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Abstract—This paper focuses on distribution systems featuring
renewable energy sources (RESs) and energy storage systems,
and presents an AC optimal power flow (OPF) approach to
optimize system-level performance objectives while coping with
uncertainty in both RES generation and loads. The proposed
method hinges on a chance-constrained AC OPF formulation
where probabilistic constraints are utilized to enforce voltage
regulation with prescribed probability. A computationally more
affordable convex reformulation is developed by resorting to
suitable linear approximations of the AC power-flow equations
as well as convex approximations of the chance constraints. The
approximate chance constraints provide conservative bounds that
hold for arbitrary distributions of the forecasting errors. An
adaptive strategy is then obtained by embedding the proposed
AC OPF task into a model predictive control framework. Finally,
a distributed solver is developed to strategically distribute the so-
lution of the optimization problems across utility and customers.

Index Terms—Distribution systems, renewable integration, op-
timal power flow, voltage regulation, model predictive control.

I. INTRODUCTION

Systematic means to operate power distribution networks
will be key to ensuring a reliable and efficient integration
of renewable energy sources (RESs) and a sustainable ca-
pacity growth with limited need for system upgrade and
expansion. By leveraging the increased flexibility offered
by power-electronics-interfaced RESs, local inverter control
strategies [1], [2] as well as network-wide optimization ap-
proaches [3], [4] are currently under development to alle-
viate emerging power-quality and reliability concerns that
are precipitated by RESs operating with business-as-usual
practices. For example, under reverse power flow conditions,
inverter control and optimization approaches can decrease the
likelihood of voltages violating prescribed limits [5].

RESs can be controlled alongside energy storage units
to minimize the curtailment of renewable-based generation
during overvoltage conditions and provide ancillary services to
the grid. From the battery-owner perspective, benefits include
increased self-consumption capabilities and the possibility of
shaping the net load profile in response to market and pricing
signals [1], [6].
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This paper examines network-wide optimization approaches
to compute power setpoints based on forecasts of available
RES generation and non-controllable loads. The proposed
optimization method is based on a multi-period AC optimal
power flow (OPF) formulation where probabilistic constraints
are utilized to enforce voltage regulation with a prescribed
probability. The nonlinearity of AC power flow equations
and probabilistic constraints render stochastic (multi-period)
AC OPF tasks computationally intractable [7], [8]. However,
to enable a computationally feasible solution approach, an
approximate reformulation of the AC OPF task is obtained
by utilizing suitable linear approximations of the AC power
flow equations [9]–[13] and pertinent convex approximations
of the chance constraints [8], [14]. The approximate chance
constraints provide conservative bounds that hold for arbitrary
distributions of the forecasting errors, and render the overall
problem deterministic and convex. An adaptive optimization
strategy is then obtained by embedding the multi-period OPF
task into a model predictive control (MPC) framework. Finally,
a distributed solver is developed by utilizing the alternating
direction method of multipliers (ADMM) [15], to enable utility
and customers to pursue specific performance objectives, while
achieving global coordination to ensure that voltage limits are
systematically satisfied.

Prior works in context include e.g., [6] where an online
energy control method for energy storages in grid-connected
microgrids is developed and robust optimization arguments
are leveraged to cope with load uncertainty; however, this
approach does not consider voltage regulation as well as AC
power-flow equations. A two-stage stochastic programming
approach is utilized in [16] to solve an economic dispatch
(based on a DC model) problem for microgrids, whereas
MPC strategies are utilized in [17], [18] to dispatch energy
storage commands. However, the approaches in [17], [18]
do not model forecasting errors and are grounded on a DC
model. A robust multi-period DC OPF problem is formulated
in [19], while chance-constrained problem setups are consid-
ered in [20]–[23]. The approach of [21] enables a deterministic
reformulation of the chance constraints when forecast errors
are Gaussian distributed, while [20], [22] leverage conserva-
tive convex approximation of the chance constraints. General
control policies are considered in [24], and deterministic refor-
mulations of the probabilistic constraints in DC OPF settings
are derived for Gaussian-distributed forecast errors in [23].
Overall, [20]–[24] offer means to deal with chance constraints
in a computationally tractable way, but their applicability is
limited to DC models. AC power flow models are considered
in [25] where, however, forecasting errors are neglected, and in
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[26], where RES-inverter commands are computed based on
conditional value-at-risk arguments but energy storage systems
and receding horizon control are not considered.

Overall, the present paper provides contributions in the
following directions: i) a chance-constrained AC OPF problem
is formulated where the RES and energy storage setpoints
are optimized, while ensuring that voltages are within given
limits with arbitrarily high probability; ii) existing linearization
methods for the AC power-flow equations and conservative
convex approximation of the (possibly nonconvex and com-
putationally intractable) chance constraints are leveraged to
derive a new computationally more efficient solution method
for the formulated chance-constrained AC OPF task; and, iii) a
distributed algorithm is developed where utility and customers
agree on the setpoints while pursuing their own optimization
objectives.

The remainder of the paper is organized as follows. Sec-
tion II describes the network, inverter, and energy storage
models and provides an overview of linear approximations of
the AC power flow equations. Section III presents the proposed
chance-constrained OPF strategy, while Section IV briefly
outlines a distributed implementation of the AC OPF problem.
Test cases are provided in Section V. Finally, Section VI
concludes the paper.

