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Abstract: This paper considers formation shape control of a team of four point agents, for
the most part in the plane. Control laws based on specified interagent distances are used.
For a complete graph, specification of all interagent distances determines the formation shape
uniquely. Krick, Broucke and Francis showed that for a now almost standard control law, there
may exist equilibrium formation shapes with incorrect interagent distances. This paper studies
such equilibria, shows that in some cases they are necessarily unstable.

1. INTRODUCTION

Autonomous vehicle formations, often perhaps functioning
as mobile sensor networks for surveillance purposes or
high resolution Earth and deep-space imaging, present
significant technical challenges. Frequently, a fixed shape
for a formation is desired, to ensure optimal sensing, and a
basic task for autonomous vehicle formations is formation
shape control. This paper analyses stability properties of a
control law, now almost standard, for a simple formation,
namely one defined by four agents in which all interagent
distances are to be preserved, i.e. the associated graph is
K4, the complete graph on 4 vertices. The restriction to
a simple formation is made because we do not know how
to handle more complicated formations, and in the belief
that treatment of a simple formulation may help provide
the tools for addressing general formations.

In this paper, we envisage that the shape of a formation
shape is controlled by actively controlling a certain set
of interagent distances using relative position measure-
ments. The objective is to design motion control laws
for each agent such that the agents cooperatively and
autonomously achieve a specified desired formation shape,
with each agent working to change its associated inter-
agent distances to the correct values. Early work within
this framework includes Eren et al. [2002], Olfati-Saber
and Murray [2002], Baillieul and Suri [2003]. Eren et al.
[2002] propose the use of graph rigidity theory (see e.g.
Graver et al. [1993]) for modeling information architec-
tures. Olfati-Saber and Murray [2002] also utilize graph
rigidity theory and propose gradient control laws based on
structural potential functions which are generated from
the graph. Baillieul and Suri [2003] also utilize graph
rigidity theory and discuss application to formations of
non-holonomic robots.

It has recently been observed that there is a fundamen-
tal distinction between formations where distances are
maintained by both agents of a pair and formations are
maintained by one agent of a pair Hendrickx et al. [2007],

Yu et al. [2007, 2009]. The results in this paper are for
formations where bidirectional control is used.

A significant recent work was that of Krick et al. [2009]
which provides a complete analysis showing that the de-
sired formation shape is locally asymptotically stable under
a gradient control law, provided that the information ar-
chitecture is rigid–the term rigid has a technical meaning
in this context, consistent with common usage, see the
paper in question. [They emphasize that the desired for-
mation shape is a three-dimensional equilibrium manifold,
and therefore since the resulting linearized system is non-
hyperbolic, a non-trivial application of center manifold
theory is required to establish stability.] However, the
global stability properties of the desired formation shape
remain a challenging open problem. Their contribution
also considers by way of example a four-agent formation
with a complete graph information architecture (i.e. all
interagent distances are actively controlled). A simula-
tion shows that the formation appears to converge to
an incorrect shape (i.e. to a formation with interagent
distances not all the same as those in the desired shape),
and they conclude that the desired shape is not globally
asymptotically stable.

In this paper, we elaborate on this four-agent example
from Krick et al. [2009], and expand and correct earlier
recent work of our own on this problem Summers et al.
[2009]. This earlier work failed to include a correct proof
of a claim on the instability of equilibria of incorrect
shape when those shapes included certain acute angles.
Our specific contributions are as follows.

