Sampling

e SAMPLING PROCESS
Convert x(t) to numbers x[n]
“n” Is an integer; X[n] is a sequence of values
Think of “n” as the storage address in memory

e UNIFORM SAMPLING att=nTs
IDEAL: X[n] = x(nTs)
e SAMPLING RATE (fs)
fs =1/Ts
NUMBER of SAMPLES PER SECOND
Ts = 125 microsec,
fs = 8000 samples/sec (Hz)

e HOW OFTEN ?
DEPENDS on FREQUENCY of SINUSOID
ANSWERED by SHANNON/NYQUIST Theorem
ALSO DEPENDS on “RECONSTRUCTION”"

© 2003-2006 James H. McClellan and Ronald W. Schafer

Reconstruction

e Given the samples, draw a sinusoid through
the values

L

When “n” is I il
an integer ST [l Tt XN =cos(0.4/m)
cos(0.47m) or | .. . & & . . JEFULEEVY
cos(2.47m) | _ JTimea;dsn | } --
e CONVERT STREAM of NUMBERS to x(t)
“CONNECT THE DOTS”
INTERPOLATION

Math model e
y(t) = Z y[n]p(t — nTy)

n=—00

© 2003-2006 James H. McClellan and Ronald W. Schafer

Linear Filtering

e Background: Signals and Systems

Let O[k] be a discrete-time impulse function, a.k.a.
the Kronecker delta function:

5[k]:<

Impulse response h|
time LTI system to a

We are interested In

1 k=0
0 k#0

K]: response of a discrete-
discrete impulse function

Finite impulse response filter

Non-zero extent of impulse response is finite
Can be in continuous time or discrete time
Also called a tapped delay line

Discrete-time Convolution

e By linear and time-invariant properties, linear
convolution

For each value of k, compute a different
(possibly) infinite summation for y[K]

ylk] = K] Th[k] = mix[m] [k —m] = mih[m] [k = m

n[K] Averaging filter

m impulse response
yIKl = h[O] X[K] + h[1] X[k-1] E % T
= (X[K] +x[k-1])/ 2

O O
Y Y k

Linear Time-Invariant Systems

e The Fundamental Theorem of Linear Systems
Inputs a complex sinusoid into an LTI system, the output
a complex sinusoid of the same frequency
scaled by the response of the LTI system at that frequency
Scaling may attenuate the signal and shift it in phase
Example in discrete time. Let x[k] = e €Kk,

yikl= S el 2k mhm) =% Y Him] e 19" = e 24K (Q)

m=—oo mM=-—o00

4 mey y

H(Q) is the discrete-time Fourier transform of h[k] and is
also called the frequency response

Frequency Response

e For discrete-time systems, response to
complex sinusoid Is

eja)k @ eja)k
frequency response—caglik) - ‘ H e"“’)‘cos(a)k+DH(ej“’))

Example: Ideal Delay

e Continuous Time e Discrete Time
Delay by T seconds Delay by 1 sample
X0 70, M e M
y(t)=x(t-T) YIK] = Xk ~1]

Impulse response Impulse response
h(t)= ot -T) K] = 8[k —1]

Frequency response Freguency response
(@)= H(w)=e
|H(Q)|=1 IH(w)|=1

OH(Q)=-QT OH(w)=-w

First-order difference FIR filter

e Highpass filter (sharpens input signal)
Impulse response is {1, -1}

h[K] First-order difference
Impul se response

1 ©-

Vk]= Xk -xk-g_

Example

e Input: u(t) =30(t—1) + 25(t — 3)
e Impulse response:
h(t) = et fort 2 0 and 0 Otherwise

e output: y(t) = 3h(t — 1) + 2h(t — 3)

- 2=
5 l
S 0L
| |
0 2 3 - 5 6

Mandrill Demo (DSP First)

e From lowpass filter to highpass filter
original - blurry - sharpened

e From highpass to lowpass filter
original —» sharpened - Dblurry

e Frequencies that are zeroed out (e.g. DC)
can never be recovered

e Order of two LTI systems in cascade can be
switched under the assumption that the
computations are performed in exact
precision

Finite Impulse Response (FIR) Filters

e Duration of impulse response h[k] is finite,

y[k] = x[k] Dh[k] = i h[m] x[k - m] = :Z;:h[m] x[k - m]

m=—oco

Output depends on current input and previous N-1 inputs
N input samples in the vector

{ K],k =1,..., Xk = (N 1]}
N nonzero values of the impulse response in vector

{ O], h[1],....nA[N-1] }

e What instruction set/architecture features would you
add to accelerate FIR filtering?

Discrete-time Tapped Delay Line

e Assuming that h[k] has finite duration from
k =0,...,N-1

VIKI= Y. hml k=]

e Block diagram of an implementation (Direct
Form)

Operation of FIR Filter

e The filter output calculation within a sliding
window

e X|n] is a list of numbers indexed by “n”

¥[n] = Ytx[n] + x[n + 1] + x[n + 2))

n n<=2|=2]=1lof1l2l3lals]n>s
x[n] 0 0 0O 1241016 | 4/|2]|0 0
y[n] 0 2 (4|84 =0 | o0
1 €] FIR Filtering
(a weighted sum over past, present, and future points)
YT N\ ™

” e \ “n” Iis the time
‘~|_,,/ i)
0 £

FIR Implementation: Circular Buffer

e Shifting the elements in the entire array IS
iInefficient

Timeindex > n—l/\ n

< address index

3
2

1
0

=] N W S

e Better approach is to use circular buffers and
updating address index

Time index-> n—17<n\\
69 3 69
Ol 1

Al RN w

< starting of
address index

Circular Buffer Implementation

e Oldest input sample x[n-(N-1)] is
n[N-1] with the largest index

e The newest sample x[n] is
multiplied by the h[0] with the

smallest index.

e When a new sample is received
at time n, it is written over the
sample at location
oldest=newest+1 modulo N and
newest is incremented modulo N

In C

Array Index Coeff. h[] Circ buf X[]
0 h[0] X[n-newest]
1 h[1] X[n-newest+1]
X[n-1]
newest X[n]
oldest X[N-N+1]
N-2 h[N-2] X[n-newest-2]
N-1 h[N-1] X[n-newest-1]

e Thus, data samples are written into the array in a circular fashion.

N-1

y[n] = Z hlk]xcirc[mod(newest — k, N)]

k=0

Convolution Demos

e Johns Hopkins University Demonstrations

Convolution applet to animate convolution of
simple signals and hand-sketched signals

Convolving two rectangular pulses of same width
gives a triangle whose width is twice the width of
the rectangular pulses

