REVIEW III

EE4367 Telecom. Switching \& Transmission

REVIEW (Terminology)

\square Packet switching
\square Datagram
\square Gaussian noise
\square Internet
\square Message switching
\square QAM
\square Intersymbol interference
\square Pulse shaping
\square Router
\square OSI reference model
\square TCP/IP reference model
\square Transmission Control Protocol (TCP)
\square Internet Protocol (IP)
\square Layering

EE4367 Telecom. Switching \& Transmission

REVIEW (Terminology)

\square Connectionless packet switching (datagram packet switching)
\square Virtual packet switching

EE4367 Telecom. Switching \& Transmission

Digital Modulation

For BPSK signaling over an AWGN channel in which the two binary signals are transmitted with equal likelihood, the probability of bit error is given by

$$
P_{b}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right) \approx e^{-E_{b} / N_{0}}
$$

where E_{b} is the signal bit energy and $N_{0} / 2$ is the two-sided noise PSD. Suppose that the ratio E_{b} / N_{0} is 10 dB .
a) Calculate the probability of bit error for BPSK signaling in the AWGN channel.
b) Suppose $\mathrm{N}_{0} / 2=0.5 \times 10^{-10}$ watts $/ \mathrm{Hz}, \mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}=10 \mathrm{~dB}$, and the data rate is $R_{b}=100 \mathrm{kbps}$. Calculate the amplitude of the low-pass rectangular envelope.
c) Calculate $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ (approximately) for a target probability of bit error of 10^{-3}

Cellular Communications

\square If the received power at a distance of 2 km is equal to $2 \mu \mathrm{~W}$, find the received powers at $3 \mathrm{~km}, 6 \mathrm{~km}$, and 15 km for a path loss exponent of 3.8

Cellular Communications

\square For acceptable performance, the signal-to-interference (SIR) ratio must be at least 20 dB . What must be the value of the cluster size N ? Assume γ to be equal to 3 .

Cellular Communications

\square Identify the rest of cell numbers in the following 4 cluster cellular layout.

Delay in Packet Switching

\square Two choices of packet length are being considered:

- Option 1: a packet contains 10 miliseconds of speech and audio information
- Option 2: a packet contains 100 miliseconds of speech and audio information. Each packet has a 40 byte header.
a) For each option find out what percentage of each packet is header overhead.
b) Draw a time diagram and identify all the components of the end-to-end delay. Keep it in mind that a packet cannot be sent until it has been filled and that a packet cannot be relayed until it is completely received (that is, store and forward). Assume no bit errors

EE4367 Telecom. Switching \& Transmission

Delay in Packet Switching

\square Evaluate all the delay components for which you have been given sufficient information. Consider both choices of packet length. Assume that the signal propagates at a speed of $1 \mathrm{~km} / 5$ microseconds.
\square Solution

\mathbf{H}	10 ms message

\rightarrow Number of message bits $=10 / 1000 * 1 \mathrm{Mbps}=10 \mathrm{~Kb}$ Overhead=40*8/(10000+320)=3.1\%
H 100 ms message
\rightarrow Number of message bits $=100 / 1000 * 1 \mathrm{Mbps}=100 \mathrm{~Kb}$
Overhead $=40 * 8 /(100000+320)=0.32 \%$

EE4367 Telecom. Switching \& Transmission

