B−1D2V (q)

)
,

and hence the dynamics of (q, p) does not satisfy the classical Hamiltonian system any more.

Numerical experiments suggest that the (q, p) dynamics of our system gives a better approximation

than (2) to the short time dynamics of the expectation values

〈x̂〉(t) := 〈ψ(t, · ), x̂ψ(t, · )〉 and 〈p̂〉(t) := 〈ψ(t, · ), p̂ψ(t, · )〉

of the position and momentum with respect to the solution ψ(t, x) to the initial value problem of

the Schrödinger equation

i~
∂

∂t
ψ(t, x) = Ĥψ(t, x) (6)

with the Gaussian initial condition

ψ(0, x) = χ0(q(0), p(0),A(0),B(0), φ(0), δ(0);x),
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where Ĥ is the standard Schrödinger operator

Ĥ := − ~2

2m
∆ + V (x). (7)

The main motivation for this work is to extend our approach to non-Gaussian elements of the

semiclassical wave packets {χn}n∈Nd
0
, i.e., we would like to generalize our work [24] done for n =

0 (i.e., the Gaussian (1)) to those elements with n 6= 0. Since the semiclassical wave packets

{χn}n∈Nd
0

provide an orthogonal basis for L2(Rd), our extension opens the door to new semiclassical

approximation methods for the Schrödinger equation, potentially offering improvements on the

results obtained by Hagedorn [5, 8].

The main difficulty in extending our approach to the non-Gaussian elements χn (n 6= 0) is that

there is no known explicit formula for χn that is valid for any n. The difficulty is exacerbated

in the multi-dimensional case, i.e., d > 1: Unlike the Hermite functions, the multi-dimensional

semiclassical wave packets cannot be written as products of the one-dimensional components. In

other words, the only practical way to come up with an explicit expression for χn for a given n ∈ Nd0
is to apply the associated raising operator |n| times to the Gaussian χ0 for the given dimension

d. This makes those calculations involving χn for an arbitrary multi-index n ∈ Nd0 particularly

cumbersome. The calculations of the symplectic form Ω
(0)
M and Hamiltonian H(0) performed in our

previous work [24] were fairly straightforward because χ0 is a Gaussian. However, mimicking the

same calculations for an arbitrary n ∈ Nd0 is not feasible because of the above difficulty in obtaining

an explicit expression for χn with an arbitrary n ∈ Nd0.

1.3. Main Results. We focus on those semiclassical wave packets {χn}n∈Nd
0

that are parametrized

by the same parameters (q, p,A,B, φ, δ) as the Gaussian χ0, and circumvent the above difficulty

by proving those recurrence relations that hold between the symplectic forms and Hamiltonians

associated with {χn}n∈Nd
0
. Then the symplectic form Ω

(n)
M and Hamiltonian H(n) for an arbitrary

n ∈ Nd0 follow by induction; see Propositions 3.1 and 4.1. As a result, we can formulate the

Hamiltonian system associated with the semiclassical wave packet χn for an arbitrary n ∈ Nd0; see

Theorem 4.4.

We also extend our previous results [24] on the symplectic reduction of the dynamics of the

Gaussian wave packet χ0 to the dynamics of an arbitrary semiclassical wave packets χn with

n ∈ Nd0. This results in a Hamiltonian system on the reduced symplectic manifold T ∗Rd × Σd;

see Theorem 5.2. The reduced symplectic structure takes a much simpler and suggestive form

that carries an O(~) correction term to the classical one, and the same goes with the reduced

Hamiltonian; that is, it reveals the quantum correction as an O(~) perturbation to the classical

Hamiltonian system.

Numerical experiments with a simple one-dimensional test case demonstrate that the these

Hamiltonian systems provide very good approximations to the short-time dynamics of those ex-

pectation values 〈x̂〉(t) and 〈p̂〉(t) computed by Egorov’s Theorem [1, 2, 13] or the Initial Value

Representation (IVR) method [20–22, 30] with χn as the initial wave functions for several n. The

IVR is a popular method for computing such expectation values and is shown to have O(~2) as-

ymptotic accuracy by Egorov’s Theorem.
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1.4. Outline. We start with a brief review of the semiclassical wave packets of Hagedorn [5, 8]

in Section 2. We present two different parametrizations of the wave packets: One is that used by

Hagedorn and the other with the same set of parameters as (1); we use the latter throughout the

paper as in our earlier work [24]. In Section 3, we find the symplectic forms {Ω(n)
M }n∈Nd

0
associated

with the semiclassical wave packets {χn}n∈Nd
0
. In Section 4, we find the semiclassical Hamiltonians

{H(n)}n∈Nd
0

and the Hamiltonian systems associated with the semiclassical wave packets {χn}n∈Nd
0
.

In Section 5, we perform the symplectic reduction mentioned above to simplify the formulations.

Finally, in Section 6, we show numerical results of a simple test case comparing our solutions with

the classical solution and those obtained by an Egorov/IVR-type method.

2. The Semiclassical Wave Packets

2.1. Two Parametrizations and the Siegel Upper Half Space. Hagedorn [5, 6, 7, 8] uses a

different parametrization for the elements C = A+ iB in the Siegel upper half space Σd defined in

(3). Namely the matrix C in the Gaussian wave packet (1) is replaced by PQ−1 to have

χ0(q, p,Q, P, φ, δ;x) = exp

{
i

~

[
1

2
(x− q)TPQ−1(x− q) + p · (x− q) + (φ+ iδ)

]}
, (8)

where Q,P ∈ Md(C), i.e., d× d complex matrices, that satisfy

QTP − P TQ = 0, Q∗P − P ∗Q = 2iId, (9)

where Id is the d × d identity matrix. It is pointed out by Lubich [15, Section V.1] that this is a

parametrization of elements in the symplectic group Sp(2d,R) in the following way:

Sp(2d,R) =

{[
ReQ ImQ

ReP ImP

]
∈ M2d(R) |

Q,P ∈ Md(C), QTP − P TQ = 0,

Q∗P − P ∗Q = 2iId

}
.

