
Sampling
� SAMPLING PROCESS

� Convert x(t) to numbers x[n]
� “n” is an integer; x[n] is a sequence of values
� Think of “n” as the storage address in memory

� UNIFORM SAMPLING at t = nTs
� IDEAL: x[n] = x(nTs)

� SAMPLING RATE (fs)
� fs =1/Ts

� NUMBER of SAMPLES PER SECOND
� Ts = 125 microsec, 

� fs = 8000 samples/sec (Hz)

� HOW OFTEN ?
� DEPENDS on FREQUENCY of SINUSOID
� ANSWERED by SHANNON/NYQUIST Theorem
� ALSO DEPENDS on “RECONSTRUCTION”
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Reconstruction

� Given the samples, draw a sinusoid through 
the values

� CONVERT STREAM of NUMBERS to x(t)
� “CONNECT THE DOTS”
� INTERPOLATION

� Math model

Time axis n
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Linear Filtering
� Background: Signals and Systems

� Let δδδδ[k] be a discrete-time impulse function, a.k.a. 
the Kronecker delta function:

� Impulse response h[k]: response of a discrete-
time LTI system to a discrete impulse function

� We are interested in Finite impulse response filter
� Non-zero extent of impulse response is finite
� Can be in continuous time or discrete time
� Also called a tapped delay line
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Discrete-time Convolution
� By linear and time-invariant properties, linear 

convolution

� For each value of k, compute a different 
(possibly) infinite summation for y[k]

y[k] = h[0] x[k] + h[1] x[k-1]

= ( x[k] + x[k-1] ) / 2
k

h[k]
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Averaging filter 
impulse response



Linear Time-Invariant Systems
� The Fundamental Theorem of Linear Systems

� Inputs a complex sinusoid into an LTI system, the output 
� a complex sinusoid of the same frequency 
� scaled by the response of the LTI system at that frequency

� Scaling may attenuate the signal and shift it in phase
� Example in discrete time.  Let x[k] = e j Ω  k,

� H(Ω) is the discrete-time Fourier transform of h[k] and is 
also called the frequency response
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Frequency Response
� For discrete-time systems, response to 

complex sinusoid is
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Example: Ideal Delay
� Continuous Time

Delay by T seconds

Impulse response

Frequency response

� Discrete Time
Delay by 1 sample

Impulse response

Frequency response
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First-order difference FIR filter

� Highpass filter (sharpens input signal) 
� Impulse response is {1, -1}

[ ] ]1[][ −−= kxkxky k

h[k]

1

First-order difference 
impulse response

1−



Example
� input: u(t) = 3 (t − 1) + 2 (t − 3)

� impulse response:
� h(t) = e−t for t 0 and 0 Otherwise

� output: y(t) = 3h(t − 1) + 2h(t − 3)



Mandrill Demo (DSP First)
� From lowpass filter to highpass filter

� original → blurry → sharpened

� From highpass to lowpass filter
� original → sharpened → blurry

� Frequencies that are zeroed out (e.g. DC) 
can never be recovered

� Order of two LTI systems in cascade can be 
switched under the assumption that the 
computations are performed in exact 
precision



Finite Impulse Response (FIR) Filters
� Duration of impulse response h[k] is finite,

� Output depends on current input and previous N-1 inputs
� N input samples in the vector

� N nonzero values of the impulse response in vector 

� What instruction set/architecture features would you 
add to accelerate FIR filtering?
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Discrete-time Tapped Delay Line
� Assuming that h[k] has finite duration from    

k =0,…,N-1

� Block diagram of an implementation (Direct 
Form)

z-1 z-1 z-1…

…

x[k]

Σ y[k]

h[0] h[1] h[2] h[N-1]



Operation of FIR Filter
� The filter output calculation within a sliding 

window
� x[n] is a list of numbers indexed by “n”

“ n” is the time



FIR Implementation: Circular Buffer
� Shifting the elements in the entire array is 

inefficient

� Better approach is to use circular buffers and 
updating address index
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Circular Buffer Implementation in C
� Oldest input sample x[n-(N-1)] is 

h[N-1] with the largest index

� The newest sample x[n] is 
multiplied by the h[0] with the 

smallest index.

� When a new sample is received 
at time n, it is written over the 
sample at location 
oldest=newest+1 modulo N and 
newest is incremented modulo N

x[n-newest-1]h[N-1]N-1

x[n-newest-2]h[N-2]N-2

:

:

x[n-N+1]oldest

x[n]newest

x[n-1]:

:

x[n-newest+1]h[1]1

x[n-newest]h[0]0

Circ buf x[ ]Coeff. h[ ]Array Index

� Thus, data samples are written into the array in a circular fashion.



Convolution Demos
� Johns Hopkins University Demonstrations

� http://www.jhu.edu/~signals

� Convolution applet to animate convolution of 
simple signals and hand-sketched signals

� Convolving two rectangular pulses of same width 
gives a triangle whose width is twice the width of 
the rectangular pulses


