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Abstract— Many important complex networks, including crit-
ical infrastructure and emerging industrial automation systems,
are becoming increasingly intricate webs of interacting feedback
control loops. A fundamental concern is to quantify the control
properties and performance limitations of the network as a
function of its dynamical structure and control architecture.
We study performance bounds for networks in terms of optimal
feedback control costs. We provide a set of complementary
bounds as a function of the system dynamics and actuator
structure. For unstable network dynamics, we characterize a
tradeoff between feedback control performance and the number
of control inputs, in particular showing that optimal cost can
increase exponentially with the size of the network. We also
derive a bound on the performance of the worst-case actuator
subset for stable networks, providing insight into dynamics
properties that affect the potential efficacy of actuator selection.
We illustrate our results with numerical experiments that
analyze performance in regular and random networks.

I. INTRODUCTION

Recent spectacular advances in computation and commu-
nication technologies are transforming our ability to control
complex networked systems. Critical infrastructure, indus-
trial automation systems, and many other technological and
social networks crucial to modern society are becoming
increasingly intricate webs of interacting feedback loops.
As this complexity increases, a fundamental concern is to
quantify the control properties and performance limitations
of the network as a function of its dynamical structure and
control architecture.

A variety of metrics can be used to quantify notions of
network controllability. Significant recent research has been
devoted to studying connections between such notions and
the structural properties of the network, and to studying
algorithms for designing networks with good controllability
properties. One broad line of work has focused on classical
binary controllability metrics based on Kalman rank [1]–
[8]. Another line of work has focused on metrics based on
the Gramian [9]–[13]. These binary and open-loop notions
fail to capture essential feedback and robustness properties,
and other recent work has considered more general optimal
control and estimation metrics [14]–[18].

An important part of understanding network controllability
in terms of any metric is expressing fundamental perfor-
mance limitations. A clear understanding of performance
limitations can set practical expectations and guide the
design and analysis of network control architectures. Recent
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work on performance limitations and network controllability
include [9] in the context of the Gramian, and [18] in the
context of sensor selection and Kalman filtering. However,
to our best knowledge no such studies have been done in a
network context for more general optimal control metrics.

The main contributions of the paper are as follows. First,
we derive a set of complementary performance bounds for
dynamical networks in terms of optimal feedback control
performance. Our bounds are based on the system dynamics
and characterize a tradeoff between achievable feedback
control performance and the actuator structure. In particular,
we show that when the network dynamics are unstable, the
optimal cost can increase exponentially with the size of
the network for any fixed-size actuator set. The implication
of this is that feedback control costs may be extremely
high even with an optimal selection of a fixed number
of actuators. Second, we derive bounds for the worst-case
performance of actuator selection algorithms as a function of
the system dynamics for stable systems, showing that greedy
algorithms for actuator selection cannot produce arbitrarily
bad selections. Finally, we illustrate our results by analyzing
performance in regular and random networks. Even though
the best case actuator selection may result in large feedback
control cost for unstable networks and the worst case actuator
selection cannot be arbitrarily bad for stable networks, we
show that actuator selections can have a significant effect.

The rest of the paper is organized as follows. Section II
provides preliminaries on optimal control. Section III devel-
ops performance bounds based on the system dynamics for
stable and unstable networks. Section IV presents illustrative
numerical experiments. Section V concludes.

Notation. The eigenvalues of a square matrix A are
denoted by λi(A) and ordered |λmax(A)| = |λ1(A)| ≥
|λ2(A)| ≥ · · · ≥ |λn(A)| = |λmin(A)|. The singular
values of a matrix F are denoted by σi(F ) and ordered
σ1(F ) ≥ σ2(F ) ≥ · · · ≥ σn(F ). The condition number
of a matrix V is denoted cond(V ).

II. PRELIMINARIES

We begin by formulating actuator selection problems
based on optimal feedback control performance for linear
dynamical systems with quadratic cost functions. The de-
velopment follows [14], but our focus here is on expressing
fundamental performance bounds for these problems.