In fact, one can show that if (Q,P ) satisfies (9) then Q is invertible and also PQ−1 ∈ Σd; see, e.g.,

[15, Lemma V.1.1 on p. 124]. However, for a given A+iB ∈ Σd, the corresponding (Q,P ) satisfying

(9) and PQ−1 = A+ iB is not unique: For example, one finds that, by setting[
ReQ0 ImQ0

ReP0 ImP0

]
=

[
B−1/2 0

AB−1/2 B1/2

]
,

one sees that (Q0, P0) satisfies (9) as well as P0Q
−1
0 = A+ iB. However, setting[

ReQ ImQ

ReP ImP

]
=

[
B−1/2 0

AB−1/2 B1/2

][
U V

−V U

]
=

[
B−1/2U B−1/2V

AB−1/2U − B1/2V AB−1/2V + B1/2U

]
for any U + iV ∈ U(d) (the unitary group of degree d) would do as well: (Q,P ) again satisfies (9)

as well as PQ−1 = A+ iB. Therefore one has

Q = B−1/2U , P = (A+ iB)B−1/2U , (10)

where U := U + iV ∈ U(d). This is because Σd is actually the homogeneous space Sp(2d,R)/U(d);

see, e.g., Siegel [27], Folland [4, Section 4.5], McDuff and Salamon [19, Exercise 2.28 on p. 48], and

Ohsawa [23] for details.
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2.2. The Hagedorn Wave Packets. Upon normalizing and getting rid of the phase factor in (8),

we have the ground state of the Hagedorn wave packets:

ϕ0(q, p,Q, P ;x) =
(detQ)−1/2

(π~)d/4
exp

{
i

~

[
1

2
(x− q)TPQ−1(x− q) + p · (x− q)

]}
.

Hagedorn [8]1 came up with the ladder operators

L (q, p,Q, P ) = − i√
2~
[
P T (x̂− q)−QT (p̂− p)

]
,

L ∗(q, p,Q, P ) =
i√
2~

[P ∗(x̂− q)−Q∗(p̂− p)],

that satisfy the same relationships that are satisfied by the ladder operators of the Hermite func-

tions, i.e.,

[Lj(q, p,Q, P ),Lk(q, p,Q, P )] = 0,

[L ∗
j (q, p,Q, P ),L ∗

k (q, p,Q, P )] = 0, [Lj(q, p,Q, P ),L ∗
k (q, p,Q, P )] = δjk.

Then these operators are used to define an orthonormal basis {ϕn(q, p,Q, P ; · )}n∈Nd
0

for L2(Rd) re-

cursively by applying the raising operator L ∗ repeatedly, i.e., for any multi-index n = (n1, . . . , nd) ∈
Nd0 and j ∈ {1, . . . , d},

ϕn+ej (q, p,Q, P ; · ) :=
1√
nj + 1

L ∗
j (q, p,Q, P )ϕn(q, p,Q, P ; · ),

where ej ∈ Rd is the unit vector whose j-th entry is 1. One can also show that the lowering operator

L satisfies

ϕn−ej (q, p,Q, P ; · ) =
1
√
nj

Lj(q, p,Q, P )ϕn(q, p,Q, P ; · ).

2.3. Semiclassical Wave Packets. We would like to use the parametrization (A,B) instead of

(Q,P ) here. So we may first rewrite the above ladder operators in terms of (A,B,U) instead

of (Q,P ) using (10). But then the resulting operators define ladder operators for an arbitrary

U ∈ U(d); hence we set U = Id to have—with an abuse of notation—the ladder operators

L (q, p,A,B) := − i√
2~
B−1/2[(A+ iB)(x̂− q)− (p̂− p)], (11a)

L ∗(q, p,A,B) :=
i√
2~
B−1/2[(A− iB)(x̂− q)− (p̂− p)], (11b)

and generate an orthogonal basis {χn(q, p,A,B, φ, δ; · )}n∈Nd
0

by setting

χn+ej (q, p,A,B, φ, δ; · ) :=
1√
nj + 1

L ∗
j (q, p,A,B)χn(q, p,A,B, φ, δ; · ) (12)

starting with the ground state (1) (without normalization; hence only orthogonal), whereas the

lowering operator works as follows:

χn−ej (q, p,A,B, φ, δ; · ) =
1
√
nj

Lj(q, p,A,B)χn(q, p,A,B, φ, δ; · ). (13)

1Hagedorn [8] uses parameters A,B ∈ Md(C), which are related to Q and P as A = Q and B = −iP .
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Remark 2.1. Setting U = Id has the advantage of parametrizing the wave packets by (A,B) as is

done for the Gaussian, but results in a slightly less general form of wave packets than Hagedorn’s.

Note that the norms of these wave packets are all the same because, writing χn = χn(y; · ) and

L ∗ = L ∗(q, p,A,B) for brevity,∥∥χn+ej

∥∥2
=

1

nj + 1

〈
L ∗
j χn,L

∗
j χn

〉
=

1

nj + 1

〈
LjL

∗
j χn, χn

〉
= 〈χn, χn〉
= ‖χn‖2,

and hence we have ‖χn‖2 = ‖χ0‖2 = N~(B, δ) for any n ∈ Nd0 by induction, where N~ was defined

in (4). As we shall see later in Proposition 5.1, N~ is the Noether conserved quantity corresponding

to the inherent phase symmetry of our Hamiltonian dynamics; see also Remark 4.2 below. There-

fore, if necessary, one may normalize the orthogonal basis {χn(q, p,A,B, φ, δ; · )}n∈Nd
0

to obtain an

orthonormal basis just like the Hagedorn wave packets {ϕn(q, p,Q, P ; · )}n∈Nd
0
. We will show later

in Section 5 that the normalization corresponds to the symplectic reduction by the phase symmetry

with respect to the variable φ.

3. Embeddings of Semiclassical Wave Packets and Symplectic Structures

Let us write y := (q, p,A,B, φ, δ) ∈ M for short. Our goal is to come up with the dynamics

y(t) of the parameters so that each wave packet χn(y(t);x) approximates the solution of the initial

value problem of the Schrödinger equation (6) with the initial condition ψ(0, x) = χn(y(0);x).

Particularly we would like to obtain a Hamiltonian dynamics of the parameters y that is naturally

related to the Hamiltonian/symplectic structure associated with the Schrödinger equation. This

amounts to finding the symplectic structure Ω
(n)
M and Hamiltonian H(n) onM naturally associated

with χn, and results in the Hamiltonian system defined in terms of Ω
(n)
M and H(n). Indeed, one

can show that this gives the best approximation in some appropriate sense as we shall see below in

Section 3.3.

In our previous work [24] on the dynamics of the Gaussian χ0, we followed the approach by Faou

and Lubich [3] and Lubich [15, Section II.1] and obtained the symplectic structure Ω
(0)
M by regarding

the Gaussian wave packet χ0(y, · ) as the embedding ι0 : M ↪→ L2(Rd) defined by y 7→ χ0(y, · ); see

Section 3.2 below for more details. We would like to generalize the approach to χn for an arbitrary

n ∈ Nd0.

3.1. Hamiltonian Formulation of the Schrödinger Equation. Let us first briefly review the

Hamiltonian formulation of the Schrödinger equation following Marsden and Ratiu [16, Section 2.2].