II. PRELIMINARIES AND SYSTEM MODEL

A. System model

Consider a distribution feeder1 comprising N + 1 nodes
collected in the set N ∪ {0}, N := {1, . . . , N}, and lines
represented by the set of edges E := {(m,n)} ⊂ N ×N . Let
V tn ∈ C and Itn ∈ C denote the phasors for the line-to-ground
voltage and the current injected at node n ∈ N at time t,
respectively, and define the N -dimensional complex vectors
vt := [V t1 , . . . , V

t
N ]T ∈ CN and it := [It1, . . . , I

t
N ]T ∈ CN . On

the other hand, node 0 denotes the secondary of the distribution
transformer, and it is taken to be the slack bus. Using Ohm’s
and Kirchhoff’s circuit laws, the following linear relationship
can be established:[

It0
it

]
=

[
y00 ȳT

ȳ Y

]
︸ ︷︷ ︸

:=Ynet

[
V t0
vt

]
(1)

where the system admittance matrix Ynet ∈ C(N+1)×(N+1) is
formed based on the system topology and the π-equivalent
circuit of the distribution lines (see e.g., [27, Chapter 6]
for additional details on distribution line modeling), and is

1Upper-case (lower-case) boldface letters will be used for matrices (column
vectors); (·)T for transposition; (·)∗ complex-conjugate; and, (·)H complex-
conjugate transposition; <{·} and ={·} denote the real and imaginary parts of
a complex number, respectively; j :=

√
−1 the imaginary unit; |·| denotes the

absolute value of a number or the cardinality of a set; and, ◦ denotes Hadamard
product. For x ∈ R, function [x]+ is defined as [x]+ := max{0, x}. Further,
IA(x) denotes the indicator function over the set A ⊂ R; that is IA(x) = 1
if x ∈ A and IA(x) = 0 otherwise. For a given N × 1 vector x ∈ RN ,
‖x‖2 :=

√
xHx; diag(x) returns a N ×N matrix with the elements of x in

its diagonal; and, x � y implies that the inequality xi ≥ yi is enforced for
all the vector entries i = 1, . . . , N . Finally, IN denotes the N ×N identity
matrix; and, 0N , 1N the N -dimensional vectors with all zeroes and ones,
respectively, and 0N×M , 1N×M are N ×M matrices with all zeroes and
ones.

partitioned in sub-matrices with the following dimensions:
Y ∈ CN×N , y ∈ CN×1, and y00 ∈ C. Finally, V t0 = ρ0e

jθ0 is
the slack-bus voltage with ρ0 denoting the voltage magnitude
at the secondary of the step-down transformer.2

Let P t`,n and Qt`,n denote the non-controllable active and
reactive demands at node n ∈ N at time t, and define the
vectors pt` := [P t`,1, . . . , P

t
`,N ]T and qt` := [Qt`,1, . . . , Q

t
`,N ]T.

If no load is present at node n, then P t`,n = Qt`,n = 0, ∀ t.
RES model. For given ambient conditions, let P tav,n denote

the maximum renewable-based generation at node n ∈ NR ⊆
N at time t – hereafter referred to as the available active
power. Particularly, P tav,n coincide with the maximum power
point at the AC side of the inverter. When RESs operate at
unity power factor and inject the available power P tav,n, a
set of challenges related to power quality and reliability in
distribution systems may emerge for sufficiently high levels of
deployed RES capacity [5]. For example, overvoltages may be
experienced during periods when RES generation exceeds the
household demand [5]. Efforts to ensure reliable operation of
existing distribution systems with increased behind-the-meter
RES generation are focused on the possibility of inverters
providing reactive power compensation and/or curtailing active
power. To account for the ability of the RES inverters to adjust
the output active power, let αtn ∈ [0, 1] denote the fraction of
available active power curtailed by RES-inverters n at time
t, and let Qtn be the reactive power provided by the same
RES. With Sn denoting the rated apparent power, the possible
setpoints for RES n at time t satisfy the following operational
constraint:

((1− αtn)P tav,n)2 + (Qtn)2 ≤ S2
n . (2)

For future developments, it is convenient to define the vectors
αt := [αt1, . . . , α

t
N ]T, ptav := [P tav,1, . . . , P

t
av,N ]T, and qtc :=

[Qt1, . . . , Q
t
N ]T, with the convention that αtn = 0, P tav,n = 0,

and Qtn = 0 for n ∈ N\NR.
Energy storage model. Let Btn represent the state of charge

(SoC) of an energy storage system located at node n ∈ NB ⊆
N , with the corresponding dynamical equation given by:

Bt+1
n = Btn + P tB,n∆t (3)

where ∆t is the duration of slot (t, t+ 1] and P tB,n represents
the power delivered to or drawn from the storage device. In
particular, P tB,n commands either the charging (P tB,n > 0)
or the discharging (P tB,n < 0) of the battery during the
time interval (t, t + 1]. For simplicity, (3) presupposes that
the round trip efficiency of the batteries is 1; however, once
the analytical tools for dealing with non-convexity of the
AC power flow equations as well as chance constraints are
explained, a modified model for the batteries accounting for
the round trip efficiency will be outlined in Remark 1. The
operational limits of the storage device are as follows:

Bmin
n ≤ Btn ≤ Bmax

n (4a)

Pmin
B,n ≤ P tB,n ≤ Pmax

B,n (4b)

2The admittance matrix is also time-varying due to possible system recon-
figurations. However, for simplicity of exposition, we dropped the index t
from admittances.
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TABLE I
NOMENCLATURE

N Set of nodes {1, . . . , N}
NR Set of nodes with RESs
NB Set of nodes with energy storage systems
V tn Phasors for the voltage at node n at time t
ρtn Voltage magnitude at node n at time t
Itn Current injected at node n at time t
Ynet System admittance matrix
V̄n Linearization point for node n
P t`,n + jQt`,n Demand at node n ∈ N at time t
P tav,n Available renewable generation at node n at time t
αtn Fraction of active power curtailed by RES n at time t
Qtn Reactive power provided by RES n at time t
Stn Rated apparent power of RES n at time t
Btn SoC of energy storage n at time t
P tB,n Rate of (dis)charge for energy storage n at time t
V min Lower limit for voltage magnitudes
V max Upper limit for voltage magnitudes
Tt Interval {t, t+ 1, . . . , t+ T}
T ′t Interval {t, t+ 1, . . . , t+ T − 1}
p̄τav Forecasted values for [P tav,1, . . . P

t
av,N ]T

δτav Forecasting error for [P tav,1, . . . P
t
av,N ]T

p̄τ` Forecasted values for [P t`,1, . . . P
t
`,N ]T

q̄τ` Forecasted values for [Qt`,1, . . . Q
t
`,N ]T

δτ` Forecasting error for loads
gρ,n(·) Entry n of the vector-valued function gρ(·)
ε Probability of constraint violation for voltages
η Probability of constraint violation for RES capacities
Ns Number of samples

