
Sampling
� SAMPLING PROCESS

� Convert x(t) to numbers x[n]
� “n” is an integer; x[n] is a sequence of values
� Think of “n” as the storage address in memory

� UNIFORM SAMPLING at t = nTs
� IDEAL: x[n] = x(nTs)

� SAMPLING RATE (fs)
� fs =1/Ts

� NUMBER of SAMPLES PER SECOND
� Ts = 125 microsec,

� fs = 8000 samples/sec (Hz)

� HOW OFTEN ?
� DEPENDS on FREQUENCY of SINUSOID
� ANSWERED by SHANNON/NYQUIST Theorem
� ALSO DEPENDS on “RECONSTRUCTION”

© 2003-2006 James H. McClellan and Ronald W. Schafer

Reconstruction

� Given the samples, draw a sinusoid through
the values

� CONVERT STREAM of NUMBERS to x(t)
� “CONNECT THE DOTS”
� INTERPOLATION

� Math model

Time axis n

© 2003-2006 James H. McClellan and Ronald W. Schafer

[] cos(0.4)x n nπ=

cos(0.4) or

cos(2.4)

n

n

π
π

When “n” is

an integer

Linear Filtering
� Background: Signals and Systems

� Let δδδδ[k] be a discrete-time impulse function, a.k.a.
the Kronecker delta function:

� Impulse response h[k]: response of a discrete-
time LTI system to a discrete impulse function

� We are interested in Finite impulse response filter
� Non-zero extent of impulse response is finite
� Can be in continuous time or discrete time
� Also called a tapped delay line

[]
�
�
�

≠
=

=
00

01

k

k
kδ

[] [] [] [] [] [] []��
∞

−∞=

∞

−∞=

−=−=∗=
mm

mkxmhmkhmxkhkxky

Discrete-time Convolution
� By linear and time-invariant properties, linear

convolution

� For each value of k, compute a different
(possibly) infinite summation for y[k]

y[k] = h[0] x[k] + h[1] x[k-1]

= (x[k] + x[k-1]) / 2
k

h[k]

2

1

Averaging filter
impulse response

Linear Time-Invariant Systems
� The Fundamental Theorem of Linear Systems

� Inputs a complex sinusoid into an LTI system, the output
� a complex sinusoid of the same frequency
� scaled by the response of the LTI system at that frequency

� Scaling may attenuate the signal and shift it in phase
� Example in discrete time. Let x[k] = e j Ω k,

� H(Ω) is the discrete-time Fourier transform of h[k] and is
also called the frequency response

()

()

()Ω=== Ω

Ω

∞

−∞=

Ω−Ω
∞

−∞=

−Ω �� Heemhemheky kj

H

m

mjkj

m

mkj][][][
�� ��� ��

Frequency Response
� For discrete-time systems, response to

complex sinusoid is

()
() () ()()ωω

ωωω

ωω

 cos cos

jj

kjjkj

eHkeHk

eeHe

∠+→

→
frequency response

Example: Ideal Delay
� Continuous Time

Delay by T seconds

Impulse response

Frequency response

� Discrete Time
Delay by 1 sample

Impulse response

Frequency response

())(Ttxty −=

T
x(t) y(t)

())(Ttth −= δ

()
()
() TH

H
eH Tj

1 ||

Ω−=Ω∠
=Ω

=Ω Ω−

]1[][−= kxky

1−z
x[k] y[k]

]1[][−= kkh δ

()
()
() ωω
ω

ω ω

1 ||

−=∠
=

= −

H
H

eH j

First-order difference FIR filter

� Highpass filter (sharpens input signal)
� Impulse response is {1, -1}

[]]1[][−−= kxkxky k

h[k]

1

First-order difference
impulse response

1−

Example
� input: u(t) = 3 (t − 1) + 2 (t − 3)

� impulse response:
� h(t) = e−t for t 0 and 0 Otherwise

� output: y(t) = 3h(t − 1) + 2h(t − 3)

Mandrill Demo (DSP First)
� From lowpass filter to highpass filter

� original → blurry → sharpened

� From highpass to lowpass filter
� original → sharpened → blurry

� Frequencies that are zeroed out (e.g. DC)
can never be recovered

� Order of two LTI systems in cascade can be
switched under the assumption that the
computations are performed in exact
precision

Finite Impulse Response (FIR) Filters
� Duration of impulse response h[k] is finite,

� Output depends on current input and previous N-1 inputs
� N input samples in the vector

� N nonzero values of the impulse response in vector

� What instruction set/architecture features would you
add to accelerate FIR filtering?

[] [] [] [] [] [] []��
−

=

∞

−∞=

−=−=∗=
1

0

N

mm

mkxmhmkxmhkhkxky

{ })]1([...,],1[],[−−− Nkxkxkx

{ }]1[...,],1[],0[−Nhhh

�
−

=
−=

1

0

][][][
N

m

mkxmhky

Discrete-time Tapped Delay Line
� Assuming that h[k] has finite duration from

k =0,…,N-1

� Block diagram of an implementation (Direct
Form)

z-1 z-1 z-1…

…

x[k]

Σ y[k]

h[0] h[1] h[2] h[N-1]

Operation of FIR Filter
� The filter output calculation within a sliding

window
� x[n] is a list of numbers indexed by “n”

“ n” is the time

FIR Implementation: Circular Buffer
� Shifting the elements in the entire array is

inefficient

� Better approach is to use circular buffers and
updating address index

4

3

2

1

3

2

1
0

Time index � n-1 n

�address index

0

1

4

1

3

22

3

Time index� n-1 n

�starting of
address index

3

2

1
0 1

4

3

2

Circular Buffer Implementation in C
� Oldest input sample x[n-(N-1)] is

h[N-1] with the largest index

� The newest sample x[n] is
multiplied by the h[0] with the

smallest index.

� When a new sample is received
at time n, it is written over the
sample at location
oldest=newest+1 modulo N and
newest is incremented modulo N

x[n-newest-1]h[N-1]N-1

x[n-newest-2]h[N-2]N-2

:

:

x[n-N+1]oldest

x[n]newest

x[n-1]:

:

x[n-newest+1]h[1]1

x[n-newest]h[0]0

Circ buf x[]Coeff. h[]Array Index

� Thus, data samples are written into the array in a circular fashion.

Convolution Demos
� Johns Hopkins University Demonstrations

� http://www.jhu.edu/~signals

� Convolution applet to animate convolution of
simple signals and hand-sketched signals

� Convolving two rectangular pulses of same width
gives a triangle whose width is twice the width of
the rectangular pulses