A. Deterministic optimal feedback control

The network dynamics are modeled by the discrete-time
linear dynamical system evolving on a graph G = (V, E)

xt+1 = Axt +BSut, t = 0, ..., T, (1)



where xt ∈ Rn is the system state at time t, ut ∈ R|S| is
the input at time t, and A is the network dynamics matrix,
which encodes the weighted connections in the underlying
graph G and we assume to be invertible throughout. Let
B = {b1, ..., bM} be a finite set of n-dimensional column
vectors associated with possible locations for actuators that
could be placed in the network to affect the dynamics of
nodes in the graph. For any subset S ⊂ B, the input
matrix BS comprises the columns indexed by S, i.e., BS =
[bs1 , ..., bs|S| ] ∈ Rn×|S|.

We first consider an optimal open-loop linear quadratic
regulator performance index associated with an input se-
quence u = [uT0 , ..., u

T
T−1]T . The optimal cost function is

V ∗LQR(S, x0) = min
u

T−1∑
t=0

(xTt Qxt + uTt RSut) + xTTQTxT ,

where Q � 0 and QT � 0 are state and terminal cost
matrices and RS � 0 is an input cost matrix associated with
actuator subset S. This standard least squares problem has
the solution

V ∗LQR(S, x0) = xT0 G
T (I +HBSB

T
SH

T )−1G︸ ︷︷ ︸
P0

x0 (2)

where

H = diag(I⊗Q 1
2 , Q

1
2

T )
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G = diag(I ⊗Q 1
2 , Q
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2
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 , BS = diag(BSR
− 1

2

S ).

Alternatively, dynamic programming can be used to compute
the optimal cost matrix P0 via the backward Riccati recursion

Pt−1 = Q+ATPtA−ATPtBS(RS +BTSPtBS)−1BTSPtA,
(3)

for t = T, ..., 1 with PT = QT . The infinite horizon cost
matrix P can be computed from the limit of the recursion,
resulting in the algebraic Riccati equation

P = Q+ATPA−ATPBS(RS +BTSPBS)−1BTSPA. (4)

The optimal cost function (2) quantifies feedback control
performance as a function of the actuator subset and the
initial state. Our performance bounds will be expressed in
terms of worst-case and average values of this cost over
initial states. In particular, we define

ĴLQR(S) = max
‖x0‖=1

V ∗(S, x0) = λmax(P0)

J∗LQR(S) = Ex0V
∗(S, x0) = tr[P0X0],

(5)

where ĴLQR(S) represents a worst-case cost and J∗LQR(S)
represents an average cost over a distribution of initial states
with zero-mean and finite covariance X0.

Actuator selection. The mappings J∗LQR : 2B → R and
ĴLQR : 2B → R shown above are set functions that map
actuator subsets to optimal feedback control performance.
We pose set function optimization problems to select a k-
element subset of actuators to optimize control performance

min
S⊂V, |S|=k

ĴLQR(S), min
S⊂V, |S|=k

J∗LQR(S). (6)

Our performance bounds will also be expressed and inter-
preted in terms of actuator subset selections.

III. BOUNDS ON OPTIMAL FEEDBACK CONTROL
PERFORMANCE

We now develop a set of complementary bounds on the
optimal feedback control performance in networks as a
function of the system dynamics and the actuator subset S.
We start with a worst-case lower bound for the best possible
actuator subset selection for unstable networks. This result
shows that the optimal cost can be exponentially large even
with the best fixed-size set of actuators. We then derive
a worst-case upper bound for the worst possible actuator
subset selection for stable networks. This result shows that
even the worst set of actuators cannot have arbitrarily bad
performance. Our results are inspired by bounds for the
controllability Gramian [9] and an analogous bound for the
Kalman filter in the context of sensor selection for state
estimation [18].

A. Performance bound for unstable network dynamics

We begin with the following performance bound on op-
timal feedback control of networks with unstable open-
loop network dynamics. To simplify the exposition, we will
assume throughout this subsection that B = {e1, ..., en}, the
canonical set of unit vectors (i.e., each input signal affects the
dynamics of a single node), and that RS = I , ∀S. However,
it is straightforward to generalize the results to arbitrary
input vectors and cost matrices. We focus here on the infinite
horizon cost given by the algebraic Riccati equation (4).

Theorem 1: Consider a network G = (V, E) with dy-
namics matrix A and input set S ⊂ B. Suppose that A is
Schur unstable and let λmax(A) > 1 denote the eigenvalue
of A with maximum magnitude. Suppose further that A is
diagonalizable by the eigenvector matrix V , and for any
η ∈ (1, λmax(A)] define

n̄ = |{λ : λ ∈ spec(A), |λ| ≥ η}|.