TABLE II
MAIN NOTATION

vt := [V t1 , . . . , V
t
N ]T ∈ CN

ρt := [|V t1 |, . . . , |V tN |]
T ∈ RN

it := [It1, . . . , I
t
N ]T ∈ CN

pt` := [P t`,1, . . . , P
t
`,N ]T

qt` := [Qt`,1, . . . , Q
t
`,N ]T

αt := [αt1, . . . , α
t
N ]T

ptav := [P tav,1, . . . , P
t
av,N ]T

qtc := [Qt1, . . . , Q
t
N ]T

ptB := [P tB,1, . . . , P
t
B,N ]T

bt := [Bt1, . . . , B
t
N ]T

δt := (ptav,p
t
`,q

t
`)

v̄ := [V̄1, . . . , V̄N ]T

gρ(αt,qtc,p
t
B , δ

τ ) := R((I− diag{α}t)ptav − pt` + ptB)
+B(qtc − qt`) + a

where Bmin
n , Bmax

n are predetermined minimum and maximum
SoC levels and Pmin

B,n and Pmax
B,n are minimum and maximum

capacity limits. Additional constraints can be considered to
accommodate user-defined requirements; for example, for an
electric vehicle, the constraint Bτn = Bmax

n can be added to en-
sure that the battery is fully charged at a desired time τ . For fu-
ture developments, define the vector ptB := [P tB,1, . . . , P

t
B,N ]T

and bt := [Bt1, . . . , B
t
N ]T, with the convention that P tB,n = 0

and Btn = 0 for the nodes n ∈ N\NB where no energy
storage systems are present.

Forecasting error model. The optimization problem that will
be formulated in Section III considers a planning horizon Tt :=

{t, t+ 1, . . . , t+ T} of T + 1 discrete time steps. To capture
uncertainty in the ambient conditions as well as forecasting
errors, pτav, pτ` , and qτ` are modeled as random variables [20],
[22], [24]. Particularly, the available RES powers at time τ
are modeled as pτav = p̄τav + δτav, where p̄τav ∈ RN collects
the forecasted values and δτav ∈ Rτav ⊆ RN is a random
vector whose distribution captures spatial dependencies among
forecasting errors. Similarly, the active and reactive loads at
time τ ∈ Tt are expressed as pτ` = p̄τ` + Gτ

pδ
τ
` and qτ` =

q̄τ` + Gτ
qδ

τ
` , respectively, where p̄τ` and q̄τ` are the forecasted

loads; Gτ
p ,G

τ
q ∈ RN×J`N are model-dependent matrices; and,

δτ` ∈ Rτ` ⊆ RJ`N is a random vector whose distribution
captures spatial dependencies as well as correlations among
active and reactive loads. We assume that the distribution
system operator has a certain amount of information about
the probability distributions of the forecasting errors δτav and
δτ` [20]–[22], [26]. This information can come in the form
of either knowledge of the probability density functions, or
a model of δτav and δτ` from which one can draw samples.
It is worth pointing out that the model set forth for the
random parameters is flexible enough to handle any joint
probability distributions; that is, possible correlations among
(or independence of) random variables can be accounted for.

B. Leveraging approximate power-flow models

Using (1), the net complex-power injections can be com-
pactly written as

st = diag
(
vt
) (

Y∗(vt)∗ + y∗(V t0 )∗
)
. (5)

where st := [st1, . . . , s
t
N ]T and Stn = (1 − αtn)P tav,n −

P t`,n − P tB,n + j(Qtn −Qt`,n). This equation typically appears
in the form of a constraint in standard formulations of the
OPF task, and renders the underlying optimization problem
nonconvex [28]. Another source of nonconvexity in various
OPF renditions is represented by the voltage-related constraint
Vmin ≤ |V tn|, where Vmin represents a pre-determined lower
limit for the voltage magnitude (e.g., ANSI C.84.1 limits).
Non-convexity implies that off-the-shelf solvers for nonlinear
programs may not achieve global optimality; from a compu-
tational standpoint, their complexity may become prohibitive
with the increasing of the problem size [7]. Semidefinite
relaxation techniques have been employed to bypass the non-
convexity of voltage-regulation and power-balance constraints,
and yet achieve globally optimal solutions of the nonconvex
OPF under a variety of conditions (see e.g., [28]). Several
other convex relaxation techniques have also been investigated
(see e.g., [29]–[31] and pertinent references therein). In this
paper, to derive a reformulation of the multi-period OPF that is
computationally more affordable, linear surrogates of (5) and
voltage-regulation constraints will be sought next. Approxi-
mate power-flow relations will also facilitate the application
of convex approximation techniques for chance constraints to
the problem that will be formulated in Section III.

To this end, collect the voltage magnitudes {|V tn|}n∈N in
ρt := [|V t1 |, . . . , |V tN |]T ∈ RN . The objective is to obtain ap-
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proximate power-flow relations whereby voltages are linearly
related to injected powers st as

vt ≈ Hpt + Jqt + c (6)
ρt ≈ Rpt + Bqt + a, (7)

where pt := <{st} and qt := ={st}. This way, voltage con-
straints V min ≤ |V tn| ≤ V max, n ∈ N , can be approximated
as V min1N � Rpt + Bqt + a � V max1N , while (6)-(7)
represents surrogates of (5).

The model parameters R,B,H,J,a, and c in (6)–(7) can
be obtained as explained in e.g., [9]–[13]. These works also
provide bounds on the approximation errors. It is also worth
noticing that the model (6)–(7) can be augmented with a
random variable representing the approximation error (and
the stochasticity can be handled in the chance-constraints
explained in Section III). For illustration purposes, the ap-
proximation developed in [10], [12] is briefly described next.