(1) We provide properties relevant to a test for the insta-
bility of an incorrect equilibrium for any four agent
formation (the test itself was stated in Summers et al.
[2009]); in particular, we indicate the Hessian of a cost
function whose nonzero eigenvalues at an equilibrium
may indicate the instability of the equilibrium
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(2) We show there is necessarily a topological distinction
between the shapes associated with an incorrect and
a correct equilibrium

(3) We show that any incorrect equilibrium which is
rectangular must correspond to a correct equilibrium
which is rectangular (the case considered in Krick
et al. [2009]) and the incorrect equilibrium is neces-
sarily unstable

The paper is organized as follows. Section 2, largely review,
records the equations of motion for the four-agent for-
mation shape control problem and examines the example
from Krick et al. [2009]. We provide an easily checkable
condition for local instability of an equilibrium shape and
consider the general class of rectangular desired forma-
tions. In Section 3, we analyze the stability condition in
some detail, and conclude the existence of a topological
difference between the shapes associated with an incorrect
and a correct equilibrium. Section 4 shows that the rectan-
gular formation of Krick et al. [2009] cannot have a stable
incorrect equilibrium and Section 5 offers concluding re-
marks and future research considerations.

2. EQUATIONS OF MOTION AND EXAMPLES

In this section, we present equations of motion for the four-
agent formation shape control problem. We then examine
the example from Krick et al. [2009] that illustrates
existence of an incorrect equilibrium formation shape and
show that this shape is an unstable saddle.

2.1 Equations of Motion

Let p = [p1, p2, p3, p4]
T ∈ ℜ8 be a vector of the four agent

positions in the plane. Following Krick et al. [2009], we
use a single integrator agent model to describe the motion
of each agent ṗi = ui where ui is the control input to be
specified. Let d̄ = [d̄12, d̄13, d̄14, d̄23, d̄24, d̄34]

T be a vector
of desired interagent distances that define the formation
shape. Let d = [d12, d13, d14, d23, d24, d34]

T , sometimes
written as d(p), denote instantaneous interagent distances,
which are to be actively controlled to obtain d̄. We assume
that the entries of d̄ correspond to a realizable shape.

Evidently,

d2(p) = [||p1 − p2||
2, ||p1 − p3||

2, ||p1 − p4||
2,

||p2 − p3||
2, ||p2 − p4||

2, ||p3 − p4||
2]T (1)

We define also the error function

e(p) = d2(p) − d̄2 = [e12, e13, e14, e23, e24, e34]
T (2)

The desired formation shape is a three-dimensional mani-
fold in ℜ8 given by

Pd = {p ∈ ℜ8|d2(p) = d̄2} (3)

which is non-empty for a realizable d̄. Note the following
symmetry for any planar formation: two distinct formation
orientations both correspond to a correct formation shape:
one with given orientation and one that is the reflection in
the plane, as illustrated in Figure 1.

Now consider the potential function

V (p) =
1

2
||e(p)||2 =

1

2
(e2

12
+ e2

13
+ e2

14
+ e2

23
+ e2

24
+ e2

34
)(4)

1 2 
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2 

4 
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Fig. 1. A desired formation configuration and its reflection
in the plane both satisfy the same prescribed intera-
gent distance constraints.

The function quantifies the total interagent distance error
between the current formation and the desired formation
d̄. Note that V ≥ 0 and V = 0 if and only if e(p) = 0, that
is if and only if the formation is in the desired shape. Thus,
V is a suitable potential function from which to derive a
gradient control law. Accordingly, let the control input be
given by

u = −∇V (p)T . (5)

Then the closed-loop system is given by

ṗ = −∇V (p)T = −[Je(p)]T e(p) (6)

where Je(p) is the Jacobian of the error function e(p) (also
known as the rigidity matrix ). This can be expressed in the
following form

ṗ = −(E(p) ⊗ I2)p (7)

where the matrix E(p) is given by

E(p) = (8)
[

e12 + e13 + e14 −e12 −e13 −e14

−e12 e12 + e23 + e24 −e23 −e24

−e13 −e23 e13 + e23 + e34 −e34

−e14 −e24 −e34 e14 + e24 + e34

]

where ⊗ is the Kronecker product.

We remark that the analysis above remains identical if we
assume that the formation is planar but exists in ℜ3, or if
it is intrinsically three dimensional, i.e. not coplanar. Of
course, the pi become 3-vectors.

