REVIEW (Terminology)

\square Polar signaling
\square Baud rate (symbol rate)
\square Bipolar signaling (coding)
\square Central office
\square Circuit switching
\square C-message weighting
\square Common-channel signaling, Inband signaling
Companding
\square Crosstalk, far-end crosstalk (FEXT), near-end crosstalk
$\square \mathrm{dBm}$, dBrnC, dBrnC0
\square Delta modulation, slope overload
\square DTMF Signaling
\square Echo, echo canceller, echo suppressor, talker echo, listener echo

REVIEW (Terminology)

\square Multiplexing, FDM, TDM

- Full-duplex, half-duplex
\square Gaussian noise
- HDB3

Hybrid, two-wire circuit, four-wire circuit

- ITU
\square Line code, NRZ, RZ
LATA
- Modem

Multi-frequency signaling
\square Nyquist rate
\square Power spectral density

- PAM, PCM
\square Quantization noise
\square Regeneration, repeater
\square Robbed bit signaling

EE4367 Telecom. Switching \& Transmission

REVIEW (Terminology)

\square Tandem office, Trunk
\square On-off signaling
\square T1 carrier system
\square DS0, DS1, DS2, DS3
\square Error performance, PER, CRCER
\square SQR, SNR

EE4367 Telecom. Switching \& Transmission

Decibel Questions

\square There are three networks in series. The first network has a gain of 19 dB , the second a loss of 23 dB , the third a gain of 11 dB . The output of the third network is +23 dBm . What is the input to the first network in mW ?

Transmission

\square What are the three basic impairments (not echo or singing) we have to deal with regarding the voice channel?

Noise Power Levels

\square Relationships between various noise measurements

$$
\begin{aligned}
& \text { Y dBrn=X dBm+90dB } \\
& \text { Y dBrnC }=X \mathrm{dBrn}-2 \mathrm{~dB}
\end{aligned}
$$

\square Example: An idle-channel noise power measurement of 21 dBrn occurs at a -7 dB TLP. Express the noise power of this measurement in $\mathrm{dBrn0}$ and determine what power measurement this noise would produce at another point in the circuit that is designated as a -2 dB TLP.
$\square \mathrm{dBrn0}=\mathrm{dBrn}-(\mathrm{TLP} \mathrm{dB})$ or dBrn=dBrn0+(TLP dB)

Voice Digitization

$\square S Q R=10.8+20 \log _{10}(\mathrm{v} / \mathrm{q}), \mathrm{v} \rightarrow$ rms amplitude of the input
\square For a sinewave input $v^{2}=A^{2} / 2, S Q R=7.78+20 \log _{10}(A / q)$
$\square \mathrm{q}=2 \mathrm{~A}_{\max } / 2^{\mathrm{n}} \rightarrow \mathrm{SQR}=1.76+6.02 \mathrm{n}+20 \log _{10}\left(\mathrm{~A} / \mathrm{A}_{\max }\right)$
\square Dynamic Range $=20 \log _{10}\left(\mathrm{~V}_{\text {max }} / \mathrm{V}_{\text {min }}\right)$
\square Example: If two bits per sample are added to a PCM bit stream, how much can the dynamic range be increased if the quantization intervals are adjusted to improve the SQR by 3 dB ?

PSD of Line Codes

\square Example: The duobinary line coding (proposed by Lender) is also like bipolar, but requires only half the bandwidth of bipolar. In this code

- A "0" is transmitted by no pulse,
- A " 1 " is transmitted by a pulse $f(t)$ or $-f(t)$ using the following rule:
- A " 1 " is encoded by the same pulse as that used for the previous " 1 ", if there is even number of " 0 " s between them.
- It is encoded by a pulse of opposite polarity if there is an odd number of 0 's between them.
- The number 0 is considered an even number.
a) Using the half-width pulse $f(t)$, sketch the duobinary signal $y(t)$ for an input sequence 11010010101110001
b) Determine R_{0} for this code if " 0 " and " 1 " are equally likely.

