Sampling

- SAMPLING PROCESS
 - Convert x(t) to numbers x[n]
 - "n" is an integer; x[n] is a sequence of values
 - Think of "n" as the storage address in memory
- UNIFORM SAMPLING at t = nTs
 - IDEAL: x[n] = x(nTs)
- SAMPLING RATE (fs)
 - fs =1/Ts
 - NUMBER of SAMPLES PER SECOND
 - Ts = 125 microsec,
 - fs = 8000 samples/sec (Hz)
- HOW OFTEN ?
 - DEPENDS on FREQUENCY of SINUSOID
 - ANSWERED by SHANNON/NYQUIST Theorem
 - ALSO DEPENDS on "RECONSTRUCTION"

Reconstruction

 Given the samples, draw a sinusoid through the values

- CONVERT STREAM of NUMBERS to x(t)
 - "CONNECT THE DOTS"
 - INTERPOLATION
 - Math model

$$y(t) = \sum_{n=-\infty}^{\infty} y[n]p(t - nT_s)$$

Linear Filtering

- Background: Signals and Systems
 - Let δ[k] be a discrete-time impulse function, a.k.a. the Kronecker delta function:

$$\delta[k] = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$

- Impulse response *h[k]*: response of a discretetime LTI system to a discrete impulse function
- We are interested in Finite impulse response filter
 - Non-zero extent of impulse response is finite
 - Can be in continuous time or discrete time
 - Also called a tapped delay line

Discrete-time Convolution

- By linear and time-invariant properties, linear convolution
 - For each value of k, compute a different (possibly) infinite summation for y[k]

$$y[k] = x[k] * h[k] = \sum_{m=-\infty}^{\infty} x[m]h[k-m] = \sum_{m=-\infty}^{\infty} h[m]x[k-m]$$

$$h[k] \qquad \text{Averaging filter impulse response}$$

$$y[k] = h[0] x[k] + h[1] x[k-1] \qquad \frac{1}{2} \qquad k$$

$$= (x[k] + x[k-1])/2$$

Linear Time-Invariant Systems

- The Fundamental Theorem of Linear Systems
 - Inputs a complex sinusoid into an LTI system, the output
 - a complex sinusoid of the same frequency
 - scaled by the response of the LTI system at that frequency
 - Scaling may attenuate the signal and shift it in phase
 - Example in discrete time. Let $x[k] = e^{j\Omega k}$,

$$y[k] = \sum_{m=-\infty}^{\infty} e^{j\Omega(k-m)} h[m] = e^{j\Omega k} \sum_{\substack{m=-\infty\\ H(\Omega)}}^{\infty} h[m] e^{-j\Omega m} = e^{j\Omega k} H(\Omega)$$

 H(Ω) is the discrete-time Fourier transform of h[k] and is also called the frequency response

Frequency Response

• For discrete-time systems, response to complex sinusoid is

$$e^{j\omega k} - H(e^{j\omega}) e^{j\omega k}$$

frequency response $\cos(\omega k) \rightarrow H(e^{j\omega}) |\cos(\omega k + \angle H(e^{j\omega}))|$

Example: Ideal Delay

• Continuous Time Delay by *T* seconds $\xrightarrow{x(t)} T \xrightarrow{y(t)}$ y(t) = x(t-T)

> Impulse response $h(t) = \delta(t - T)$ Frequency response $H(\Omega) = e^{-j\Omega T}$ $|H(\Omega)| = 1$ $\angle H(\Omega) = -\Omega T$

• Discrete Time Delay by 1 sample x[k] z^{-1} y[k]

$$y[k] = x[k-1]$$

Impulse response $h[k] = \delta[k-1]$ Frequency response $H(\omega) = e^{-j\omega}$ $|H(\omega)| = 1$ $\angle H(\omega) = -\omega$

First-order difference FIR filter

- Highpass filter (sharpens input signal)
 - Impulse response is {1, -1}

Example

- input: $u(t) = 3\delta(t-1) + 2\delta(t-3)$
- impulse response:
 - $h(t) = e^{-t}$ for $t \ge 0$ and 0 Otherwise
- output: y(t) = 3h(t-1) + 2h(t-3)

Mandrill Demo (DSP First)

- From lowpass filter to highpass filter
 - original \rightarrow blurry \rightarrow sharpened
- From highpass to lowpass filter
 - original \rightarrow sharpened \rightarrow blurry
- Frequencies that are zeroed out (e.g. DC) can never be recovered
- Order of two LTI systems in cascade can be switched under the assumption that the computations are performed in exact precision

Finite Impulse Response (FIR) Filters

• Duration of impulse response *h*[*k*] is finite,

$$y[k] = x[k] * h[k] = \sum_{m=-\infty}^{\infty} h[m] x[k-m] = \sum_{m=0}^{N-1} h[m] x[k-m]$$

- Output depends on current input and previous *N*-1 inputs
- N input samples in the vector

$$\{x[k], x[k-1], ..., x[k-(N-1)]\}$$

• *N* nonzero values of the impulse response in vector

$${h[0], h[1], ..., h[N-1]}$$

• What instruction set/architecture features would you add to accelerate FIR filtering?

Discrete-time Tapped Delay Line

 Assuming that *h*[*k*] has finite duration from *k* =0,...,*N*-1

$$y[k] = \sum_{m=0}^{N-1} h[m] x[k-m]$$

• Block diagram of an implementation (*Direct Form*)

Operation of FIR Filter

- The filter output calculation within a sliding window
- x[n] is a list of numbers indexed by "n"

 $y[n] = \frac{1}{3}(x[n] + x[n+1] + x[n+2])$

n	n < -2	-2	-1	0	1	2	3	4	5	<i>n</i> > 5
<i>x</i> [<i>n</i>]	0	0	0	2	4	6	4	2	0	0
y[n]	0	$\frac{2}{3}$	2	4	$\frac{14}{3}$	4	Z	$\frac{2}{3}$	0	0

FIR Implementation: Circular Buffer

Shifting the elements in the entire array is inefficient

Time index \rightarrow n-1

←address index

 Better approach is to use circular buffers and updating address index

Circular Buffer Implementation in C

- Oldest input sample x[n-(N-1)] is h[N-1] with the largest index
- The newest sample x[n] is multiplied by the h[0] with the smallest index.
- When a new sample is received at time n, it is written over the sample at location oldest=newest+1 modulo N and newest is incremented modulo N

Array Index	Coeff. h[]	Circ buf x[]			
0	h[0]	x[n- <i>newest</i>]			
1	h[1]	x[n- <i>newest</i> +1]			
:					
:		x[n-1]			
newest		x[n]			
oldest		x[n-N+1]			
:					
:					
N-2	h[N-2]	x[n- <i>newest</i> -2]			
N-1	h[N-1]	x[n- <i>newest</i> -1]			

• Thus, data samples are written into the array in a circular fashion.

$$y[n] = \sum_{k=0}^{N-1} h[k]xcirc[mod(newest - k, N)]$$

Convolution Demos

- Johns Hopkins University Demonstrations
 - http://www.jhu.edu/~signals
 - Convolution applet to animate convolution of simple signals and hand-sketched signals
 - Convolving two rectangular pulses of same width gives a triangle whose width is twice the width of the rectangular pulses