REVIEW III

REVIEW (Terminology)

- Packet switching
- 🖵 Datagram
- Gaussian noise
- Internet
- Message switching
- QAM
- Intersymbol interference
- Pulse shaping
- Router
- OSI reference model
- TCP/IP reference model
- Transmission Control Protocol (TCP)
- Internet Protocol (IP)
- Layering

REVIEW (Terminology)

- Connectionless packet switching (datagram packet switching)
- Virtual packet switching

Digital Modulation

For BPSK signaling over an AWGN channel in which the two binary signals are transmitted with equal likelihood, the probability of bit error is given by

$$P_b = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) \approx e^{-E_b/N_0}$$

where E_b is the signal bit energy and $N_0/2$ is the two-sided noise PSD. Suppose that the ratio E_b/N_0 is 10 dB.

- a) Calculate the probability of bit error for BPSK signaling in the AWGN channel.
- b) Suppose $N_0/2=0.5 \times 10^{-10}$ watts/Hz, $E_b/N_0=10$ dB, and the data rate is $R_b=100$ kbps. Calculate the amplitude of the low-pass rectangular envelope.
- c) Calculate E_b/N_0 (approximately) for a target probability of bit error of 10^{-3}

Cellular Communications

□ If the received power at a distance of 2 km is equal to 2µW, find the received powers at 3 km, 6 km, and 15 km for a path loss exponent of 3.8

Cellular Communications

□ For acceptable performance, the signal-to-interference (SIR) ratio must be at least 20 dB. What must be the value of the cluster size N? Assume γ to be equal to 3.

Cellular Communications

Identify the rest of cell numbers in the following 4 cluster cellular layout.

Delay in Packet Switching

- Two choices of packet length are being considered:
 - Option 1: a packet contains 10 miliseconds of speech and audio information
 - Option 2: a packet contains 100 miliseconds of speech and audio information. Each packet has a 40 byte header.
- a) For each option find out what percentage of each packet is header overhead.
- b) Draw a time diagram and identify all the components of the endto-end delay. Keep it in mind that a packet cannot be sent until it has been filled and that a packet cannot be relayed until it is completely received (that is, store and forward). Assume no bit errors

Delay in Packet Switching

Evaluate all the delay components for which you have been given sufficient information. Consider both choices of packet length. Assume that the signal propagates at a speed of 1 km/5 microseconds.

Solution

H 10 ms message	→ Number of message bits=10/1000*1Mbps=10Kb Overhead=40*8/(10000+320)=3.1%	
Н	100 ms message	
\rightarrow Number of message b		age bits=100/1000*1Mbps=100Kb
		(1/100000,000) 0.000/

Overhead=40*8/(100000+320)=0.32%