Let H be a complex Hilbert space—H = L2(Rd) throughout the paper—equipped with a (right-

linear) inner product 〈·, ·〉. Then H is a symplectic vector space with the symplectic structure Ω

defined by

Ω(ψ1, ψ2) := 2~ Im 〈ψ1, ψ2〉.
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In fact, defining a one-form Θ on H by

Θ(ψ) = −~ Im 〈ψ,dψ〉, (14)

one obtains Ω = −dΘ. Given a Hamiltonian operator Ĥ on H (we proceed formally here without

specifying the domain of definition of Ĥ), we may write the expectation value of the Hamiltonian

〈Ĥ〉 : H → R as

〈Ĥ〉(ψ) := 〈ψ, Ĥψ〉.
Now we think of 〈Ĥ〉 as a Hamiltonian function on the symplectic vector space H, and define the

corresponding Hamiltonian vector field X〈Ĥ〉 on H by the Hamiltonian system

iX〈Ĥ〉Ω = d〈Ĥ〉. (15)

Writing the vector field X〈Ĥ〉 as X〈Ĥ〉(ψ) = (ψ, ψ̇) ∈ TH ∼= H ×H, one obtains the Schrödinger

equation

ψ̇ = − i

~
Ĥψ.

For H = L2(Rd) with the Schrödinger operator (7), the above equation gives (6).

3.2. Embeddings defined by Semiclassical Wave Packets. We would like to exploit the above

Hamiltonian approach to the Schrödinger equation in order to formulate Hamiltonian dynamics of

the parameters (q, p,A,B, φ, δ). First note that the parameters y = (q, p,A,B, φ, δ) live in the space

M := T ∗Rd × Σd × S1 × R,

which is an even-dimensional manifold for any d ∈ N because the (real) dimension of Σd is d(d+ 1)

and hence the dimension ofM is (d+ 1)(d+ 2). Then we may define a family of embeddings ofM
to H := L2(Rd) by

ιn : M ↪→ H; ιn(y) = χn(y; · ) (16)

for any n ∈ Nd0.

Can we naturally induce a symplectic structure on M from the symplectic structure Ω on H?

In our previous work [24, Proposition 2.1], we reformulated the work of Lubich [15, Section II.1]

and showed the following: Let ι : M ↪→ H be an embedding of a manifoldM in a complex Hilbert

space H and suppose that M is equipped with an almost complex structure Jy : TyM → TyM
that is compatible with the multiplication by the imaginary unit i in H, i.e.,

Tyι ◦ Jy = i · Tyι (17)

for any y ∈ M; then M is a symplectic manifold with symplectic form defined by the pull-back

ΩM := ι∗Ω. In [24], we worked out the Gaussian case, i.e., ι = ι0 explicitly: We found that

Jy

(
q̇, ṗ, Ȧ, Ḃ, φ̇, δ̇

)
=
(
B−1(Aq̇ − ṗ), (AB−1A+ B)q̇ −AB−1ṗ, −Ḃ, Ȧ, pTB−1(Aq̇ − ṗ)− δ̇, −p · q̇ + φ̇

)
, (18)

is an almost complex structure that satisfies Tyι0 ◦Jy = i ·Tyι0, and found the pull-back Θ
(0)
M := ι∗0Θ

of the canonical one-form Θ in (14). Setting Ω
(0)
M := −dΘ

(0)
M gives a symplectic form on M.



8 TOMOKI OHSAWA

H

Figure 1. The Hamiltonian vector field XH gives the best approximation among

the vector fields on M to the Schrödinger dynamics X〈Ĥ〉.

3.3. Hamiltonian Dynamics as the Best Approximation. Given an embedding ι : M ↪→ H
with ι(y) = χ(y; · ) satisfying (17), one can also define a Hamiltonian function H on M via the

above embedding as H := ι∗〈Ĥ〉 =
〈
χ, Ĥχ

〉
. So one can formulate a Hamiltonian system on

M as iXH
ΩM = dH. As shown in Lubich [15, Section II.1.2] (see also [24, Proposition 2.4]),

the Hamiltonian vector field XH gives the best approximation to the vector field X〈Ĥ〉 of the

Schrödinger dynamics in the following sense: XH is the least squares approximation—in terms

of the norm in L2(Rd)—among the vector fields on M to the vector field X〈Ĥ〉 defined by the

Schrödinger equation (15). More specifically, we have, for any y ∈M,

‖X〈Ĥ〉(ι(y))− Tyι(XH(y))‖ ≤ ‖X〈Ĥ〉(ι(y))− Tyι(Vy)‖

for any Vy ∈ TyM, where the equality holds if and only if Vy = XH(y); see Fig. 1.

3.4. Semiclassical Symplectic Structures. We would like to apply the above approach to the

embedding ιn : M ↪→ H of the semiclassical wave packets χn(y; · ) with an arbitrary n ∈ Nd0.

As the first step, let us find the symplectic form Ω
(n)
M := ι∗nΩ. As mentioned earlier, a concrete

expression for χn with general n ∈ Nd0 is essentially out of reach, and so it is not feasible to calculate

Θ
(n)
M := ι∗nΘ directly. A way around it is to find a recurrence relation between the canonical one-

forms {Θ(n)
M }n∈Nd

0
.

Proposition 3.1. Let ιn : M ↪→ H = L2(Rd) be the embedding (16) defined by the semiclassical

wave packet χn(y; · ) for an arbitrary multi-index n = (n1, . . . , nd) ∈ Nd0. Then the almost complex

structure J in (18) satisfies Tyιn ◦ Jy = i · Tyιn for any y ∈M and hence the pull-back Ω
(n)
M := ι∗nΩ

defines a symplectic structure on M, and is given by Ω
(n)
M = −dΘ

(n)
M with

Θ
(n)
M := ι∗nΘ = N~(B, δ)

(
pi dqi −

~
4

tr
(

(B(n))−1dA
)
− dφ

)
, (19)

where B(n) is the d× d positive-definite matrix defined as

B(n) := B1/2(Λ(n))−1B1/2, (20)

and Λ(n) is the d× d diagonal matrix defined as

Λ(n) := diag(2n1 + 1, . . . , 2nd + 1). (21)
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More explicitly,

Ω
(n)
M = N~(B, δ)

{
dqi ∧ dpi −

pi
2

dqi ∧ tr
(

(B(n))−1dB(n)
)
− 2pi

~
dqi ∧ dδ

− ~
4
dAij ∧ d(B(n))−1

ij +
~
8

tr
(

(B(n))−1dA
)
∧ tr

(
(B(n))−1dB(n)

)
+

1

2
tr
(

(B(n))−1dA
)
∧ dδ − 1

2
tr
(

(B(n))−1dB(n)
)
∧ dφ+

2

~
dφ ∧ dδ

}
.

