

Why Senior Design Project?

Ideal World	Real World
supposes that there is one right answer a given question.	supposes that there are many workable solutions but that, among workable solutions, some are much better than others.
involves only one disciplinary perspective or discrete body of knowledge.	is broadly multidisciplinary.
is bounded more than it is constrained, largely because it is abstracted from context.	is unbounded and fully embedded in context.
deals with components rather than with systems.	deals with systems rather than components.
typically requires great powers of imagination to develop an understanding of the social and ethical context of the work in question.	provides direct experience of the social and ethical impacts of technology and of the human and organizational dynamics that characterize the context of engineering practice.
• Thus, the major design experience needs to introduce students to the	
messiness of "the real world."	

From Meeting ABET Criterion 4: From Specific Examples to General Guidelines, with Heinz Luegenbiehl and Kay Neeley. 2004 ASEE Annual Conference Proceedings, June 2004

Supplemental Texts

- S. A. Tretter, Comm. system design using DSP algorithms: with lab experiments for the TMS320C601 and TMS320C6711,
 - Assumes DSP theory, algorithm, and processor knowledge
- J. H. McClellan, R. W. Schafer, and M. A. Yoder, Signal Processing First, 2003
 - DSP theory and algorithms at sophomore level
- R. Chassaing, Digital Signal Processing: Lab. Experiments Using C and the TMS320C31DSK
 - DSP processor tutorial with source code examples

- Review of Complex Numbers
- Digital signal processing
 - Signals, sampling, filtering, and quantization
 - Oversampling and data converters
- Digital signal processor (DSP) architectures
 - Harvard architecture, special addressing modes
 - Parallel instructions, pipelining, real-time programming
- Digital communications
 - Analog/digital, modulation/demodulation
 - Pulse shaping and pseudo-noise sequences

Signal Processing Systems

- Speech synthesis and speech recognition
- Audio CD players
- Audio compression (MP3, AC3)
- Image compression (JPEG, JPEG 2000)
- Optical character recognition
- Video CDs (MPEG 1)
- DVD, digital cable, and HDTV (MPEG 2)
- Wireless video (MPEG 4/H.263)

- Voiceband Dialup/Fax modems
- Digital subscriber line (DSL) modems
 - ISDN: 144 kilobits per second (kbps)
 - Business/symmetric: HDSL and HDSL2
 - Home/asymmetric: ADSL and VDSL
- Cable modems
- Cell phones
 - First generation (1G): AMPS
 - Second generation (2G): GSM, IS-95 (CDMA)
 - Third generation (3G): cdma2000, WCDMA