For all η ∈ (1, λmax(A)] and for any Q � 0 such that
(A,Q

1
2 ) is detectable, it holds

λmax(P ) ≥ cond−2(V )
η2 − 1

η2
η2( n̄

|S|−1), (7)

where P is the optimal closed-loop cost matrix that satisfies
the algebraic Riccati equation (4).



Proof: We first make a connection between the optimal
cost matrix for small Q and a controllability Gramian asso-
ciated with the inverse of the dynamics matrix. Applying the
Woodbury matrix identity to the Riccati recursion (3) yields

Pt−1 = Q+AT (P−1
t +BSR

−1
S BTS )−1A. (8)

As Q→ 0 the inverse cost matrix satisfies

P−1
t−1 = A−1(P−1

t +BSR
−1
S BTS )A−T . (9)

Defining XT−t = P−1
t + BSB

T
S , setting RS = I , and

rearranging, we obtain the recursion

Xτ+1 = A−1XτA
−T +BSB

T
S , τ = 0, ..., T − 1 (10)

with X0 = P−1
T +BSB

T
S = Q−1

T +BSB
T
S . This gives

XT =

T−1∑
τ=0

(A−1)τBSB
T
S (A−T )τ︸ ︷︷ ︸

X̄T

+(A−1)TQ−1
T (A−T )T .

(11)
We see that X̄T is the T -stage controllability Gramian as-
sociated with the system (A−1, BS). Then directly applying
Theorem 3.1 of [9], for any µ ∈ [λmin(A−1), 1) and any
T ∈ [1,∞) it holds that

λmin(X̄T ) ≤ cond2(V )
µ2( n̄

|S|−1)

1− µ2
(12)

where
n̄ = |{λ : λ ∈ spec(A−1), |λ| ≤ µ}|.

Defining η = 1/µ, we see that

n̄ = |{λ : λ ∈ spec(A), |λ| ≥ η}|

and η ∈ (1, λmax(A)]. Since P−1
0 = XT − BSB

T
S , it

follows that λmin(P−1
0 ) ≤ λmin(XT ). Since A has at least

one unstable eigenvalue, then A−1 has at least one stable
eigenvalue, and in this direction the minimum eigenvalue of
the second term in (11) approaches zero as T →∞ for any
fixed QT � 0, so that limT→∞ λmin(XT ) = λmin(X̄T ).
Thus from (12) we have in the limit as T →∞

λmax(P ) ≥ 1/λmin(X̄T )

≥ cond−2(V )(1− µ2)µ−2( n̄
|S|−1)

(13)

Substituting µ = 1/η yields the expression (7).
Finally, this analysis for small Q accounts only for input

energy costs and not for state regulation costs. It is clear
from the structure of the recursion (3) (and from standard
comparison lemmas; see, e.g., Chapter 13 in [19]) that for
any Q � 0 such that (A,Q

1
2 ) is detectable the costs can only

increase. In particular, if PQ→0 denotes the solution to (4)
for small Q and PQ the solution for any Q � 0 such that
(A,Q

1
2 ) is detectable, then PQ � PQ→0. Thus, the bound

remains valid for any such choice of Q.
Discussion. Although our result is inspired by and utilizes

a bound on the minimum eigenvalue of the controllability
Gramian in [9], we emphasize that it is not a trivial inversion
of their bound. The Gramian quantifies input energy required

for state transfer from the origin, so that a limiting feature of
the dynamics is stable modes. In contrast, the optimal cost
matrix quantifies input energy and state regulation costs (to
the origin) for feedback control, and a limiting feature of the
dynamics is unstable modes. Of course, this is as expected,
but one arrives at significantly different conclusions about
how easy or difficult it is to control a network, depending on
which quantitative notion of network controllability is used.
Our bound involves a fundamental closed-loop, feedback
notion of controllability.

The bound expresses a fundamental performance limita-
tion for feedback control of networks with unstable dynam-
ics. Specifically, if the number of unstable modes grows,
then the feedback control costs increase exponentially for
any fixed-size set of actuators, even if they are optimally
placed in the network. An immediate corollary (cf. Corollary
3.3 in [9]) is that in order to guarantee a bound on the
optimal control cost, the number of actuators must be a linear
function of the number of unstable modes, even though a
single actuator may suffice to stabilize the network dynamics
in theory. As in [9] and as we will see in our numerical
experiments, the bound is loose in many cases, so that very
large costs can be incurred even with a small number of
unstable modes.