(22)

Proof. Let us first show that Tyιn ◦Jy = i ·Tyιn for any n ∈ Nd0 by induction. One can check that it

holds for n = 0 by direct calculations. Now let n ∈ Nd0 and suppose that ιn satisfies Tyιn◦Jy = i·Tyιn,

and let ej ∈ Rd be the unit vector with 1 in the j-th component with j ∈ {1, . . . , d}. Then (12)

implies that the embeddings ιn and ιn+ej are related as

ιn+ej =
1√
nj + 1

L ∗
j ◦ ιn or

L2(Rd)

M L2(Rd)ιn

ιn+ej 1√
nj+1

L ∗j .

However, since L ∗
j is a linear operator, we have, for any y ∈M,

Tyιn+ej =
1√
nj + 1

L ∗
j ◦ Tyιn.

But then this implies that

Tyιn+ej ◦ Jy =
1√
nj + 1

L ∗
j ◦ Tyιn ◦ Jy

=
i√

nj + 1
L ∗
j ◦ Tyιn

= i · Tyιn+ej .

The expression (19) follows from the following recurrence relation that holds between the one-

forms {Θ(n)
M }n∈Nd

0
: Let n ∈ Nd0 and ej be as above; then, as we shall prove later,

Θ
(n+ej)
M = Θ

(n)
M −

~
2
N~(B, δ)

(
B−1/2 dAB−1/2

)
jj
, (23)

where summation on the index j is not assumed on the right-hand side, i.e., it is the (j, j)-entry of

the matrix B−1/2 dAB−1/2. But then direct calculations yield, as is done in [24],

Θ
(0)
M := ι∗0Θ = N~(B, δ)

(
pi dqi −

~
4

tr
(
B−1/2 dAB−1/2

)
− dφ

)
,
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and hence we obtain (19) as follows:

Θ
(n)
M = Θ

(0)
M −

~
2
N~(B, δ)

d∑
j=1

nj(B−1/2 dAB−1/2)jj

= N~(B, δ)
(
pi dqi −

~
4

tr
(
B−1/2Λ(n)B−1/2 dA

)
− dφ

)
= N~(B, δ)

(
pi dqi −

~
4

tr
(

(B(n))−1dA
)
− dφ

)
,

where B(n) is defined in (20). Then we have

Ω
(n)
M = ι∗nΩ

= −ι∗ndΘ

= −dι∗nΘ

= −dΘ
(n)
M ,

and the expression (22) for Ω
(n)
M follows from tedious but straightforward calculations; note that

dN~(B, δ) = N~(B, δ)
(
−1

2
tr
(
B−1dB

)
− 2

~
dδ

)
= N~(B, δ)

(
−1

2
tr
(

(B(n))−1dB(n)
)
− 2

~
dδ

)
.

So it remains to prove the recurrence relation (23). Using (12), we have

Θ
(n+ej)
M = ι∗n+ejΘ

= −~ Im
〈
χn+ej , Dyχn+ej

〉
· dy

= − ~
nj + 1

Im
〈
L ∗
j χn, Dy

(
L ∗
j χn

)〉
· dy

= − ~
nj + 1

(
Im
〈
L ∗
j χn, DyL

∗
j χn

〉
+ Im

〈
L ∗
j χn,L

∗
j Dyχn

〉)
· dy,

where again no summation is assumed on j. Using the properties (12) and (13) of the ladder

operators, we have

Im
〈
L ∗
j χn,L

∗
j Dyχn

〉
· dy = Im

〈
LjL

∗
j χn, Dyχn

〉
· dy

= (nj + 1) Im 〈χn, Dyχn〉 · dy

= −nj + 1

~
Θ

(n)
M .

Therefore we obtain the recurrence relation

Θ
(n+ej)
M = Θ

(n)
M −

~
nj + 1

Im
〈
L ∗
j χn, DyL

∗
j χn

〉
· dy. (24)

Let us evaluate the second term on the right-hand side. Taking the derivatives of (11b) with respect

to (q, p), we have

DqlL
∗
j = − i√

2~
B−1/2
jk (A− iB)kl, DplL

∗
j =

i√
2~
B−1/2
jl ,
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and hence 〈
L ∗
j χn, DqlL

∗
j χn

〉
= − i√

2~
B−1/2
jk (A− iB)kl

〈
L ∗
j χn, χn

〉
,

〈
L ∗
j χn, DplL

∗
j χn

〉
=

i√
2~
B−1/2
jl

〈
L ∗
j χn, χn

〉
.

However, they both vanish due to the orthogonality of the basis {χn}n∈Nd
0
:〈

L ∗
j χn, χn

〉
=
√
nj + 1 〈χn+ej , χn〉 = 0.

On the other hand, taking the derivatives of (11b) with respect to A and B, we have

DAlr
L ∗
j =

i

2
√

2~

(
B−1/2
jl (x̂− q)r + B−1/2

jr (x̂− q)l
)

=
i

4

(
B−1/2
jl B−1/2

rk + B−1/2
jr B−1/2

lk

)
(Lk + L ∗

k )

and

DBlrL
∗
j =

i√
2~

DBlrB
−1/2
js

(
(A− iB)(x̂− q)− (p̂− p)

)
s

+
1

2
√

2~

(
B−1/2
jl (x̂− q)r + B−1/2

jr (x̂− q)l
)

= DBlrB
−1/2
js B1/2

su L ∗
u +

1

4

(
B−1/2
jl B−1/2

ru + B−1/2
jr B−1/2

lu

)
(Lu + L ∗

u ),

where we used (11b) as well as the following identity that follows from (11):

x̂− q =

√
~
2
B−1/2(L + L ∗). (25)

So we have〈
L ∗
j χn, DAlr

L ∗
j χn

〉
=

i

4

(
B−1/2
jl B−1/2

rk + B−1/2
jr B−1/2

lk

)(〈
L ∗
j χn,Lkχn

〉
+
〈
L ∗
j χn,L

∗
k χn

〉)
= (nj + 1)

i

4
N~(B, δ)

(
B−1/2
jl B−1/2

rj + B−1/2
jr B−1/2

lj

)
with no summation on the index j, since〈

L ∗
j χn,Lkχn

〉
= 0,

〈
L ∗
j χn,L

∗
k χn

〉
= δjk (nj + 1)N~(B, δ) (26)

due to (12) and (13). On the other hand, we see that the term 〈L ∗
j χn, DBlrL

∗
j χn〉 is real and

hence does not contribute to (24). As a result, we obtain

Im
〈
L ∗
j χn, DyL

∗
j χn

〉
· dy = Im

〈
L ∗
j χn, DAlr

L ∗
j χn

〉
dAlr

=
nj + 1

2
N~(B, δ)(B−1/2 dAB−1/2)jj ,

and hence substituting this into (24) yields the recurrence relation (23). �

4. Hamiltonian Dynamics of Semiclassical Wave Packets

Now that we have the symplectic forms {Ω(n)
M }n∈Nd

0
, it remains to find the Hamiltonians {H(n)}n∈Nd

0

that correspond to the semiclassical wave packets {χn}n∈Nd
0

in order to formulate Hamiltonian dy-

namics for them.
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In our previous work [24], we found the Hamiltonian H(0) corresponding to the Gaussian χ0 via

an asymptotic expansion of the pull-back of the expectation value of the Hamiltonian operator Ĥ,

i.e.,

〈Ĥ〉(0) := ι∗0〈Ĥ〉 =
〈
χ0, Ĥχ0

〉
= H(0) +O(~2). (27)

Then the Hamiltonian system iX
H(0)

Ω(0) = dH(0) yields (2) with the second equation replaced by

(5). In this section, we would like to generalize this result to χn with an arbitrary n ∈ Nd0.