Consider then linearizing the AC power-flow equation
around a given voltage profile v̄ := [V̄1, . . . , V̄N ]T. In the
following, the voltages v satisfying the nonlinear power-
balance equations (5) are expressed as v = v̄ + e, where the
entries of e capture deviations around the linearization points
v̄. Collect in the vector ρ̄ ∈ RN+ the magnitudes of voltages v̄,
and let γ̄ ∈ RN and µ̄ ∈ RN collect elements {cos(θ̄n)} and
{sin(θ̄n)}, respectively, where θ̄i is the angle of the nominal
voltage V̄i. Expanding on (5), and discarding second-order
term diag (e) Y∗e∗, it turns out that (5) can be approximated
as Γe + Φe∗ = s + υ, where Γ := diag (Y∗v̄∗ + y∗V ∗0 ),
Φ := diag (v̄) Y∗, and υ := −diag (v̄) (Y∗v̄∗ + y∗V ∗0 ).
Next, consider then the following choice of the nominal
voltage v̄:

v̄ = −Y−1yV0 . (8)

Using (8), it follows that Γ = 0N×N and υ = 0N , and
therefore one obtains the linearized power-flow expression

diag (v̄∗) Ye = s∗. (9)

Notice that matrix Y is diagonally dominant and irre-
ducible [10]. Particularly, it is diagonally dominant by con-
struction since |yii| ≥

∑
n 6=i |yin| for all n ∈ N ; it is also

irreducibly diagonally dominant if |y0i| > 0 for any i. Then,
a solution to (9) can be expressed as e = Y−1diag−1(v̄∗)s∗.
Thus, expanding on this relation, the approximate voltage-
power relationship (6) can be obtained by defining the ma-
trices:

R̄ = ZRdiag(γ̄)(diag(ρ̄))−1 − ZIdiag(µ̄)(diag(ρ̄))−1 (10a)

B̄ = ZIdiag(γ̄)(diag(ρ̄))−1 + ZRdiag(µ̄)(diag(ρ̄))−1 (10b)

where ZR := <{Y−1} and ZI := ={Y−1}, and setting
H = R̄ + jB̄, J = B̄ − jR̄, and c = v̄ . If the entries
of v̄ dominate those in e, then ρ̄ + <{e} serves as a first-
order approximation to the voltage magnitudes across the
distribution network [10], and relationship (7) can be obtained
by setting R = R̄, B = B̄, and a = ρ̄. Equations (6)–(7) will
be utilized next to develop a computationally affordable multi-
period OPF strategy.

III. COMPUTATION OF RES AND BATTERY SETPOINTS

A multi-period OPF problem optimizing the operation of
a distribution system over the interval Tt is formulated first,
and subsequently utilized as a building block for an MPC
strategy. At time instant t, the objective of the distribution
system operator is to compute the setpoints {αt,qtc} for the
RES inverters as well as to adaptively schedule the SoC of
the batteries via the variables ptB ,b

t so that well-defined
performance objectives are maximized, while concurrently
ensuring that voltage limits are satisfied. To this end, forecasts
for δτ := (pτav,p

τ
` ,q

τ
` ), τ = t, . . . , t + T are available. For

brevity, define the following vector-valued function [cf. (6)–
(7)]:

gρ(α
t,qtc,p

t
B , δ

τ ) :=R((I− diag{α}t)ptav − pt` − ptB)

+ B(qtc − qt`) + a .

Consider then the following optimization problem:

(P0) min
{ατ ,qτc ,p

τ
B ,b

τ}

t+T∑
τ=t

E[Cτ (ατ ,qτc ,p
τ
B , δ

τ )] (11a)

subject to

Pr{gρ,n(ατ ,qτc ,p
τ
B , δ

τ ) ≤ Vmax} ≥ 1− ε
∀n ∈ N , τ ∈ Tt (11b)

Pr{Vmin ≤ gρ,n(ατ ,qτc ,p
τ
B , δ

τ )} ≥ 1− ε
∀n ∈ N , τ ∈ Tt (11c)

Pr{((1− ατi )P τav,i)
2 + (Qτi )2 ≤ S2

i } ≥ 1− η
∀ i ∈ NR, τ ∈ Tt (11d)

0 ≤ ατi ≤ 1 ∀ i ∈ NR, τ ∈ Tt (11e)

Bτ+1
j = Bτj + P τB,j∆

t ∀ j ∈ NB , τ ∈ T ′t (11f)

Pmin
B,j ≤ P τB,j ≤ Pmax

B,j ∀ j ∈ NB , τ ∈ T ′t (11g)

Bmin
j ≤ Bt+1

j ≤ Bmax
j ∀ j ∈ NB , τ ∈ T ′t (11h)

where gρ,n(·) denotes the n-th element of the vector-valued
function gρ(·) and T ′t := {t, . . . , t+T−1}. Constraints (11g)–
(11h) optimize the RES and battery utilization over the whole
horizon. Given the predicted values of both available powers
{p̄τav}τ∈Tt and loads {p̄τ` , q̄τ` }τ∈Tt , along with the associated
forecasting errors, the chance constraints (11b)–(11d) ensure
that RES and battery setpoints can be scheduled in a way that
inverter capacity limits and voltage limits are satisfied with
prescribed probabilities 1−η and 1−ε, respectively. Functions
{Cτ (·)}τ∈Tt are convex and model e.g., expected (reward
for) ancillary service provisioning, feed-in tariffs, cycling
of batteries, and other economic performance indicators [3],
[4], [10]. Of particular relevance is the minimization of the
active power curtailed, which promotes utilization of RES-
based generation, while concurrently respecting voltage limits.
Notice that one can also show that the power losses can be
expressed as a convex function of active and reactive power
via (6) (see e.g., [10]).

Constraints (11b)–(11c) are, however, problematic. It may
turn out that the feasible set of (11b)–(11d) is nonconvex. For
example, (11b)–(11c) are convex and efficiently manageable
only when δτ is the image, under affine transformation, of a
random vector with rotationally invariant distribution – with
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the multivariate Gaussian distribution as a prime example (see
e.g., [8]).