2.2 Equilibrium points

It is a reasonably standard calculation appealing to the
LaSalle Principle to establish that from any initial condi-
tion, the system tends to an equilibrium in which eij(zi −
zj) = 0 for all ij pairs. The equilibrium points of the
closed-loop system (7) are the same as the critical points of
the potential function V . The Jacobian of the right side of
(7), which we denote as Jf (p), is the same as the negative
of the Hessian of V , which we denote as HV (p). These are
given by

HV (p) = 2Je(p)T Je(p) + E(p) ⊗ I2 = −Jf (p). (9)

Therefore, a study of the stability of the equilibrium points
of (7) amounts to a study of the nature of the critical points
of V : minima are locally stable and maxima and saddle
points are locally unstable, and the signs of the eigenvalues
of HV at an equilibrium may indicate the nature of the
equilibrium. Note that the stability of an equilibrium point
is independent of rotation and translation of the formation
shape. In particular, only relative positions matter.
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Fig. 2. The desired formation is rectangular and there are
two possible “twisted rectangles” that are incorrect
equilibrium shapes. Note that each formation has
two different pairs of agents on the diagonals of the
rectangle: (a) 13 and 24, (b) 12 and 34, and (c) 14
and 23.

2.3 Krick Example

Krick et al. [2009] prove a local asymptotic stability result
for an n-agent formation under the gradient control law
(5), given that the underlying information architecture is
rigid. Since the desired formation shape given by (3) is
a three-dimensional equilibrium manifold, the linearized
system is non-hyperbolic and they utilize center manifold
theory to obtain the result.

The same paper studies a four-agent example with K4

information architecture where the formation appears to
converge to an incorrect equilibrium formation shape from
initial states remote from an equilibrium. The example
is as follows. Suppose the desired formation is a 1 × 2
rectangle given by d̄2 = [1, 5, 4, 4, 5, 1]T . It is easy to verify
that when we use the desired distances specified by d̄, any
formation with distance set d∗2 = [11

3
, 7

3
, 4

3
, 4

3
, 7

3
, 11

3
]T is

also an equilibrium with incorrect interagent distances.
The incorrect equilibrium is a “twisted rectangle” with
the term twisted referring to a change in agent ordering,
as illustrated in the middle formation of Figure 2 (it turns
out there is a further incorrect equilibrium shape, which
we discuss later). Krick et al concluded that the desired
shape is not globally attractive since the control law ap-
pears to cause convergence to an incorrect equilibrium
shape. However, convergence is only apparent, occurring
along the ridge of a saddle. The eigenvalues of the nega-
tive of the Hessian evaluated at the incorrect shape (i.e.
eig[Jf (p∗)] = eig[−HV (p∗)] where p∗ satisfies d2(p∗) =
d∗2), are {0, 0, 0,−22.78,−14.67,−6.56, 1.33, 5.33}. Since
there are both positive and negative eigenvalues, one can
see that the incorrect equilibrium shape is in fact a saddle
and is therefore unstable. Much of this paper is concerned
with examining this sort of phenomenon.

3. FURTHER PROPERTIES OF INCORRECT
EQUILIBRIA

In this section, we shall first study the properties of the
matrix E(p) when evaluated at an incorrect equilibrium.
We shall note some inequalities relating lengths in a correct
and an incorrect equilibrium, and show that there is a
topological distinction between a correct and an incorrect
equilibrium.

3.1 Incorrect equilibria are to be expected

We noted already that there are two different possible
orientations for a correct equilibrium; it is not in general
possible to smoothly pass from one to the other while
maintaining the equilibrium property. Hence there will be
at least one boundary of the domains of attractivity of the
two equilibria, Sastry [1999]. Such a boundary normally is
an invariant set, on which one or more equilibria should lie.
Such equilibria by definition can at best be saddle points,
and certainly not attractive. This argument however does
not settle the question of whether attractive but incorrect
equilibria are to be expected or not.