4.1. Semiclassical Hamiltonians. Let us find an asymptotic expansion for the expectation value

〈Ĥ〉(n) := ι∗n〈Ĥ〉 =
〈
χn, Ĥχn

〉
of the Schrödinger operator Ĥ in (7) with respect to the semiclassical wave packet χn. We will

evaluate the kinetic and potential parts of {H(n)}n∈Nd
0

separately: It turns out that the kinetic part

can be found again via a recurrence relation by induction on n, whereas the potential part can be

evaluated directly as an asymptotic expansion in ~ for any n ∈ Nd0 under a reasonable technical

assumption on the potential V .

Proposition 4.1. Suppose that the potential V is in C3(Rd) and that there exist C1, C2,M1 ∈ R
such that C1 ≤ V (x) and for any α ∈ Nd0 with |α| = 3,

|DαV (x)| ≤ C2 exp(M1|x|2). (28)

Then the expectation value 〈Ĥ〉(n) for each n ∈ Nd0 has the asymptotic expansion

〈Ĥ〉(n) = H(n) +N~(B, δ)O(~3/2), (29)

where H(n) : M→ R is defined as

H(n) := N~(B, δ)
{
p2

2m
+

~
4m

tr
(

(B(n))−1(A2 + B2)
)

+ V (q) +
~
4

tr
(

(B(n))−1D2V (q)
)}

, (30)

with B(n) defined in (20).

Remark 4.2. The quantity N~(B, δ) = ‖χn(y; · )‖2 depends on ~ as shown in (4). However, as we

shall see later in Proposition 5.1, N~(B, δ) is conserved along the Hamiltonian dynamics of the

parameters y = (q, p,A,B, φ, δ) that we derive later. Therefore, upon normalizing the wave packet

χn(y; · ) in the initial condition by setting N~(B, δ) = 1, it stays so all time; hence we may assume

N~(B, δ) = O(1).

Remark 4.3. The error term becomes O(~2) if V is C4(Rd) and assuming (28) for |α| = 4. In fact,

the asymptotic expansion in (27) assumes that V is smooth and satisfies a condition similar to (28);

see [24, Proposition 7.1].

Proof. Note first that the assumption that V is bounded from below guarantees that the Schrödinger

operator (7) is essentially self-adjoint. Let us split the expectation value of the Hamiltonian into

the kinetic and potential parts, i.e.,

〈Ĥ〉(n) = 〈T̂ 〉(n) + 〈V 〉(n)
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with T̂ := p̂2/(2m), and first evaluate the kinetic part. We see that

〈T̂ 〉(n+ej) =
〈
χn+ej , T̂ χn+ej

〉
=

1

nj + 1

〈
L ∗
j χn, T̂L ∗

j χn
〉

=
1

nj + 1

(〈
L ∗
j χn,

[
T̂ ,L ∗

j

]
χn
〉

+
〈
L ∗
j χn,L

∗
j T̂ χn

〉)
,

but then 〈
L ∗
j χn,L

∗
j T̂ χn

〉
=
〈
LjL

∗
j χn, T̂ χn

〉
= (nj + 1)

〈
χn, T̂ χn

〉
= (nj + 1)〈T̂ 〉(n),

and hence we have the recurrence relation

〈T̂ 〉(n+ej) = 〈T̂ 〉(n) +
1

nj + 1

〈
L ∗
j χn,

[
T̂ ,L ∗

j

]
χn
〉
.

Let us evaluate the second term on the right-hand side. It is straightforward to see that, using

(11b), [
T̂ ,L ∗] =

1

m

√
~
2
B−1/2(A− iB)p̂,

and hence we have 〈
L ∗
j χn,

[
T̂ ,L ∗

j

]
χn
〉

=
1

m

√
~
2
B−1/2
jk (A− iB)kl

〈
L ∗
j χn, p̂lχn

〉
.

It is easy to see from the definition (11) of the ladder operators (see also (25)) that

p̂− p =

√
~
2

(
(A− iB)B−1/2L + (A+ iB)B−1/2L ∗),

and so〈
L ∗
j χn, p̂lχn

〉
=
〈
L ∗
j χn, χn

〉
pl

+

√
~
2

(
(A− iB)lrB−1/2

rs

〈
L ∗
j χn,Lsχn

〉
+ (A+ iB)lrB−1/2

rs

〈
L ∗
j χn,L

∗
s χn

〉)
= (nj + 1)

√
~
2
N~(B, δ) (A+ iB)lrB−1/2

rj

because, due to the properties (12) and (13) of the ladder operators and the orthogonality of

{χn}n∈Nd
0
,〈

L ∗
j χn, χn

〉
= 0,

〈
L ∗
j χn,Lsχn

〉
= 0,

〈
L ∗
j χn,L

∗
s χn

〉
= δjs (nj + 1)N~(B, δ).

Therefore, 〈
L ∗
j χn,

[
T̂ ,L ∗

j

]
χn
〉

= (nj + 1)
~

2m
N~(B, δ)B−1/2

jk (A− iB)kl(A+ iB)lrB−1/2
rj

= (nj + 1)
~

2m
N~(B, δ)

(
B−1/2(A2 + B2)B−1/2

)
jj
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since both A and B are symmetric. As a result, we obtain the recurrence relation

〈T̂ 〉(n+ej) = 〈T̂ 〉(n) +
~

2m
N~(B, δ)

(
B−1/2(A2 + B2)B−1/2

)
jj
.

It is easy to see by direct calculations that, as in [24],

〈T̂ 〉(0) = N~(B, δ)
{
p2

2m
+

~
4m

tr
(
B−1/2(A2 + B2)B−1/2

)}
.

Hence the recurrence relation yields

〈T̂ 〉(n) = 〈T̂ 〉(0) +
~

2m
N~(B, δ)

d∑
j=1

nj

(
B−1/2(A2 + B2)B−1/2

)
jj

= N~(B, δ)
{
p2

2m
+

~
4m

tr
(
B−1/2Λ(n)B−1/2(A2 + B2)

)}
= N~(B, δ)

{
p2

2m
+

~
4m

tr
(

(B(n))−1(A2 + B2)
)}

,

where Λ(n) and B(n) are defined in (21) and (20).