To account for a variety of possible distributions of the
forecasting errors δτ and yet derive a computationally efficient
solution method for the stochastic multi-period OPF, a convex
approximation of the chance constraints is pursued next.
Summarizing, this paper leverages: 1) linear approximation
of the AC power-flow equations to bypass the non-convexity
of the balance equations and voltage constraints in AC OPF
problems; and, 2) the techniques in [8] to derive conservative
convex approximations of infinite-dimensional (and possibly
non-convex) chance constraints.

A. Leveraging convex approximation of chance constraints

Consider the generic scalar chance constraint Pr{g(x, δ) >
0} ≤ ε, where function g(x, δ) is convex in the optimization
variables x for given values of the random vector δ. Key
to developing a conservative convex approximation for this
chance constraint, is to consider a function ψ : R → R
that is nonnegative valued, nondecreasing, and convex. Fur-
ther, assume that ψ(·) – henceforth referred to as the (one-
dimensional) generating function – satisfies the conditions
ψ(x) > ψ(0) ∀x > 0 and ψ(0) = 1. Given a positive scalar
z > 0 and a random variable δ, it holds that: Eδ{φ(z−1δ)} ≥
Eδ{I[0,+∞)(z

−1δ)} = Pr{z−1δ ≥ 0} = Pr{δ ≥ 0}, where
Eδ denotes expectation with respect to δ. Thus, by taking
δ = g(x, δ) one has that the following bound holds for all
z > 0 and x [8]:

Pr{g(x, δ) > 0} ≤ Eδ
{
ψ
(
z−1g(x, δ)

)}
. (12)

It follows that the constraint

inf
z>0

{
zEδ

{
ψ(z−1g(x, δ))

}
− zε

}
≤ 0 (13)

represents a sufficient condition for Pr{g(x, δ) > 0} ≤ ε
and hence is also a conservative convex approximation of
the chance constraint Pr{g(x, δ) ≤ 0} ≥ 1 − ε. Regarding
the convexity of (13), notice that since ψ(·) is nondecreasing
and convex and g(·, δ) is convex, it follows that the mapping
(x, z) → zψ(z−1g(x, δ)) is convex. If g is biaffine in x and
δ and ψ is quadratic, then the constraint (13) is also convex.

Next, consider the piecewise linear function ψ(x) = [1 +
x]+. In this case, the approximate constraint (13) takes the
following form:

inf
z∈R

Eδ {[g(x, δ) + z]+} − zε ≤ 0 (14)

where the infimum is taken over z ∈ R (instead of the non-
negative orthant) without compromising the validity of the
bound. It turns out that (14) is closely related to the concept
of conditional value at risk (CVaR), which is a well-known
coherent risk measure in risk management and optimization
under uncertainty [8], [22], [26].

Thus, replacing the generic convex function g(x, δ) with
gρ,n(ατ ,qτc ,p

τ
B , δ

τ )−Vmax and Vmin−gρ,n(ατ ,qτc ,p
τ
B , δ

τ ),

respectively, it follows that CVaR-type convex approximations
of (11b)–(11c) amount to:

Eδτ
{

[gρ,n(ατ ,qτc ,p
τ
B , δ

τ )− Vmax + zτn]+

}
≤ zτnε (15)

Eδτ
{

[Vmin − gρ,n(ατ ,qτc ,p
τ
B , δ

τ ) + yτn]+

}
≤ yτnε (16)

where {zτn ∈ R+}n,τ and {yτn ∈ R+}n,τ will be auxiliary
optimization variables. Similarly, setting g(x, δ) to ((1 −
ατn)P τav,n)2 + (Qτn)2 − S2

n, (11d) can be approximated as

Eδτ
{[

((1− ατn)P τav,n)2 + (Qτn)2 − S2
n + xτn

]
+

}
≤ xτnη (17)

where {xτn ∈ R+}n,τ will be auxiliary optimization variables.
An advantage of (15)–(17) is that empirical estimates of the
expected values can be obtained via sample averaging. Accord-
ingly, given Ns samples {δτ [s]}Nss=1, of the random vector δτ ,
an approximation of (15)–(17) for arbitrary distributions can
be accommodated in the OPF task as follows:

(P1) min
{ατ ,qτc ,p

τ
B ,b

τ}
{wτ},{xτn,z

τ
n,y

τ
n}

t+T∑
τ=t

wτ

subject to (11e)− (11h), and

1

Ns

Ns∑
s=1

Cτ (ατ ,qτc ,p
τ
B , δ

τ [s]) ≤ wτ ∀ τ ∈ Tt (18a)

1

Ns

Ns∑
s=1

[
((1− ατi )P τav,i[s])

2 + (Qτi )2 − S2
i + xτi

]
+
≤ xτi η

∀ i ∈ NR, τ ∈ Tt (18b)

1

Ns

Ns∑
s=1

[gρ,n(ατ ,qτc ,p
τ
B , δ

τ [s])− Vmax + zτn]+ ≤ z
τ
nε

∀n ∈ N , τ ∈ Tt (18c)

1

Ns

Ns∑
s=1

[Vmin − gρ,n(ατ ,qτc ,p
τ
B , δ

τ [s]) + yτn]+ ≤ y
τ
nε

∀n ∈ N , τ ∈ Tt . (18d)

For a sufficiently high number of samples
Ns, almost sure convergence of the sample
averages on the left hand side of (18b)-(18d)
to Eδτ {

[
((1− ατi )P τav,i)

2 + (Qτi )2 − S2
i + xτi

]
+
},

Eδτ {[gρ,n(ατ ,qτc ,p
τ
B , δ

τ ) − Vmax + zτn]+} and
Eδτ {[Vmax − gρ,n(ατ ,qτc ,p

τ
B , δ

τ ) + yτn]+}, respectively,
can guaranteed by using large deviations theory [32]–[34].
Furthermore, sample average approximation methods with
modest numbers of samples have been shown to be effective
in many practical problems [34], [35].

