Sampling

- SAMPLING PROCESS
- Convert $x(t)$ to numbers $x[n]$
- " n " is an integer; $x[n]$ is a sequence of values
- Think of " n " as the storage address in memory
- UNIFORM SAMPLING at $\mathrm{t}=\mathrm{nTs}$
- IDEAL: $x[n]=x(n T s)$
- SAMPLING RATE (fs)
- fs $=1 / \mathrm{Ts}$
- NUMBER of SAMPLES PER SECOND
- Ts = 125 microsec,
- fs = 8000 samples/sec (Hz)
- HOW OFTEN ?
- DEPENDS on FREQUENCY of SINUSOID
- ANSWERED by SHANNON/NYQUIST Theorem
- ALSO DEPENDS on "RECONSTRUCTION"

Reconstruction

- Given the samples, draw a sinusoid through the values

When " n " is an integer
$\cos (0.4 \pi n)$ or
$\cos (2.4 \pi n)$

$$
x[n]=\cos (0.4 \pi n)
$$

Time axis n

- CONVERT STREAM of NUMBERS to $x(t)$
- "CONNECT THE DOTS"
- INTERPOLATION
- Math model

$$
y(t)=\sum_{n=-\infty}^{\infty} y[n] p\left(t-n T_{s}\right)
$$

Linear Filtering

- Background: Signals and Systems
- Let $\delta[k]$ be a discrete-time impulse function, a.k.a. the Kronecker delta function:

$$
\delta[k]= \begin{cases}1 & k=0 \\ 0 & k \neq 0\end{cases}
$$

- Impulse response $\boldsymbol{h}[\boldsymbol{k}]$: response of a discretetime LTI system to a discrete impulse function
- We are interested in Finite impulse response filter
- Non-zero extent of impulse response is finite
- Can be in continuous time or discrete time
- Also called a tapped delay line

Discrete-time Convolution

- By linear and time-invariant properties, linear convolution
- For each value of k, compute a different (possibly) infinite summation for $y[k]$

$$
y[k]=x[k] * h[k]=\sum_{m=-\infty}^{\infty} x[m] h[k-m]=\sum_{m=-\infty}^{\infty} h[m] x[k-m]
$$

Linear Time-Invariant Systems

- The Fundamental Theorem of Linear Systems
- Inputs a complex sinusoid into an LTI system, the output
- a complex sinusoid of the same frequency
- scaled by the response of the LTI system at that frequency
- Scaling may attenuate the signal and shift it in phase
- Example in discrete time. Let $x[k]=e^{j \Omega k}$,

$$
y[k]=\sum_{m=-\infty}^{\infty} e^{j \Omega(k-m)} h[m]=e^{j \Omega k} \underbrace{\sum_{m=-\infty}^{\infty} h[m] e^{-j \Omega m}}_{H(\Omega)}=e^{j \Omega k} H(\Omega)
$$

- $H(\Omega)$ is the discrete-time Fourier transform of $h[k]$ and is also called the frequency response

Frequency Response

- For discrete-time systems, response to complex sinusoid is

Example: Ideal Delay

- Continuous Time

Delay by T seconds

$$
y(t)=x(t-T)
$$

Impulse response

$$
h(t)=\dot{\delta}(t-T)
$$

Frequency response

$$
\begin{aligned}
& H(\Omega)=e^{-j \Omega T} \\
& |H(\Omega)|=1 \\
& \angle H(\Omega)=-\Omega T
\end{aligned}
$$

- Discrete Time

Delay by 1 sample

$$
y[k]=x[k-1]
$$

Impulse response

$$
h[k]=\delta[k-1]
$$

Frequency response

$$
\begin{aligned}
& H(\omega)=e^{-j \omega} \\
& |H(\omega)|=1 \\
& \angle H(\omega)=-\omega
\end{aligned}
$$