3.2 The matrix E(p∗) at an equilibrium p∗

Assume that there is an equilibrium point p∗ other than
the correct equilibrium. Here, p∗ = [p∗T

1
p∗T
2

p∗T
3

p∗T
4

]T

with p∗i = [x∗
i y∗

i ]T . Suppose a correct equilibrium is
defined by p̄ = [p̄T

1
p̄T
2

p̄T
3

p̄T
4
]T . The six errors eij are

defined by

eij(p
∗) = ||p∗i − p∗j ||

2 − ||p̄i − p̄j ||
2 (10)

and a 4 × 4 matrix E(p∗) is defined as in (8); evidently
E(p∗) is symmetric and rows and columns sum to zero.

Consider (7) at the equilibrium point. Then clearly

[E(p∗) ⊗ I2]p
∗ = 0 (11)

which means (together with the zero row sum property)
that

E(p∗)







1 x∗
1

y∗
1

1 x∗
2

y∗
2

1 x∗
3

y∗
3

1 x∗
4

y∗
4






= 0 (12)

Hence generically E(p∗) has rank 0 or 1. However, since
p∗ is an incorrect equilibrium point, at least one eij is
nonzero, and thus E(p∗) is not zero, and so must have
rank 1.

We now have

Proposition 1. For the problem set-up as defined, suppose
p∗ is an incorrect equilibrium for the system (7). Then
the associated matrix E(p∗) as defined by (8) is negative
semidefinite and of rank 1.

The proof is omitted due to space limitations. An extended
version of the paper containing the proof can be obtained
from the first author.

3.3 A calculation and further interpretation for the matrix
E(p∗)

We will now give an interpretation for the vector whose
outer product with itself is, with scaling, equal to E(p∗).

This interpretation rests on two easy lemmas.

Lemma 2. Consider a triangle defined by vertices p1, p2, p3

which occur in counterclockwise order. Then the area of
this triangle given by

∆123 =
1

2

∣

∣

∣

∣

∣

1 x1 y1

1 x2 y2

1 x3 y3

∣

∣

∣

∣

∣

(13)
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Note that if we are prepared to tolerate negative area
triangles, then the formula is valid without restriction on
the ordering of the vertices, and a negative area triangle
corresponds to p1, p2, p3 occurring in clockwise order.

Lemma 3. With x∗
i , y

∗
i fixed and ai unknown for i =

1, 2, 3, 4, consider the equation

[a1 a2 a3 a4]







1 x∗
1

y∗
1

1 x∗
2

y∗
2

1 x∗
3

y∗
3

1 x∗
4

y∗
4






= 0 (14)

Then this equation is satisfied by:

a1 =

∣

∣

∣

∣

∣

1 x∗
2

y∗
2

1 x∗
3

y∗
3

1 x∗
4

y∗
4

∣

∣

∣

∣

∣

, a2 = −

∣

∣

∣

∣

∣

1 x∗
1

y∗
1

1 x∗
3

y∗
3

1 x∗
4

y∗
4

∣

∣

∣

∣

∣

, (15)

a3 =

∣

∣

∣

∣

∣

1 x∗
1

y∗
1

1 x∗
2

y∗
2

1 x∗
4

y∗
4

∣

∣

∣

∣

∣

, a4 = −

∣

∣

∣

∣

∣

1 x∗
1

y∗
1

1 x∗
2

y∗
2

1 x∗
3

y∗
3

∣

∣

∣

∣

∣

Proof: Use Cramer’s rule.

Assume that the vertices with coordinates p∗
1
, p∗

2
, p∗

3
, p∗

4

occur as corners of a quadrilateral in counterclockwise
order, and no one of the p∗i is in the convex hull of the
others. Then the 3×4 matrix in the definition of the ai has
columns spanning the nullspace of E(p∗) and accordingly,
E(p∗) will be of the form −µaaT , where a = [a1 a2 a3 a4]
and µ is a positive scaling constant. We have just shown
that the ai can be related to certain triangles formed
within the quadrilateral:

[a1 a2 a3 a4] = [∆234 (−∆134) ∆124 (−∆123)] (16)

Other arrangements for the p∗i will doubtless lead to other
sign patterns for the ai. The two positive terms are the
areas of two triangles formed from the quadrilateral using
one diagonal. The two negative terms are the areas of the
other two triangles formed using the second diagonal. The
sum of the ai is therefore zero, as required by the defining
equation.