Next, let us find an asymptotic expansion of the potential term 〈V 〉(n). We mimic the technique

employed in the proof of Theorem 2.9 in Hagedorn [8]. First, since V is assumed to be C3, we have,

for any x ∈ Rd,

V (x) = V (q) +DkV (q)(x− q)k +
1

2
D2
klV (q)(x− q)⊗2

kl +
∑
|α|=3

1

α!
DαV (σ(q, x))(x− q)α

for some point σ(q, x) in the closed ball B̄|x−q|(q) ⊂ Rd with radius |x− q| centered at q, where we

used the shorthands (x− q)⊗2

kl = (x− q)k(x− q)l and (x− q)α =
∏d
j=1(x− q)αj

j . Therefore,

〈V 〉(n) = 〈χn, V χn〉

= ‖χn‖2 V (q) + 〈χn, (x− q)kχn〉DkV (q) +
1

2

〈
χn, (x− q)⊗

2

kl χn

〉
D2
klV (q)

+
∑
|α|=3

1

α!
〈χn, DαV (σ(q, x))(x− q)αχn〉.

But then the second term vanishes because, using (25) and in view of (12) and (13),

〈χn, (x− q)kχn〉 =

√
~
2
B−1/2
kl 〈χn, (Ll + L ∗

l )χn〉

=

√
~
2
B−1/2
kl

(√
nl〈χn, χn−el〉+

√
nl + 1〈χn, χn+el〉

)
= 0.
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On the other hand, using (25) and (26) as well as 〈Ljχn,Lkχn〉 = δjk njN~(B, δ), we can evaluate

the third term as follows:〈
χn, (x− q)⊗

2

kl χn

〉
= 〈(x− q)kχn, (x− q)lχn〉

=
~
2
B−1/2
kr B−1/2

ls

〈
(Lr + L ∗

r )χn, (Ls + L ∗
s )χn

〉
=

~
2
B−1/2
kr B−1/2

ls

(〈
Lrχn,Lsχn

〉
+
〈
L ∗
r χn,L

∗
s χn

〉)
=

~
2
N~(B, δ)B−1/2

kr (2nr + 1)δrsB−1/2
ls

=
~
2
N~(B, δ)

(
B−1/2Λ(n)B−1/2

)
kl

=
~
2
N~(B, δ) (B(n))−1

kl ,

where Λ(n) and B(n) are defined in (21) and (20). So it remains to show that the last term is

O(~3/2). Let R > 0 and set

C3 := max
|α|=3

max
x∈B̄R(q)

|DαV (x)|.

If x ∈ B̄R(q) then σ(q, x) ∈ B̄R(q) as well and hence, for any α ∈ Nd0 with |α| = 3,

|DαV (σ(q, x))(x− q)αχn(y;x)| ≤ C3 ~3/2

∣∣∣∣(x− q√~
)α
χn(y;x)

∣∣∣∣,
whereas if x ∈ B̄R(q)c then, due to the assumption (28) on the potential V , there exists C4 > 0

such that

|DαV (σ(q, x))(x− q)αχn(y;x)| ≤ C4 exp(M1|x|2)|χn(y;x)|.

Let 1S be the indicator function of an arbitrary subset S ⊂ Rd and also define the normalized wave

packet

ϕn(y;x) :=
χn(y;x)

‖χn(y; · )‖ .

Then we have, for any α ∈ Nd0 with |α| = 3 and any x ∈ Rd,

|DαV (σ(q, x))(x− q)αχn(y;x)| = 1B̄R(q)(x)|DαV (σ(q, x))(x− q)αχn(y;x)|
+ 1B̄R(q)c(x)|DαV (σ(q, x))(x− q)αχn(y;x)|

≤ C3 ~3/2 ‖χn(y; · )‖1B̄R(q)(x)

∣∣∣∣(x− q√~
)α
ϕn(y;x)

∣∣∣∣
+ C4‖χn(y; · )‖1B̄R(q)c(x) exp(M1|x|2)|ϕn(y;x)|.

However, the norm of the first term is O(~3/2) because, as shown in Hagedorn [8, Eq. (3.30)],∥∥∥∥(x− q√~
)α
ϕn(y; · )

∥∥∥∥ = O(1),

whereas ∥∥exp(M1|x|2)ϕn(y; · )
∥∥ = o(~γ)

for any real number γ. Hence

‖DαV (σ(q, x))(x− q)αχn‖ = ‖χn(y; · )‖O(~3/2),
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and thus by the Cauchy–Schwarz inequality,∑
|α|=3

1

α!
|〈χn, DαV (σ(q, x))(x− q)αχn〉| ≤ ‖χn‖

∑
|α|=3

1

α!
‖DαV (σ(q, x))(x− q)αχn‖

≤ ‖χn‖2O(~3/2)

= N~(B, δ)O(~3/2).

As a result, we obtain

〈V 〉(n) = N~(B, δ)
(
V (q) +

~
4

(B(n))−1
kl D

2
klV (q) +O(~3/2)

)
= N~(B, δ)

(
V (q) +

~
4

tr
(

(B(n))−1D2V (q)
)

+O(~3/2)

)
.

Hence we have the asymptotic expansion (29) along with (30). �

4.2. Hamiltonian Dynamics of Semiclassical Wave Packets. Now that we have both the

symplectic forms {Ω(n)
M }n∈Nd

0
and the Hamiltonians {H(n)}n∈Nd

0
associated with the semiclassical

wave packets {χn(y; · )}n∈Nd
0
, we may formulate Hamiltonian dynamics for each of them:

Theorem 4.4 (Hamiltonian dynamics of semiclassical wave packets). Suppose that the potential

V satisfies the conditions stated in Proposition 4.1. Then, for any n ∈ Nd0, the Hamiltonian

vector field XH(n) ∈ X(M) associated with the semiclassical wave packet χn(y; · ) is defined by

iX
H(n)

Ω
(n)
M = dH(n) or

q̇ =
p

m
, ṗ = −DqV

(n)
~ (q,B),

Ȧ = − 1

m

(
A2 − 1

2
(B(n)Λ(n)B + BΛ(n)B(n))

)
−D2V (q), Ḃ(n) = − 1

m
(AB(n) + B(n)A),

φ̇ =
p2

2m
− V (q)− ~

2m
tr(Λ(n)B), δ̇ =

~
2m

trA,

(31)

where the corrected potential V
(n)
~ is defined as

V
(n)
~ (q,B) := V (q) +

~
4

tr
(

(B(n))−1D2V (q)
)
. (32)

Remark 4.5. For the special case with n = (n̄, . . . , n̄) ∈ Nd0 with n̄ ∈ N0, we have Λ(n) = (2n̄+ 1) Id

and B(n) = (2n̄+ 1)−1B. Hence the equations for A and B simplify to those in (2).

