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Fundamentals of Microelectronics
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� CH2  Basic Physics of Semiconductors

� CH3  Diode Circuits

� CH4  Physics of Bipolar Transistors

� CH5  Bipolar Amplifiers

� CH6  Physics of MOS Transistors
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� CH8  Operational Amplifier As A Black Box
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Chapter 2    Basic Physics of Semiconductors 

� 2.1  Semiconductor materials and their  properties

� 2.2  PN-junction diodes

� 2.3  Reverse Breakdown
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Semiconductor Physics

� Semiconductor devices serve as heart of microelectronics.

� PN junction is the most fundamental semiconductor 
device. 
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Charge Carriers in Semiconductor

� To understand PN junction’s IV characteristics, it is 
important to understand charge carriers’ behavior in solids, 
how to modify carrier densities, and different mechanisms 
of charge flow.
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Periodic Table

� This abridged table contains elements with three to five 
valence electrons, with Si being the most important.
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Silicon

� Si has four valence electrons.  Therefore, it can form 
covalent bonds with four of its neighbors. 

� When temperature goes up, electrons in the covalent bond 
can become free. 
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Electron-Hole Pair Interaction

� With free electrons breaking off covalent bonds, holes are 
generated.

� Holes can be filled by absorbing other free electrons, so 
effectively there is a flow of charge carriers.
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Free Electron Density at a Given Temperature 

� Eg, or bandgap energy determines how much effort is 
needed to break off an electron from its covalent bond.

� There exists an exponential relationship between the free-
electron density and bandgap energy.

3150

3100

32/315

/1054.1)600(

/1008.1)300(

/
2

exp102.5

cmelectronsKTn

cmelectronsKTn

cmelectrons
kT

E
Tn

i

i

g

i

×==

×==

−
×=



9/6/2010

5

CH2    Basic Physics of Semiconductors 9

Doping (N type)

� Pure Si can be doped with other elements to change its 
electrical properties.

� For example, if Si is doped with P (phosphorous), then it 
has more electrons, or becomes type N (electron). 
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Doping (P type)

� If Si is doped with B (boron), then it has more holes, or 
becomes type P. 
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Summary of Charge Carriers
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Electron and Hole Densities

� The product of electron and hole densities is ALWAYS 
equal to the square of intrinsic electron density regardless 
of doping levels. 
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First Charge Transportation Mechanism:  Drift

� The process in which charge particles move because of an 
electric field is called drift.  

� Charge particles will move at a velocity  that is proportional 
to the electric field.
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Current Flow:  General Case

� Electric current is calculated as the amount of charge in v 
meters that passes thru a cross-section if the charge travel 
with a velocity of v m/s. 
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Current Flow:  Drift

� Since velocity is equal to µµµµE, drift characteristic is obtained 
by substituting V with µµµµE in the general current equation.

� The total current density consists of both electrons and 
holes.
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Velocity Saturation

� A topic treated in more advanced courses is velocity 
saturation.

� In reality, velocity does not increase linearly with electric 
field.  It will eventually saturate to a critical value.
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Second Charge Transportation Mechanism:  
Diffusion

� Charge particles move from a region of high concentration 
to a region of low concentration.  It is analogous to an every 
day example of an ink droplet in water.  
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Current Flow:  Diffusion

� Diffusion current is proportional to the gradient of charge 
(dn/dx) along the direction of current flow. 

� Its total current density consists of both electrons and 
holes.
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Example:  Linear vs. Nonlinear Charge Density 
Profile

� Linear charge density profile means constant diffusion 
current, whereas nonlinear charge density profile means 
varying diffusion current. 
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Einstein's Relation

� While the underlying physics behind drift and diffusion 
currents are totally different, Einstein’s relation provides a 
mysterious link between the two.
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PN Junction (Diode)

� When N-type and P-type dopants are introduced side-by-
side in a semiconductor, a PN junction or a diode is formed. 