The observation of this lemma leads to an interesting and
simply obtained corollary, flowing from the equality of
triangle areas when the equilibrium is a parallelogram:

Corollary 4. Suppose that an incorrect equilibrium is a
parallelogram. Then the associated matrix E(p∗) is of the
form

E = e12







1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1






(17)

3.4 Length inequalities

In this subsection, we recall some inequalities between
lengths in a correct and an incorrect equilibrium, which are
derivable by considering the equilibrium conditions per-
taining at each vertex. While obtained slightly tediously
in Summers et al. [2009], the same inequalities however
are also an immediate consequence of expressing E(p∗)
as −µaaT with the entries of a identified with the signed
areas of certain triangles.

Lemma 5. Suppose there is an incorrect equilibrium with
quadrilateral convex hull, and with agent pairs 13, 24
diagonally opposite. Let d̄ij and d∗ij denote the distance
sets of the correct and incorrect equilibrium respectively.
Then there holds

d∗
12

< d̄12, d
∗
34

< d̄34, (18)

d∗
13

> d̄13, d
∗
14

> d̄14, d
∗
23

> d̄23, d
∗
24

> d̄24.

A corresponding lemma applies for formations with trian-
gular convex hull, and the same derivation technique can
be used:

Lemma 6. Suppose there is an incorrect equilibrium shape
with agent 2 lying in the convex hull of agents 1,3 and 4.
Let d̄ij and d∗ij denote the distance sets of the correct and
incorrect equilibrium respectively. Then there holds

d∗
12

> d̄12, d
∗
23

> d̄23, d
∗
24

> d̄24, (19)

d∗
13

< d̄13, d
∗
14

< d̄14, d
∗
34

< d̄34.

3.5 A twisting property for incorrect equilibria

In the second section where we described the rectangular
formation example of Krick et al. [2009], we noted that
the incorrect and correct equilibria were twisted. We now
consider this notion more formally, and without restriction
to rectangular formations.

Consider an equilibrium where the convex hull of the ver-
tices is a quadrilateral (as opposed to a triangle; lines are
excluded as being nongeneric). Suppose that the vertices in
clockwise or counterclockwise order are 1,2,3,4 or 4,3,2,1 or
a cyclic permutation of one of these possibilities. There are
eight permutations covered by these possibilities. We say
that a second equilibrium with quadrilateral convex hull is
twisted (in relation to the first) if the ordering of its ver-
tices does not correspond to one of these eight possibilities.
To smoothly change between these two equilibria requires
at some stage three of the agents to become collinear.

Observe that there are precisely two distinct twists of a
quadrilateral, defined by 1,3,2,4 with cyclic permutation
and reversal, and 1,2,4,3, again with cyclic permutation
and reversal. Each corresponds to an equivalence class of
eight different possible permutations.

We shall prove the following:

Theorem 7. Consider a four agent formation with a cor-
rect and an incorrect equilibrium which are both convex
quadrilaterals. Then the two equilibria must be twisted.

To prove the theorem, we will appeal to a result by Con-
nelly [2009]. We will first explain this result. Consider a
framework in which some bars are replaced by either a
cable or a strut. A cable (strut) enforces the constraint that
the two agents, call them i and j, at each end can be no
further apart (closer) than a nominated distance d̄ij , but
may be closer (further apart). Such a framework is called a
tensegrity. A tensegrity is rigid if any continuous motion of
the framework satisfying the distance constraints preserves
the shape, i.e. leads to a framework congruent with the
original. A tensegrity framework is termed globally rigid if
any other configuration satisfying the same constraints is
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congruent to the first. Connelly develops results establish-
ing that certain tensegrity frameworks are globally rigid.
To understand these results, we need to understand the
concept of a stress vector, a proper stress vector and a
stress matrix.