First-order difference FIR filter

- Highpass filter (sharpens input signal)
- Impulse response is $\{1,-1\}$

Example

- input: $u(t)=3 \delta(t-1)+2 \delta(t-3)$
- impulse response:
- $h(t)=e^{-t}$ for $t \geq 0$ and 0 Otherwise
- output: $y(t)=3 h(t-1)+2 h(t-3)$

Mandrill Demo (DSP First)

- From lowpass filter to highpass filter
- original \rightarrow blurry \rightarrow sharpened
- From highpass to lowpass filter
- original \rightarrow sharpened \rightarrow blurry
- Frequencies that are zeroed out (e.g. DC) can never be recovered
- Order of two LTI systems in cascade can be switched under the assumption that the computations are performed in exact precision

Finite Impulse Response (FIR) Filters

- Duration of impulse response $h[k]$ is finite,

$$
y[k]=x[k] * h[k]=\sum_{m=-\infty}^{\infty} h[m] x[k-m]=\sum_{m=0}^{N-1} h[m] x[k-m]
$$

- Output depends on current input and previous $N-1$ inputs
- N input samples in the vector

$$
\{x[k], x[k-1], \ldots, x[k-(N-1)]\}
$$

- N nonzero values of the impulse response in vector

$$
\{h[0], h[1], \ldots, h[N-1]\}
$$

- What instruction set/architecture features would you add to accelerate FIR filtering?

Discrete-time Tapped Delay Line

- Assuming that $h[k]$ has finite duration from $k=0, \ldots, N-1$

$$
y[k]=\sum_{m=0}^{N-1} h[m] x[k-m]
$$

- Block diagram of an implementation (Direct Form)

Operation of FIR Filter

- The filter output calculation within a sliding window
- $x[n]$ is a list of numbers indexed by " n "

$$
y[n]=\frac{1}{3}(x[n]+x[n+1]+x[n+2])
$$

n	$n<-2$	-2	-1	0	1	2	3	4	5	$n>5$
$x[n]$	0	0	0	2	4	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{2}$	0	0
$y[n]$	0	$\frac{2}{3}$	2	4	$\frac{14}{3}$	$\mathbf{4}$	${ }^{2}$	$\frac{\overline{3}}{3}$	0	0

FIR Implementation: Circular Buffer

- Shifting the elements in the entire array is inefficient

- Better approach is to use circular buffers and updating address index

Circular Buffer Implementation in C

- Oldest input sample $x[n-(N-1)]$ is $\mathrm{h}[\mathrm{N}-1]$ with the largest index
- The newest sample $x[n]$ is multiplied by the $\mathrm{h}[0]$ with the smallest index.
- When a new sample is received at time n , it is written over the sample at location oldest=newest +1 modulo N and newest is incremented modulo N

Array Index	Coeff. h[]	Circ buf $\mathrm{x}[\mathrm{]}$
0	$\mathrm{~h}[0]$	$\mathrm{x}[\mathrm{n}$-newest $]$
1	$\mathrm{~h}[1]$	$\mathrm{x}[\mathrm{n}$-newest+1]
$:$		
$:$		$\mathrm{x}[\mathrm{n}-1]$
newest		$\mathrm{x}[\mathrm{n}]$
oldest		$\mathrm{x}[\mathrm{n}-\mathrm{N}+1]$
$:$		
$:$		
$\mathrm{N}-2$	$\mathrm{~h}[\mathrm{~N}-2]$	$\mathrm{x}[\mathrm{n}-$ newest-2]
$\mathrm{N}-1$	$\mathrm{~h}[\mathrm{~N}-1]$	$\mathrm{x}[\mathrm{n}-$ newest-1]

- Thus, data samples are written into the array in a circular fashion.

$$
y[n]=\sum_{k=0}^{N-1} h[k] x \operatorname{circ}[\bmod (n e w e s t-k, N)]
$$

Convolution Demos

- Johns Hopkins University Demonstrations
- http://www.jhu.edu/~signals
- Convolution applet to animate convolution of simple signals and hand-sketched signals
- Convolving two rectangular pulses of same width gives a triangle whose width is twice the width of the rectangular pulses

