Digital Switching

EE4367 Telecom. Switching \& Transmission
Prof. Murat Torlak

Switching

\square A switch transfers signals from one input port to an appropriate output.
\square A basic problem is then how to transfer traffic to the correct output port.
\square In the early telephone network, operators closed circuits manually. In modern circuit switches this is done electronically in digital switches.
If no circuit is available when a call is made, it will be blocked (rejected). When a call is finished a connection teardown is required to make the circuit available for another user.

Crossbar Switch

\square A crossbar switch with N input lines and N output lines contains an $N \times N$ array of cross points that connect each input line to one output line. In modern switches, each cross point is a semiconductor gate.

Switching Functions

\square Recall basic elements of communications network:
\square Terminals, transmission media, and switches
\square Basic function of any switch is to set up and release connections between transmission channels on an "asneeded basis"
\square Computers are used to control the switching functions of a central office

EE4367 Telecom. Switching \& Transmission

Switching Types

\square Two different switching technologies

- Circuit switching
\square Packet switching

Circuit-Switched Network

\square Circuit-Switched network assigns a dedicated communication path between the two stations. It involves
\square Point to Point from terminal node to network
\square Internal Switching and multiplexing among switching nodes.

- Data Transfer.
- Circuit Disconnect.
- Blocking Networks (voice)
\square Advantages
- Non-Blocking Networks (computer)
- Once connection is established
\square Network is transparent.
- Nodes seems to be directly connected.
\square Fixed data rate with no delay.
\square Disadvantages
\square Can be inefficient
- Resources are dedicated to
- Connection even if no data is sent.
\square Delay prior to usage of connection
EE4367 Telecom. Switching \& Transmission

Space Division Switching

\square Developed for analog environment
\square Separate physical paths
\square Recall Cross bar switch

\square The no. of cross points grows with square of the lines attached. $\mathrm{N} \times \mathrm{N}$ array of crosspoints
\square The loss of cross point means the loss of connection between the corresponding points.

- Only fraction of the cross points are used even when all the points are fully active. (sqrt of cross points)
- Non-blocking switching type.
- Less signaling requirement from the network.

EE4367 Telecom. Switching \& Transmission

Multistage Switches

\square Multistage switch
\square Less no. of cross points are needed.
\square More than one route for a connection.
\square More signaling from the network.
\square A blocking switching type (voice)

EE4367 Telecom. Switching \& Transmission

Nonblocking Switching

\square When a multistage switch becomes nonblocking?
\square The multistage switch with $\mathrm{k}=2 \mathrm{n}-1$ is nonblocking
\square The number of crosspoints required in a three stage switch is the sum of the following components
$\square N / n \times n k+k \times(N / n)^{2}+N / n \times n k=2 N k+k(N / n)^{2}$

EE4367 Telecom. Switching \& Transmission

Blocking Probabilities

\square Strictly nonblocking switches are rarely needed in most voice telephone networks.
\square Switching systems and the number of circuits in interoffice trunk groups are sized to service most requests (not all) as they occur
\square Economics dictates that network implementations have limited capacities that occasionally exceeded during peak-traffic situations
\square Equipment for the public telephone network is designed to provide a certain maximum probability of blocking for the busiest hour of the day.
\square Grade of service of the telephone company depends on the blocking probability, availability, transmission quality, and delay
\square Residential lines are busy $5-10 \%$ of the time during the busy hour
\square Network-blocking occurrences on the order of 1% during the busy hour do not represent a significant reduction in the ability to communicate since the called party is much more likely to have been busy anyway.

EE4367 Telecom. Switching \& Transmission

Evaluation of Blocking Probability

\square Probability graphs as proposed C. Y. Lee

- Simplifying approximations are needed
\square Formulas directly relate to the underlying network structures
\square Notation
$\square p \rightarrow$ represents the fraction of the time that a particular link is in use (or p is the probability that a link is busy)
- $q=1-p$ is the probability that the link is idle.
\square When any one of n parallel links can be used to complete a connection, the composite blocking probability B is the probability that all links are busy

$$
B=p^{n}
$$

\square When a series of n links are all needed to complete a connection, the blocking probability is mostly determined as 1 minus the probability that they are all available

$$
B=1-q^{n}
$$

Probability Graph

\square Any particular connection can be established with k different paths
\square One through each center-stage array
$B=$ probability that all paths are busy
$=$ probability that an arbitrary path is busy
$=$ probability that at least one link in a path is busy $)^{k}$
$=\left(1-\left(q^{\prime}\right)^{2}\right)^{k}$
where $k=$ number of center-stage arrays

$q^{\prime}=$ probability that an interstage link is idle, $=1-p$ '
\square If the probability p that an inlet is busy is known, the probability p^{\prime} that an interstage link is busy can be determined as

$$
p^{\prime}=\frac{p}{\beta} \quad(p<\beta) \quad \text { where } \quad \beta=k / n
$$

\square There are $\beta=k / n$ times as many interstage links as there are inlets and outlets. The percentage of interstage links that are busy is reduced by the factor β. If β is less than 1 , then the first stage is concentrating the incoming traffic.