Proof. The assertion follows from tedious but straightforward calculations using the formulas for

the symplectic forms {Ω(n)
M }n∈Nd

0
and the Hamiltonians {H(n)}n∈Nd

0
from Propositions 3.1 and 4.1,

respectively. �

5. Symplectic Reduction by Phase Symmetry

The Hamiltonian H(n) found in (30) does not depend on the phase variable φ and hence is

invariant under the S1 phase shift action. Therefore, we can reduce the Hamiltonian dynamics (31)

to a lower-dimensional one by the symplectic (Marsden–Weinstein) reduction [17] (see also Marsden

et al. [18, Sections 1.1 and 1.2]) as is done for the Gaussian case in our earlier work [24]. The
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resulting reduced symplectic structure is much simpler than Ω
(n)
M from Proposition 4.1 and moreover

takes an appealing form: It is given by the classical symplectic form plus an O(~) “correction” term

for any n ∈ Nd0 and similarly for the Hamiltonian as well, hence generalizing the results for the

Gaussian case (n = 0) from our earlier work [24, Theorem 4.1].

5.1. Reduced Symplectic Structures.

Proposition 5.1 (Reduced semiclassical symplectic structures). Let Φ: S1 × M → M be the

S1-action on M defined for any θ ∈ S1 as

Φθ :M→M; (q, p,A,B, φ, δ) 7→ (q, p,A,B, φ+ ~ θ, δ). (33)

Then the corresponding momentum map J
(n)
M : M→ so(2)∗ ∼= R is given by

J
(n)
M (y) = −~N~(B, δ), (34)

and the Marsden–Weinstein quotient

M(n)
~ := (J

(n)
M )−1(−~)/S1 = T ∗Rd × Σd

is equipped with the reduced symplectic form

Ω
(n)
~ = dqi ∧ dpi +

~
4

(B(n))−1
jr (B(n))−1

sk dAjk ∧ dB(n)
rs

= dqi ∧ dpi +
~
4
d(B(n))−1

jk ∧ dAjk,
(35)

where B(n) is defined in (20).

Proof. Let us first find the momentum map corresponding to the above action. It is easy to see

that the action Φ leaves the one-form Θ
(n)
M invariant, i.e., Φ∗θΘ

(n)
M = Θ

(n)
M for any θ ∈ S1, and hence

Φ is symplectic with respect to Ω
(n)
M , i.e., Φ∗θΩ

(n)
M = Ω

(n)
M for any θ ∈ S1. The infinitesimal generator

of the above action corresponding to an arbitrary element ξ in the Lie algebra so(2) ∼= R is

ξM(y) :=
d

dε
Φεξ(y)

∣∣∣∣
ε=0

= ~ ξ
∂

∂φ
.

Since Φ leaves Θ
(n)
M invariant for any n ∈ Nd0, the momentum map J

(n)
M with respect to the symplectic

structure Ω
(n)
M for any n ∈ Nd0 is defined as〈

J
(n)
M (y), ξ

〉
=
〈

Θ
(n)
M (y), ξM(y)

〉
= −~N~(B, δ) ξ

for any ξ ∈ so(2). Hence we obtain (34). So the level set (J
(n)
M )−1(−~) is given by the set of those

parameters that normalize the wave packet χn(y; · ), i.e.,

(J
(n)
M )−1(−~) = {(q, p,A,B, φ, δ) ∈M | N~(B, δ) = 1}

=
{
y = (q, p,A,B, φ, δ) ∈M |

∥∥χn(y; · )
∥∥ = 1

}
.

Therefore, one may solve N~(B, δ) = 1 for δ (see (4)) to have the inclusion i~ : (J
(n)
M )−1(−~)→M

defined as

i~ : (q, p,A,B, φ) 7→
(
q, p,A,B, φ, ~

4
ln

(
(π~)d

detB

))
,
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and hence we have

i∗~Θ
(n)
M = pi dqi −

~
4

tr
(

(B(n))−1dA
)
− dφ.

Therefore,

i∗~Ω
(n)
M = −i∗~dΘ

(n)
M

= −d
(
i∗~Θ

(n)
M
)

= dqi ∧ dpi +
~
4

d(B(n))−1
jk ∧ dAjk.

However, we have the quotient map

π~ : (J
(n)
M )−1(−~)→M(n)

~ := (J
(n)
M )−1(−~)/S1; (q, p,A,B, φ) 7→ (q, p,A,B),

and see that Ω
(n)
~ shown in (35) satisfies π∗~Ω

(n)
~ = i∗~Ω

(n)
M and hence defines the reduced symplectic

form on M(n)
~ ; note that π∗~ is injective because π~ is a surjective submersion. �

5.2. Reduced Hamiltonian Dynamics. Since the Hamiltonian H(n) does not depend on the

phase variable φ, it has the S1-symmetry under the action Φ defined in (33). Therefore we can

reduce the Hamiltonian dynamics (31) to the reduced symplectic manifold M~:

Theorem 5.2 (Reduced semiclassical wave packet dynamics). Suppose that the potential V sat-

isfies the conditions stated in Proposition 4.1. Then the Hamiltonian system (31) on M for the

semiclassical wave packet χn(y; · ) is reduced by the above S1-symmetry to the Hamiltonian system

iX
H

(n)
~

Ω
(n)
~ = dH

(n)
~ (36)

defined on M(n)
~ = T ∗Rd × Σd with the reduced symplectic form (35) and the reduced Hamiltonian

H
(n)

: M(n)
~ → R given by

H
(n)
~ =

p2

2m
+ V (q) +

~
4

(
1

m
tr
(

(B(n))−1(A2 + B2)
)

+ tr
(

(B(n))−1D2V (q)
))

=
p2

2m
+

~
4m

tr
(

(B(n))−1(A2 + B2)
)

+ V
(n)
~ (q,B),

(37)

where the corrected potential V
(n)
~ is defined in (32). Specifically, (36) gives the reduced set of the

semiclassical equations:

q̇ =
p

m
, ṗ = −DqV

(n)
~ (q,B),

Ȧ = − 1

m

(
A2 − 1

2
(B(n)Λ(n)B + BΛ(n)B(n))

)
−D2V (q), Ḃ(n) = − 1

m
(AB(n) + B(n)A).