CH2    Basic Physics of Semiconductors 22

Diode’s Three Operation Regions 

� In order to understand the operation of a diode, it is 
necessary to study its three operation regions:  equilibrium, 
reverse bias, and forward bias.
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Current Flow Across Junction:  Diffusion

� Because each side of the junction contains an excess of 
holes or electrons compared to the other side, there exists 
a large concentration gradient.  Therefore, a diffusion 
current flows across the junction from each side. 
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Depletion Region

� As free electrons and holes diffuse across the junction, a 
region of fixed ions is left behind.  This region is known as 
the “depletion region.”  
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Current Flow Across Junction:  Drift

� The fixed ions in depletion region create an electric field 
that results in a drift current. 
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Current Flow Across Junction:  Equilibrium

� At equilibrium, the drift current flowing in one direction 
cancels out the diffusion current flowing in the opposite 
direction, creating a net current of zero.

� The figure shows the charge profile of the PN junction.
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Built-in Potential

� Because of the electric field across the junction, there 
exists a built-in potential.  Its derivation is shown above.
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Diode in Reverse Bias 

� When the N-type region of a diode is connected to a higher 
potential than the P-type region, the diode is under reverse 
bias, which results in wider depletion region and larger 
built-in electric field across the junction.
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Reverse Biased Diode’s Application:  Voltage-
Dependent Capacitor

� The PN junction can be viewed as a capacitor.  By varying 
VR, the depletion width changes, changing its capacitance 
value; therefore, the PN junction is actually a voltage-
dependent capacitor.  

CH2    Basic Physics of Semiconductors 30

Voltage-Dependent Capacitance

� The equations that describe the voltage-dependent 
capacitance are shown above.   
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Voltage-Controlled Oscillator

� A very important application of a reverse-biased PN 
junction is VCO, in which an LC tank is used in an 
oscillator.  By changing VR, we can change C, which also 
changes the oscillation frequency. 

LC
f

res

1

2

1

π
=

CH2    Basic Physics of Semiconductors 32

Diode in Forward Bias

� When the N-type region of a diode is at a lower potential 
than the P-type region, the diode is in forward bias.

� The depletion width is shortened and the built-in electric 
field decreased.
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Minority Carrier Profile in Forward Bias

� Under forward bias, minority carriers in each region 
increase due to the lowering of built-in field/potential.  
Therefore, diffusion currents  increase to supply these 
minority carriers.  
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Diffusion Current in Forward Bias

� Diffusion current will increase in order to supply the 
increase in minority carriers.  The mathematics are shown 
above.
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Minority Charge Gradient

� Minority charge profile should not be constant along the x-
axis; otherwise, there is no concentration gradient and no 
diffusion current.

� Recombination of the minority carriers with the majority 
carriers accounts for the dropping of minority carriers as 
they go deep into the P or N region. 
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Forward Bias Condition:  Summary

� In forward bias, there are large diffusion currents of 
minority carriers through the junction.  However, as we go 
deep into the P and N regions, recombination currents from 
the majority carriers dominate.  These two currents add up 
to a constant value. 
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IV Characteristic of PN Junction

� The current and voltage relationship of a PN junction is 
exponential in forward bias region, and relatively constant  
in reverse bias region.
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Parallel PN Junctions

� Since junction currents are proportional to the junction’s 
cross-section area.  Two PN junctions put in parallel are 
effectively one PN junction with twice the cross-section 
area, and hence twice the current.
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Constant-Voltage Diode Model 

� Diode operates as an open circuit if VD< VD,on and a 
constant voltage source of VD,on if VD tends to exceed 
VD,on.
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Example:  Diode Calculations

� This example shows the simplicity provided by a constant-
voltage model over an exponential model.  

� For an exponential model, iterative method is needed to 
solve for current, whereas constant-voltage model requires 
only linear equations.
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Reverse Breakdown

� When a large reverse bias voltage is applied, breakdown 
occurs and an enormous current flows through the diode.
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Zener vs. Avalanche Breakdown

� Zener breakdown is a result of the large electric field inside 
the depletion region that breaks electrons or holes off their 
covalent bonds.

� Avalanche breakdown is a result of electrons or holes 
colliding with the fixed ions inside the depletion region.  