EE4367 Telecom. Switching \& Transmission

Three-Stage Switch Design

\square The blocking probability of a three-stage switch in terms of the inlet utilization p :

$$
B=\left[1-\left(1-\frac{p}{\beta}\right)^{2}\right]^{k}
$$

Time-Division Switching

\square Mostly all modern circuit switches are time-division switches.
\square Time-slot interexchange (TSI)
\square It is based on synchronous TDM.
\square Multiple low speed inputs share a high speed line.
\square There is no need for address bits in each slot (synchronous)

- The slot could be a bit, a byte or a longer block.

$$
\text { Maximum \# of slots=125/(2×t } \left.{ }_{c}\right)
$$

$\mathrm{t}_{\mathrm{c}}=$ memory cycle time $(\mu \mathrm{sec})$
Time-slot interchange

MUX/TSI/DEMUX

\square Incoming data slots are written into sequential locations of the data store memory.
\square Data words fro outgoing time slots, are read from addresses obtained from a control store

Sequential writes/ random reads

EE4367 Telecom. Switching \& Transmission

Switch Matrix Control

\square Crosspoint selection within a matrix is accomplished in one of two ways.
\square Input-associated control
\square Output-associated control

Hybrid Switches

\square Hybrid switch design (or two dimensional switching)
\square Time-Space switch
\square Space-Time-Space switch
\square Time-Space-Time switch

Time-Space switch

EE4367 Telecom. Switching \& Transmission

Implementation Complexity of TDS

\square Total number of crosspoints alone is a less meaningful measure of implementation cost
\square We have to include cost of the implementation including control bits
\square Cost of number bits vs cost of crosspoints, (we use the ratio as 100)
\square Complexity $=N_{x}+N_{B} / 100$
$\square N_{\mathrm{X}}=$ Number of space stage crosspoints
$\square N_{B}$ is number of bits of memory and control

Implementation Complexity Example

\square Determine the implementation complexity of the TS switch shown in previous slide:

- \# of TDM input lines $N=80$
\square Each input contains a single DS1 signal (24 channels).
\square Assume a one-stage matrix is used for the space stage
\square Number of cross points: $N x=80^{2}=6400$

Implementation Complexity

\square Total number of memory bits
\square space stage control store $\rightarrow N_{B X}=$ (number of links)(number of control words)(number of bits per control word)

- $N _\{B X\}=(80)(24)(7)=13,440$
\square Time stage $N_{B T}=$ time slot interchange memory + control
$=$ (number of links)*number of channels)(number of bits per channel)+(number of links)(number of control words)(number of bits per control word)

$$
N_{B T}=(80)(24)(8)+(80)(24)(5)=24960
$$

\square Complexity $=\mathrm{N}_{\mathrm{X}}+\left(\mathrm{N}_{\mathrm{BX}}+\mathrm{N}_{\mathrm{BT}}\right) / 100=6784$ equivalent crosspoints

Space-Time-Space Switch

$$
B=\left(1-\left(q^{\prime}\right)^{2}\right)^{k}
$$

\square where $q^{\prime}=1-p \prime=1-p / \beta \quad \beta=k / N$

$\square \mathrm{k}=$ number of center-stage time switch arrays
\square Assume that each TDM link has c message channels
Complexity of STS switch= number of space stage crosspoints + (number of space stage control bits + number of time stage memory bits+ number of time stage control bits)/100
Complexity $=2 \mathrm{kN}+\left(2 \mathrm{kclog}_{2} \mathrm{~N}+\mathrm{kc}(8)+\mathrm{kclog}_{2} \mathrm{c}\right) / 100$

Example

\square Determine the implementation complexity of a 2048channel STS switch implemented for 16 TDM links with 128 channels on each link. The desired maximum blocking probability is 0.002 for channel occupancies of 0.1
$\square k=7, B=0.002$

- $N_{x}=(2)(7)(16)=224$
$\square N_{B}=(2)(7)(128)(4)+(7)(128)(8)+(7)(128)(7)=20608$
$\square \mathrm{N}=\mathrm{N}_{\mathrm{X}}+\mathrm{N}_{\mathrm{B}} / 100=430$

TST Switch

\square TST switch structure

EE4367 Telecom. Switching \& Transmission

TSSST Switching Structure

\square Multistage switches

No. 4 ESS Toll Switch

\square Electronic Switching System
\square Time-space-time with four stages in the space switch

EE4367 Telecom. Switching \& Transmission