Regarding the approximate problem (18), the following
points should be stressed: i) (P1) is a convex program; ii)
the number of optimization variables does not increase with
the increasing of the number of samples Ns; and, iii) any
distribution of the random vectors pτav, pτ` , and qτ` can be
accommodated in (P1). In particular, arbitrary distributions can
be accommodated so long as one has a mechanism from which
to draw samples of δτav and δτ` .
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B. Model predictive control implementation

When determining the control decisions for devices with
intertemporal constraints (e.g., energy storage units), it is ad-
vantageous to not only take into account the current time step,
but also potential future system states. MPC is an adaptive
control technique that enacts optimal control decisions in the
current time step while taking into account the system behavior
over a chosen time horizon [16]–[18]. In the present context,
problem (P1) constitutes a building block for a MPC-based
strategy that adapts current and future setpoints based on
forecasts of available RES powers and loads. Particularly, the
MPC strategy involves the following steps:

[A1] At time instant t, acquire the forecasting of available
RES power and loads over Tt.
[A2] Solve (P1) over the horizon Tt.
[A3] Send setpoints {αti, Qti}i∈NR to the RES inverters and
send commands {P tB,i}i∈NB to batteries.
[A4] Tt → Tt+1, and go to step [A1].

Once the optimal setpoints are calculated for the entire time
horizon Tt, the control decisions for the current step are
applied to RES and battery units. Then, the forecasts are
updated, and the time window is shifted by a time slot.

In Section IV, a distributed algorithm is proposed to decom-
pose the optimization task [A2] across utility and customers.
But first, a few remarks are in order.

Remark 1 (Battery efficiency). For simplicity, no charg-
ing/discharging losses were considered in the dynamical equa-
tion of the energy storage (3) [25]. However, charging and
discharging efficiencies can be readily incorporated in (3)
and (11f), at the cost of increasing the complexity of problems
(P0)− (P1). To this end, let ηc ∈ (0, 1] and ηd ∈ (0, 1] denote
the charging and discharging efficiencies, respectively; further,
let P tBc,n ≥ 0 denote the power supplied to the battery n, and
P tBd,n ≥ 0 the power withdrawn from the battery. With these
definitions, (3) can be modified as [36]:

Bt+1
n = Btn + ηcP

t
Bc,n∆t − 1

ηd
P tBd,n∆t. (19)

Clearly, at any time t, P tBc,n and P tBd,n cannot be concurrently
greater than zero (i.e., the battery cannot be simultaneously
charged and discharged). To this end, it is necessary to add
in problems (P0) − (P1) additional constraints; particularly,
one can either i) add binary variables that indicate whether
the battery is charging or discharging [19], or, ii) add the
constraint P tBc,nP

t
Bd,n

= 0. Either way, with these additional
constraints problem (P1) would become nonconvex. However,
when the constraint P tBc,nP

t
Bd,n

= 0 is considered, successive
convex approximation techniques can be utilized to identify
a (possibly locally optimal) solution of (P1). Alternatively,
mixed-integer solvers could be used with binary variables,
though this poses practical difficulties in medium to large
problems and in distributed settings. On the other hand, to
preserve convexity of (P1), prior works in context considered
replacing (11f) with (19) and disregarding the nonconvex
constraint P tBc,nP

t
Bd,n

= 0 [36].
Remark 2 (Policy for RES inverters). Similar to e.g., [22],

[24], model (11e) (and, hence, (18b)) dictates an adaptive

policy for the setpoints commanded to the RES inverters to
accommodate the uncertainty in δtav. In fact, once αtn is com-
puted, inverter n will curtail αtnP

t
av,n during the time interval

(t, t + 1]. Regarding Qtn, if the setpoint ((1 − αtn)P tav,n, Qn)
is outside the inverter operating region [cf. (11e)], the value
of Qtn can be reduced to adhere to the capacity limits of the
inverter.

Remark 3 (Recursive feasibility). The basic implementation
described above does not necessarily provide recursive feasi-
bility, where feasibility of the optimization problem at each
time step is guaranteed if the problem is initially feasible.
Recursive feasibility in stochastic model predictive control is
a major challenge and an active research topic. More elaborate
techniques from the recent literature may be applied to provide
recursive feasibility under certain conditions [37].

Remark 4 (Multi-phase systems). For notational and exposi-
tion simplicity, the paper considers a balanced distribution net-
work. However, the proposed framework is readily applicable
to multi-phase unbalanced systems with any topology. In fact,
the linearized model in Section II-B can be extended to the
multi-phase unbalanced setup, and the optimization problems
can be modified to accommodate chance-constraints on each
phase and node.

Remark 5 (Flow limits). Using the linear approximation de-
veloped in [10], [12], it is possible to derive an (approximate)
linear relationship between voltage angles and net injected
powers as:

θt ≈ Npt + Mqt + d (20)

where θt ∈ RN collects the voltage angles on the nodes and
N, M, and d can be built from (6). The approximation (20)
can be utilized to impose line flow limits in the OPF problem
without increasing the underlying computational complexity.
Particularly, let θmax be a maximum phase shift over a line;
then, the following constraints can be included in (P0) to
account for power flows on each line:

Pr{|θi − θj | ≤ θmax} ≥ 1− ε (21)

where ε > 0 is a pre-defined parameter. Substituting (20)
into (21) and utilizing (14), a deterministic convex approxi-
mation of (21) can be obtained. The resultant approximation
can be included in problem (P1).

IV. DISTRIBUTED IMPLEMENTATION

A distributed solution of the convex problem (P1) is devel-
oped next in order to enable utility and customers to pursue
specific performance objectives, while ensuring that voltage
limits are systematically satisfied. For example, customer-
based optimization includes minimizing the cost when feed-
in tariffs are applied [1] and/or maximizing the revenue
from ancillary service provisioning [3], [4]; customers retain
controllability of their RES and battery systems, and optimize
the utilization of these devices subject to the operational con-
straints (11f)–(11h) and (18b). On the other hand, objectives of
the utility may include e.g., minimization of the power losses
as well as adherence to voltage limits. For simplicity of nota-
tion, assume that RESs and batteries are co-located at nodes
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NC ⊆ N ; the algorithm clearly handles the general case where
some RESs and batteries are not co-located. Then, consider
decoupling the cost function in (18) as Cτ (ατ ,qτc ,p

τ
B , δ

τ ) =
Cτu(ατ ,qτc ,p

τ
B , δ

τ ) +
∑
n∈NC C

τ
c,n(ατ ,qτc ,p

τ
B , δ

τ ), where
Cτu(·) captures utility-oriented performance target and Cτc,n(·)
models the optimization objectives of the nth customer. For
notational simplicity, define the vector uτn := [ατn, Q

τ
n, P

τ
B,n]T

collecting the setpoints for the RES and the battery located at
node n.