The concept of a stress vector applies to both an ordinary
framework or a tensegrity framework. Let Je be the rigidity
matrix of a framework; any nonzero vector in the left
kernel is a stress vector. Thus for a framework which is K4,
there is, up to multiplication by a nonzero scalar, a single
stress vector. The concept of a proper stress vector applies
to a tensegrity framework; note first that the ordering of
the entries in a stress vector is associated with an ordering
of the edges in the graph, viz. that used in defining the
rigidity matrix. Thus each entry of the stress vector is
associated with an edge of the graph. A proper stress
vector is one where each graph edge which is a cable has a
nonnegative entry and each graph edge which is a strut has
a nonpositive entry. Let ωij denote the entry of a proper
stress vector associated with edge ij. The stress matrix is
defined by

Ωij = −ωij , i �= j

Ωii =
∑

j �=i

ωij

The key result is:

Theorem 8. Let G(p̄) be a tensegrity, with the affine span
of the vertex coordinates being R2. Suppose that the
rigidity matrix has a nontrivial proper stress vector ω and
there is an associated stress matrix Ω. Suppose further
that

(1) The matrix Ω is nonnegative definite
(2) The rank of Ω is m − 3, there being m agents
(3) If the cables and struts in the tensegrity structure are

replaced by bars, the resulting structure is rigid

Then G(p̄) is globally rigid.

A particular example of a tensegrity structure is provided
by a K4 formation with convex hull a quadrilateral.
Assume the ordering of the vertices is 1,2,3,4. The edges
12,23,34,41 are all cables, while the edges 13 and 24 are
struts. It is nontrivial that the requirement of the theorem
that a proper stress vector exist can be fulfilled. It is also
nontrivial, but provable in the work of Connelly, that the
first condition is satisfied. It is obvious that the second
and third conditions of the theorem are satisfied.

In particular, it follows from the theorem that if there
exists a second framework with edge lengths δij and
satisfying

δ12 ≤ d̄12, δ23 ≤ d̄23, δ34 ≤ d̄34, (20)

δ41 ≤ d̄41, δ24 ≥ d̄24, δ13 ≥ d̄13,

then necessarily, equality holds in every equation.

Proof of Theorem 7. Consider an incorrect equilibrium
of a K4 formation, with the four agents having a quadri-
lateral convex hull, with ordering 1,2,3,4. The interagent
distances for the correct and incorrect equilibrium are d̄ij

and d∗ij . Then (18) holds.

Now suppose that the correct equilibrium is a quadrilateral
with the same vertex ordering as the incorrect equilibrium.
Then by the Connolly result, identifying the d∗ij of the
incorrect equilibrium with the δij in the Connolly result,
we see that (18) imply the equations (20). But because
K4 is a tensegrity structure, this means d∗ij = dij for
all ij, i.e. the incorrect equilibrium is actually a correct
equilibrium. In other words, given a correct equilibrium
with quadrilateral convex hull, there can be no incorrect
equilibrium with quadrilateral convex hull with the same
vertex ordering, and the theorem is proved.

A similar argument handles the case where the formation
has a triangular convex hull.

4. RECTANGULAR FORMATIONS

In this section, we consider rectangular formations. In
particular, we show that if an incorrect equilibrium for-
mation is rectangular, the associated correct equilibrium
formation must also be rectangular; that a rectangular
correct equilibrium formation has two different associated
incorrect rectangular equilibria (analytic formulas being
presented); and that the incorrect equilibria are necessarily
unstable (saddle points to be more precise).

