UNIVERSITY OF TEXAS AT DALLAS

Department of Electrical Engineering
EE/TE 4367 - Telecommunications Switching \& Transmission
Solution \#3
Date assigned: $\quad 1 / 24 / 2008$
Date due: $\quad 1 / 31 / 2008$

Solution 3.1

(a) Additional two bits of coding would allow a quadrupling in the dynamic range, or 12 dB . If the quantization intervals are decreased by $3 \mathrm{~dB}, 9 \mathrm{~dB}$ of the maximum amplitude (Amax) of dynamic range increase remains.
(b) If the sampling rate is reduced to $(0.7)(8000)=5600 \mathrm{~Hz}$, the number of bits per sample can be increased to $(8) /(0.7)=11.4$ bits per sample and maintain the same data rate. The additional 3.4 bits per sample allows the SQR to increase by (3.4)(6.02)=20.6 dB.

Solution 3.2 (optional)

(a) To solve the first part of the problem, you only need to use the μ law function:

$$
F_{\mu}(x)=\operatorname{sgn}(x) \frac{\ln (1+\mu|x|)}{\ln (1+\mu)}
$$

The maximum volts is 2 volts. Thus, find $x=0.42 / 2$. Insert $\mu=255$ in the above function.

$$
F_{255}(0.21) \times 127=91.6
$$

Round this down to the nearest integer as 91 . Convert 91 (in decimal) to 7-bit binary word as 1011011. Add the polarity bit " 0 " to make it an 8 -bit word as 01011011 . For negative voltages, the polarity bit is " 1 ". Thus, for a -0.21 volts, the result would have been 11011011.
(b) You need the appendix B in Digital Telephony. Therefore, you are not required to study the part (b).

Solution 3.3

Sampling rate $=1.1(4.2 \times 2)=9.24 \mathrm{MHz}$
$\mathrm{SQR}=1.76+6.02 \mathrm{n}+20 \log _{10}\left(\frac{A}{A_{\max }}\right)$
With $A=A_{\max }$ and $\mathrm{SQR}=30 \mathrm{~dB}$ (given), $\mathrm{n}=4.69 \approx 5 \mathrm{bits} /$ sample
Minimum bit rate $=9.24 \times 5=46.2 \mathrm{Mbps}$