(38)

Proof. Clearly the Hamiltonian H(n) has the S1-symmetry, i.e., H(n) ◦ Φθ = H(n) for any θ ∈ S1

and so, by the Marsden–Weinstein reduction [17] (see also Marsden et al. [18, Sections 1.1 and

1.2]), the Hamiltonian system (31) reduces to the reduced one (36) with the reduced Hamiltonian

H
(n)
~ defined as H

(n)
~ ◦ π~ = H(n) ◦ i~, which yields (37). It is a straightforward calculation to see

that (36) yields (38). �
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6. Numerical Results

6.1. Problem Setting: Escape from Cubic Potential Well. We performed numerical exper-

iments with the simple one-dimensional potential (i.e., d = 1)

V (x) = 2x2 + x3 + 0.1x4 (39)

and m = 1, and different values of index n and parameter ~. This example is a slightly modified

version of an example from Keller et al. [13, Section 6.4], which in turn is a rescaled version of the

cubic potential example from Prezhdo and Pereverzev [25] with an additional quartic confinement

term to make sure that the potential is bounded from below; see the assumptions in Proposition 4.1.

The initial position of the particle in the phase space is (q(0), p(0)) = (0.25, 1); this gives the

classical total energy Hcl ' 0.641. This is below the local maximum V1 ' 1.703 of the potential

(located at x ' 1.73) and hence the solution (q(t), p(t)) to the classical Hamiltonian system in (2)

gives a periodic orbit confined in the potential well; see Fig. 2.

x

V (x)

−0.25−10/3

Hcl

V1 ' 1.703

−1.73−2.5

Figure 2. Potential (39). Hcl is the classical Hamiltonian p2/(2m) + V (q) with initial

condition (q(0), p(0)) = (0.25, 1); the green dot and arrow on the x-axis indicate the initial

position and velocity of the particle. The fact that Hcl < V1 implies that the classical

trajectory following (2) is trapped in the potential well.

However, the semiclassical Hamiltonian dynamics (38) with the same initial condition (q(0), p(0))

may not be confined in the potential well because it is a Hamiltonian system in the higher-

dimensional space T ∗Rd × Σd. We set the initial condition for (A,B) as (A(0),B(0)) = (0, 1);

the phase is set as φ(0) = 0 because it is irrelevant to the dynamics of observables; δ(0) is set so

that the initial wave function is normalized. This means that the initial wave function

ψ(0, x) = χn(q(0), p(0),A(0),B(0), φ(0), δ(0);x) (40)

is the Hermite function with index n ∈ N0 because the ground state χ0 and the ladder operators

become those of the harmonic oscillator; see (1) and (11).

6.2. Results. We computed the solutions of the classical system (the first two equations of (2))

and the Hamiltonian system (38) for the semiclassical wave packet χn. Also, for a reference solution

(〈x̂〉(t), 〈p̂〉(t)) of the expectation value dynamics, we used a method based on Egorov’s Theorem
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with the phase space density developed in [13] (essentially equivalent to the Initial Value Rep-

resentation (IVR) method [20–22, 30] often used by chemical physicists). It is known that such

Egorov-type/IVR algorithms give an O(~2) approximation to the expectation value dynamics of

the Schrödinger equation (6), and hence provide a very good alternative to the exact solution in

the semiclassical regime ~� 1.

We used the Störmer–Verlet method [29] to solve the classical Hamiltonian system and the

variational splitting integrator of Faou and Lubich [3] (see also Lubich [15, Section IV.4]) for

the semiclassical solution; the time step is 0.01 in all the cases. It is easy to show that the

variational splitting integrator preserves the symplectic structure (35), and its limit as ~ → 0

gives the Störmer–Verlet method [29]. The Egorov-type algorithm involves averaging of solutions

of the classical Hamiltonian system with numerous initial conditions sampled with respect to the

initial phase space densities corresponding to the initial wave function (40). Again the classical

Hamiltonian system is solved using the Störmer–Verlet method and 100, 000 initial conditions are

sampled to ensure accuracy.

The phase space plots of the results with n = 1, 3, 5, 10 are shown in Figs. 3–5 for ~ =

0.05, 0.025, 0.01. Fig. 6 shows the time evolution of the classical energy Hcl = p2/(2m) + V along

the classical solution, the semiclassical energy H
(n)
~ along the semiclassical solution, and the expec-

tation value 〈Ĥ〉 along the solutions of the Egorov-type algorithm. They are shown for 0 ≤ t ≤ T

where T ' 3.39 is the period of the classical solution. The classical solution is trapped inside the

potential well as explained earlier. On the other hand, the semiclassical energy or Hamiltonian H
(n)
~

in (37) becomes larger for larger values of ~ and n, and significantly deviates from the classical

energy Hcl; see Fig. 6 to see how H
(n)
~ changes as ~ becomes larger. As a result, the solutions

escape from the potential well for relatively large values of ~ and n whereas it is trapped inside

the well for some small values of ~ and n. However, note that, unlike the classical case, H
(n)
~ < V1

does not necessarily imply that the trajectory is trapped inside the well because, as mentioned

above, the semiclassical dynamics is a Hamiltonian system on T ∗Rd × Σd and so the level set of

the Hamiltonian does not necessarily define a closed curve in T ∗Rd even with H
(n)
~ < V1. This is

in fact the case for, e.g., ~ = 0.025 and n = 5, 10; see Figs. 4 and 6.

More importantly, the semiclassical solutions show a very good agreement with the reference

solutions computed by the Egorov-type algorithm. Note that these solutions are computed using

completely different methods: one from a single semiclassical Hamiltonian system (38) whereas the

other by sampling numerous solutions of the classical Hamiltonian system.

However, there is an issue with the semiclassical solutions as well. The solutions of the semi-

classical system (38) deviate from the reference solutions after a while as we can see in some of

the solutions in the figures. In fact, it is known that approximation methods using semiclassical

wave packets are usually valid only in the Ehrenfest time scale, i.e., t ∼ ln(1/~); see, e.g., Hagedorn

and Joye [9], Combescure and Robert [1], and Schubert et al. [26]. It is because the wave packet

becomes very widespread, i.e., the parameter B—which controls the width of the wave packet—

becomes significantly small in the Ehrenfest time scale. The Ehrenfest time scales in our settings

are roughly the same as the period T ' 3.39 of the classical solution. This issue seems to exacerbate
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the errors in the numerical solution; see, for example the behavior of the Hamiltonian for ~ = 0.025

and n = 10 in Fig. 6.
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(d) n = 10

Figure 3. Phase space plot of escape from cubic potential well; ~ = 0.05, n = 1, 3, 5, 10.

Plotted for 0 ≤ t ≤ T (unless the solution goes outside the range), where T ' 3.39 is

the period of the classical solution. The solution to the classical Hamiltonian system (or

the first two equations of (2); dotted and blue) is trapped inside the potential well. The

solutions of the semiclassical system (31) (solid and red) escape from the potential well

inside, and show a very good agreement with the solutions (dashed and green) obtained

by an algorithm based on Egorov’s Theorem (or the IVR method) for a short time.
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