There are several ways the bound might be improved. It
only accounts for the number of actuators, and not how
effectively they control crucial state space dynamics. It
could be improved, for example, by incorporating the angles
that the input vectors make with the left eigenvectors of
the dynamics matrix. Furthermore, the bound excludes the
contribution of state regulation costs, so a sharper bound
could be developed that includes and distinguishes both. It
would also be interesting to explore possible connections
with classical frequency domain performance limitations,
such as Bode sensitivity theorems.

We conclude this subsection with a corollary that ex-
presses a simplified bound for symmetric networks.

Corollary 1: Consider a network G = (V, E) with dynam-
ics matrix A and input set S ⊂ B. Suppose that A is Schur
unstable and symmetric. Let λmax(A) > 1 denote the eigen-
value of A with maximum magnitude and λ̄u(A) > 1 denote
the unstable eigenvalue of A with minimum magnitude. For
any Q � 0 such that (A,Q

1
2 ) is detectable, it holds

λmax(P ) ≥ max

{
λmax(A)2 − 1

λmax(A)2
,

λ̄u(A)2 − 1

λ̄u(A)2
λ̄u(A)2( n̄

|S|−1)

}
.

(14)

Proof: To obtain the bound for the first term, consider
the controllability Gramian X̄T relating to the inverse cost
matrix for small Q in (11). Let X̄T,B be the Gramian for
S = B. Since X̄T � X̄T,B, it follows that λmin(X̄T ) ≤



λmin(X̄T,B). We then have

λmin(X̄T,B) = λmin

(
T−1∑
τ=0

A−2τ

)
=

1− λmin(A−1)2T

1− λmin(A−1)2

⇒ lim
T→∞

λmin(X̄T,B) =
λmax(A)2

λmax(A)2 − 1
.

(15)
The first part then follows since as T → ∞ we have
λmax(P ) ≥ 1/λmin(X̄T ) ≥ 1/λmin(X̄T,B). The bound
for the second term follows from Theorem 1 with η =
λ̄u(A) > 1 and since the symmetric dynamics matrix admits
an orthonormal eigenvector matrix V with cond(V ) = 1.

B. Performance bound for stable network dynamics

Next we derive a complementary performance bound for
stable network dynamics. It establishes a worst case perfor-
mance bound for actuator subsets produced by any selection
algorithm and quantifies how the difference between the best
and worst possible actuator subsets depends on the network
dynamics. This analysis is inspired by analogous results for
sensor selection in the context of a state estimation metric
involving the Kalman filtering error covariance matrix [18].
We focus here on the infinite horizon cost given by the
solution to the algebraic Riccati equation (4), though it is
also straightforward to derive for finite horizon costs.

We consider the following ratio

r(P ) =
tr(Pworst)

tr(Popt)
, (16)

where Pworst and Popt are the solutions to the algebraic
Riccati equation (4) corresponding to the optimal and worst
k-element selection of actuators.

Analogous to the sensor information matrix defined in
[18], we also define the following actuator influence matrix
corresponding to an actuator subset S ⊆ B

R(S) := BSR
−1
S BTS . (17)

We have the following results, whose proofs follow directly
along the lines of the analogous proofs of Theorem 3 and
corresponding Corollary in [18], which we omit here due to
space limitations.

Theorem 2: Let R = {R(S) | S ⊂ B, |S| ≤ k} be the
set of all actuator influence matrices for actuator subsets with
k or fewer elements. Let λmax1 := max{λ1(R) | R ∈ R}.
Suppose the dynamics matrix A is stable and Q � 0. Then
the cost ratio satisfies

r(P ) ≤ αA(1 + λmax
1 λn(Q))tr(Q)

nσ2
n(A)λn(Q) + (1 + λmax

1 λn(Q))tr(Q)
(18)

We also state the following corollary, which provides a
simplified bound for stable and normal dynamics matrices.