Suppose that the incorrect equilibrium is defined by a
rectangle with vertices 1,2,3,4 in counterclockwise order.
In particular then,

d∗
12

= d∗
34

, d∗
23

= d∗
14

, d∗
13

= d∗
24

(21)

Recall also the form of the matrix E(p∗) in (17). The
off diagonal entries are the quantities −eij . Evidently,
e12 = e34 and so d̄12 = d̄34. Likewise, e23 = e14

and e13 = e24, which yield d̄23 = d̄14 and d̄13 = d̄24

respectively. It is not hard to check that, noting that for
the correct equilibrium, the vertex ordering cannot be the
same as that for the incorrect equilibrium, these equality
conditions for the correct formation imply again that the
associated equilibrium is a rectangle.

Now suppose that in the incorrect equilibrium, d∗
12

=
a∗, d∗

23
= b∗. Consider a correct equilibrium with counter-

clockwise vertex ordering 1,2,4,3, and with d̄12 = ā, d̄24 =
b̄. Then the identity e12 = e14 implies a∗2 − b∗2 = −b̄2

and the identity e12 = −e13 implies 2a∗2 + b∗2 = ā2 + b̄2.
Immediately, there results

a∗2 =
ā2

3
, b∗2 =

ā2

3
+ b̄2 (22)

By symmetry, it is evident that the other possible twist-
edness relationship yields

a∗2 = ā2 +
b̄2

3
, b∗2 =

b̄2

3
(23)

The example quoted in Section 2 corresponds to the first
of these possibilities (ā2 = 4, b̄2 = 1, a2 = 4/3, b∗2 = 7/3).

To examine the stability of the incorrect equilibrium,
suppose that the rectangle has a side of length a on the
x-axis. Reorder the rows and columns of the Hessian of
V (p) given in (9) so that the first four rows and columns
are associated with x-coordinates and the second four rows
and column s are associated with y-coordinates. Make a
corresponding re-ordering of the columns of the rigidity
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matrix, so that the first four columns correspond to the x-
coordinates of p1, p2, p3, p4. Then in obvious notation, the
four by four subblock is

Hx(p∗) = 2Jex(p∗)T Jex(p∗) + E(p∗) (24)

It is straightforward to verify that if w = [1 − β β 0]T ,
then

wT [2Jex(p∗)T Jex(p∗) + E(p∗)]w = 1 − 4β (25)

so that if β > a/4, a negative value results. This shows
that the equilibrium is not stable. In fact, it is a saddle
point.

Arguing along similar lines, one can show that if the incor-
rect equilibrium is a parallelogram, then the correct equi-
librium is either a parallelogram or an isosceles trapezoid.
We have not yet verified whether the incorrect equilibrium
is or is not stable. Nor can we show that if the incorrect
equilibrium has an arbitrary quadrilateral or triangle as its
convex hull, then that equilibrium is not stable. Actually,
if such a formation is considered as lying in R3, a long
argument will demonstrate a saddle point property.

Several more gaps in our understanding can be noted.
In relation to a correct rectangular equilibrium, is it
necessarily the case that any incorrect equilibrium is also
rectangular? And in relation to any generic formation, how
many incorrect equilibria are there, discounting the issue
of their stability or otherwise?

5. CONCLUSIONS AND FUTURE WORK

Our ultimate goal is to show how to control an arbitrary
formation to a shape that is uniquely specified, i.e. spec-
ified up to congruence, by a sufficiently large number of
distance constraints (in effect, the associated graph must
be what is known as globally rigid). A K4 graph is the sec-
ond simplest such graph, after the triangle, and one might
reasonably expect that a general theory would need to
properly encompass this special case. It is remarkable that
the K4 graph presents such a challenging task of global
stability analysis. The most significant open problem is
to show whether or not there can ever exist an incorrect
attractive equilibrium. Other problems include counting
the number of incorrect equilibria, and, perhaps less im-
portantly, showing that correct equilibria with convex hull
of a certain shape, e.g. rectangle, parallelogram, equilateral
or isosceles triangle, imply some similar kind of restriction
on the shape of the incorrect equilibrium.
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