The distributed solution developed in this section leverages
the ADMM techniques [15, Sec. 3.4]. Notice however that the
presence of samples {δτ [s]} in the probabilistic constraints
may require adding a set of auxiliary optimization variables
per sample s = 1, . . . , Ns to enable a decomposition of
the solution of (P1) across utility and customers. To bypass
this hurdle, one way is to introduce the (sample-independent)
auxiliary variables ũτn, which represent copies of the setpoints
uτn at the utility, for all n ∈ N and τ ∈ T . Accordingly, (P1)
can be re-stated in the following equivalent way:

(P2) min
{ũτ ,uτ ,bτ}
{wτn},{w̃

τ}
{xτn,z

τ
n,y

τ
n}

t+T∑
τ=t

(
w̃τ +

∑
i∈NC

wτi

)

subject to

1

Ns

Ns∑
s=1

Cτu(ũτ , δτ [s]) ≤ w̃τ (22a)

1

Ns

Ns∑
s=1

[gρ,n(ũτ , δτ [s])− Vmax + zτn]+ ≤ z
τ
nε (22b)

1

Ns

Ns∑
s=1

[Vmin − gρ,n(ũτ , δτ [s]) + yτn]+ ≤ y
τ
nε (22c)

1

Ns

Ns∑
s=1

Cτc,n(uτn, δ
τ [s]) ≤ wτn (22d)

1

Ns

Ns∑
s=1

[
((1− ατn)P τav,n[s])2 + (Qτn)2 − S2

n + xτi
]
+
≤ xτnη

(22e)
0 ≤ ατn ≤ 1 (22f)

Bτ+1
n = Bτn + ηP τB,n∆t (22g)

Pmin
B,n ≤ P tB,n ≤ Pmax

B,n (22h)

Bmin
n ≤ Btn ≤ Bmax

n (22i)
ũτn = uτn ∀i ∈ NC , τ ∈ T (22j)

where constraints (22d)–(22c) pertain to the utility, (22d)–
(22i) are constraints for each customer i, and the consensus
constraints (22j) ensure that utility and customer agree on the
setpoints, while pursuing their own optimization objectives.
Notice that variable ũτ appears in the cost functions of the
utility, as well as in the voltage regulation constraints. On
the other hand, uτi is the argument of objective function and
constraints for customer i. Following a procedure similar to
e.g., [38], [39], the next step involves the introduction of
auxiliary variables to facilitate the decomposability of the
consensus constraints (22j) across utility and customers when

an augmented Lagrangian function is considered. Then, by
leveraging ADMM, it can be shown that the distributed algo-
rithm boils down to the steps [S1]-[S2] performed iteratively
as described below (i represent the iteration index).

[S1a] Variables {ũτ [i + 1]}τ∈T are updated at the utility by
solving the following problem:

min
{ũτ}

{w̃τ},{zτn,y
τ
n}

t+T∑
τ=1

(w̃τ +Rτu(ũτ , i))

subject to

1

Ns

Ns∑
s=1

Cτu(ũτ , δτ [s]) ≤ w̃τ , ∀τ ∈ Tt (23a)

1

Ns

Ns∑
s=1

[gρ,n(ũτ , δτ [s])− Vmax + zτn]+ ≤ z
τ
nε (23b)

1

Ns

Ns∑
s=1

[Vmin − gρ,n(ũτ , δτ [s]) + yτn]+ ≤ y
τ
nε (23c)

where constraints (23b)–(23c) are enforced for all n ∈ N , τ ∈
Tt, and the iteration-dependent function Ru(ũτ , i) is given by

Rτu :=
∑
τ∈T

∑
n∈NC

κ

2
‖ũτn‖22

+ (ũτn)T
(
γτn[i]− κ

2
ũτn[i]− κ

2
uτn[i]

)
. (24)

[S1b] Setpoints uτn[i + 1] for RES and battery located at
customer n ∈ NC are updated as:

min
{uτn,bτn}{wτn},{xτn}

t+T∑
τ=t

(
wτn +Rτc,n(uτn, i)

)
subject to

1

Ns

Ns∑
s=1

Cτc,n(uτn, δ
τ [s]) ≤ wτn ∀τ ∈ Tt (25a)

1

Ns

Ns∑
s=1

[
((1− ατn)P τav,n[s])2 + (Qτn)2 − S2

n + xτn
]
+
≤ xτnη

∀ τ ∈ Tt (25b)
0 ≤ ατn ≤ 1 ∀τ ∈ Tt (25c)

Bτ+1
n = Bτn + ηP τB,n∆t ∀τ ∈ T ′t (25d)

Pmin
B,n ≤ P tB,n ≤ Pmax

B,n ∀τ ∈ T ′t (25e)

Bmin
n ≤ Btn ≤ Bmax

n ∀τ ∈ T ′t (25f)

where the iteration-dependent scalar function Rc,n(uτn, i) is
given by:

Rτc,n :=
∑
τ∈T

κ

2
‖uτn‖22 − (uτn)T

(
γτn[i]− κ

2
ũτn[i]− κ

2
uτn[i]

)
.