Corollary 2: If the system dynamics matrix A is Schur
stable, then r(P ) ≤ αA, where αA is a constant that depends
only on the network dynamics matrix. Moreover, if A is also
normal, i.e., ATA = AAT , then

r(P ) ≤ 1

1− λ2
1(A)

. (19)

Discussion. Although it is not surprising that such bounds
should exist for stable networks, they provide insight into the
properties of the dynamics matrix A that affect the potential
efficacy of actuator selection. The effect is most clearly
seen in Corollary 2, where we observe that the difference
between worst and optimal increases as A approaches insta-
bility, confirming intuition. The bounds complement those
in the previous subsection: here, even the worst k-element
actuator selection cannot have arbitrarily bad performance for
stable networks, whereas even the best selection may incur
large costs in unstable networks. However, even in stable
networks, effective actuator set selections (perhaps obtained
with greedy algorithms [14]) can significantly improve feed-
back control costs.

IV. NUMERICAL EXPERIMENTS

We now illustrate our results with numerical experiments
in regular and random graphs. To build insight and intuition,
we focus some of our analysis on an undirected path network,
with dynamics matrix

A =
ρ

3



1 1 0 · · · 0

1 1 1 · · ·
...

0 1
. . . . . . 0

...
...

. . . 1 1
0 · · · 0 1 1


,

where ρ > 0 is a parameter we will used to modulate the
stability of the dynamics. Throughout this section we assume
that B = {e1, ..., en}, so that each possible actuator injects
an input into the dynamics of a single node, and that Q = I
and RS = I , ∀S. Fig. 1 shows how the optimal feedback per-
formance varies as the number of controlled nodes increases
for a 50-node path network, with varying network stability
properties and actuators spaced evenly throughout the path,
which is empirically a near optimal actuator placement. We
see that when the network becomes unstable, the optimal
feedback control costs increase significantly with only a
single actuator, even though a single actuator is sufficient
to stabilize the network dynamics.

The analytic expressions derived in this paper provide best
and worst case cost bounds in different contexts. In Section
III.A., for systems that are relatively difficult to regulate (i.e.,
they have at least one unstable mode), we derive a lower
bound on the cost required to regulate the system to the origin
for a fixed number of actuators. Similarly, in Section III.B.,
for systems that are relatively easy to regulate (i.e., all modes
are stable), we identify an upper bound on the cost required
to regulate the system to the origin for a fixed number of
actuators. Effectively, when the system is inherently hard,
we quantify the best case cost; when the system is inherently
easy, we quantify the worst case cost. These relationships are
informative because they reveal the scaling of cost based on
the number of actuators. However, it is well-known that m
actuators from n nodes can be selected in many ways and
that these choices have different costs associated with them.
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Fig. 1. Optimal cost versus the number of controlled nodes for a 50-node
path graph. The controlled nodes were evenly spaced throughout the path.
We see that when the dynamics are stable (ρ = 0.9, 0.99, 1) the optimal
cost is not too large, even with only a single controlled node. When the
dynamics are unstable (ρ = 1.003, 1.005), the optimal cost can be very
large.

Likewise, the directions associated with unstable modes can
dominate the cost, and, therefore, the cost can vary depending
on the exact initial state that is required to regulate to
the origin, or on the disturbance covariance matrix in the
stochastic control case. These questions of actuator selection
and target regulation (target control) are not new, however,
here we empirically demonstrate the types of variation we
observe by using the generalized LQR cost (which has not
been studied before).

We first address the variation in the cost for a fixed number
of actuators m. We observe this variation by selecting m
nodes uniformly from n, constructing the matrix B (such
that the columns of B are columns of the identity matrix),
and calculating the LQR cost. We repeat this process 1000
times for each choice of m ∈ {1, 5, 10, 30}, constructing the
sample distributions in Fig. 2 for the path graph with n =
100 nodes presented earlier and for the Erdos-Renyi random
graph (p = 0.1). In both cases the adjacency matrix A has
been scaled by its largest eigenvalue to make it marginally
stable. While the exponential scaling related to the number
of actuators can still be observed clearly, there is significant
variation in the cost for a specific choice of m, most notably
for lower fractions of actuators. In addition, the denser
connectivity of the random graph yields not only smaller
costs, but also smaller variation due to selection of B. This
implies that the actuator selection problem becomes trivial as
the number of actuators or the connectivity increases because
all choices will provide roughly equivalent costs.

We now turn to look at the variation in the cost caused
by selectively choosing certain directions in state space to
regulate. For a given number of actuators m, we pick the best
selection of m actuators and also pick the worst selection of
m actuators. We find these (approximate) best and worst case
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Fig. 2. For the path graph and Erdos-Renyi random graph (p = 0.1) with
n = 100 nodes, m ∈ {1, 5, 10, 30} actuators were selected uniformly
randomly. Each of the box plots represent a sample distribution of the costs
of 1000 samples (realizations of B). These box plots demarcate the mean,
first and third quartiles (box), and minimum and maximum (whiskers).

actuators sets by, respectively minimizing and maximizing
the cost using a greedy algorithm. For each of these cases, we
draw 1000 initial state vectors x0 from a normal distribution,
normalize them to lie on the ‖x0‖ = 1 ball, and compute
the cost xT0 P0x0 for regulating that specific direction. Fig.
3 displays these sample distributions for the n = 100 path
graph for m ∈ {1, 5, 10, 30} actuators. The inset plot shows
the same for the Erdos-Renyi random graph. By selecting
the best and worst actuator choices, we have captured the
extreme cases due to actuator selection; every other choice
of B would fall (roughly) in between, falling in line with
the results of Fig. 2. We observe that ideal actuator selection
results in a system that has significantly less variation due to
direction. More specifically, the optimal choice of actuators
eliminates, or greatly reduces, the effect of the most unstable
modes present in A.

One way to interpret the distributions in Fig. 3 is that we
know the directions that are most and least costly to regulate
- these are the eigenvectors (modes) of P0 corresponding,
respectively, to the largest and smallest absolute eigenvalues
of P0. For a given box and whisker, the maximum value is
attained at vT1 P0v1, where v1 is the eigenvector correspond-
ing to λ1 of P0 and we have ordered our eigenvalues such
that λ1 ≥ λ2 ≥ · · · ≥ λn. Likewise, the direction cheapest
to regulate is vn, which is the minimum of the distribution
captured by the box plots. All other directions fall between
these extremes.

To see this more clearly, in Fig. 4, we plot the first five
modes of A and P0 for the path graph (again ordering
the eigenvectors according to descending absolute value of
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Fig. 3. For the path graph with n = 100 nodes, m ∈ {1, 5, 10, 30}
actuators were selected in both a greedy (minimizing the cost) and anti-
greedy (maximizing the cost) fashion. Each of the box plots represent a
sample distribution of the costs associated with 1000 (normally) randomly
generated initial states x0 with that ‖x0‖ = 1. The inset plot shows the
same results for the Erdos-Renyi random graph. These box plots demarcate
the mean, first and third quartiles (box), and minimum and maximum
(whiskers).

their corresponding eigenvalue) for best and worst actuator
selection with m = 1 and m = 10. The eigenvectors of A
(dashed) encode the modes expressed in the dynamics due to
the network structure and the eigenvectors of P0 encode the
directions in state space can break down the overall LQR
cost. The best placed single actuator lies at the middle of
the path, whereas the worst lies at one of the ends. We
observe that the ideal actuator changes the modes of the path
network substantially whereas the worst actuator choice does
not change the modes, indicating that an actuator placed at
the end of the path does not have a significant impact on
the dynamics of the network. The largest eigenvalues in the
best and worst case differ by approximately a factor of four.
The effect is exaggerated in the m = 10 case, where the best
actuators are evenly spaced throughout the path and the worst
actuators are all aggregated at one end. A similar pattern is
observed with respect to mode shape and the difference in
the largest eigenvalue of P0 is about a factor of 80.

V. CONCLUSIONS

We have derived a set of performance bounds for optimal
feedback control in networks that provide insight into fun-
damental difficulties of network control as a function of the
dynamics structure and control architecture. Ongoing and fu-
ture work includes deriving tighter and more general bounds
to include input effectiveness and logarithmic capacity of

dynamics eigenvalues [23], studying similar properties for
dynamic game performance metrics, and conducting more
elaborate case studies.
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Fig. 4. For the path graph with n = 100 nodes, the first five modes (in decreasing absolute value of eigenvalue) of A are plotted in dashed black.
Overlaid in solid black are the first five modes of P0 corresponding to choices of B for (from left to right) the single best actuator (m = 1), the single
worst actuator (m = 1), the 10 best actuators (m = 10), and the 10 worst actuators (m = 10). Here “best” and “worst” are found using a greedy method.
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