(26)

[S2] Dual variables {γτn[i+ 1]} are updated as:

γτn[i+ 1] = γτn[i] +
κ

2
(ũτn[i+ 1]− uτn[i+ 1]) (27)

for all n ∈ NC and τ ∈ T .
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Algorithm 1 Distributed architecture: DSO operation
Generate {δτ [s]} and transmit {P τav,n[s]} to each customer n.
for i = 1, 2, 3, . . . until convergence do

[s1] Transmit {ũτ [i]}τ∈T to customer n. Repeat ∀n ∈ NC .
[s2] Receive {uτn[i]}τ∈T from customer n. Repeat ∀n ∈ NC .
[s3] Update {ũτ [i+ 1]}τ∈T ,n∈NC by solving (23).
[s4] Update dual variables via (27).
Go to [S1]

end for

Algorithm 2 Distributed architecture: customer operation
Receive {δτ [s]} from DSO.
for i = 1, 2, 3, . . . until convergence do

[s1] Receive {ũτ [i]}τ∈T from DSO.
[s2] Transmit {uτn[i]}τ∈T to DSO.
[s3] Update {uτ [i+ 1]}τ∈T by solving (25).
[s4] Update dual variables via (27).
Go to [S1]

end for

Notice that problem (25) decouples into two subproblems,
one in the variables {ατn, Qτn}τ∈T and one in {P τB,n, bτn}τ∈T
whenever functions {Cτc,n(·)} decouple across variables.

Steps [S1]–[S2] above are repeated until convergence. A
possible way to terminate the algorithm is to check the
residuals ‖ũτn[i] − uτn[i]‖2. At each iteration i, step [S1a] is
performed at the distribution system operator (DSO), whereas
step [S1b] is simultaneously computed at each customer n.
Once [S1a] and [S1b] are performed, customers and DSO
exchange the intermediate iterates un[i] and ũn[i] and carry
out the update of the dual variables γn[i]. The complete list
of steps performed at the DSO and at the customers at each
iteration i is tabulated as Algorithm 1 and Algorithm 2.

Since (P2) is convex and constraints (22j) satisfy the con-
ditions of [15, Prop. 4.2], convergence of the algorithm to
the solution of (P2) is guaranteed; since (P2) is equivalent to
(P1), the algorithm returns a solution of (P1) too. In the MPC
strategy outlined in Section III-B, the distributed algorithm is
utilized to solve (P1) over the horizon T in [A3]. Steps [S1]–
[S2] are performed until convergence and, setpoints utn are
commanded to each RES and battery units.

V. NUMERICAL TESTS

A. System setup

A modified version of the IEEE-37 node test feeder is
utilized to test the proposed adaptive OPF method. As shown
in Fig. 1, the modified network is obtained by considering
the phase “c” and by replacing the loads specified in the
original dataset with real load data measured from feeders
near Sacramento, CA during the month of August 2012 [40].
The total loading of the feeder can be seen in Fig. 2, with
a five-minute granularity. Other network data, such as line
impedances, shunt admittances, and active and reactive loads
are adopted from the respective dataset. It is assumed that
twenty-one photovoltaic (PV) systems are placed at nodes 4,
7, 9, 10, 11, 13, 16, 17, 20, 22, 23, 26, 28, 29, 30, 31, 32, 33,
34, 35, and 36, and their generation profile is simulated based
on the solar irradiance data available in [40]. The capacities
are selected in a way to represent utility-scale PV systems,

Fig. 1. IEEE 37-node test feeder considered in the test cases. Squares indicate
nodes where PV systems are located.

TABLE III
CAPACITIES OF PV AND STORAGE SYSTEMS IN THE CONSIDERED

SIMULATION SETUP.

PV system Battery
Node Si [kVA] Node Bmax

i [kWh]
4 100 9 100
7 200 10 100
9 200 28 50

10 400 29 250
11 440 32 250
13 240 35 120
16 400 36 200
17 240
20 300
22 100
23 500
26 200
28 500
29 200
30 240
31 400
32 220
33 500
34 300
35 300
36 300

roof-top PV systems for commercial facilities, or lump the
capacities of PV systems on 10-15 houses connected to the
same step-down transformer. The PV locations and capacities
are summarized in Table III. For each receding horizon opti-
mization, 130 samples were used from each random quantity
in the calculation of the chance constraints. The aggregate
available power

∑
n P

τ
av,n during the course of the day is

shown in Fig. 2. In these simulations, the voltage limits Vmax

and Vmin are set to 1.05 pu and 0.95 pu, respectively.
When considering this level of PV penetration, overvolt-

age conditions can be observed during the hours of solar
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peak irradiation. By utilizing energy storage systems, model
predictive control, and advanced inverter functionality, the
overvoltages are mitigated. Similar to e.g., [1] energy storage
units are co-located with the PV systems at nodes 9, 10,
28, 29, 32, 35, and 36, and their energy capacities Bmax

n are
assumed to be 100, 100, 50, 250, 250, 120, and 200 kWh,
respectively. They represent community-scale energy storage
systems, commercial-scale storage systems, or the capacity of
10-12 residential-scale batteries lumped into a single node. The
minimum state of charge, Bmin

n is set to zero for all batteries.
The cost function is set to

Cτ (ατ ,qτc ,p
τ
B , δ

τ ) =
∑
i∈N

cτi [P τ`,n + P τB,n − (1− ατn)P τav,n]+

+
∑
i∈N

dτi [(1− ατn)P τav,n − P τ`,n − P τB,n]+

+
∑
i∈N

eτi |Qτn|+
∑
i∈N

fτi α
τ
i P

τ
av,n (28)

for all τ = t, . . . , t+ T , where cτi = 10, dτi = 3, eτi = 3, and
f ti = 6. Cost Ct(αt,qtc,p

t
B , δ

t) captures the price associated
with the power consumed by the customers, as well as the
feed-in tariff cost to the utility [1], the cost of reactive power
injection/absorption from the inverters, and the cost of active
power curtailment. The parameter ε is fixed to 0.01 in the
probabilistic constraints; i.e., a 1% violation of probabilistic
constraints is allowed in the optimization.

Each energy storage device is set to have a maximum five-
minute charge rate of 10% of their respective energy capac-
ities, Bmax

n . Forecasting errors for load and available active
power are assumed to follow a truncated Gaussian distribution,
with the distribution truncated at ±3σ, with σ denoting the
standard deviation. The standard deviation of the forecasting
errors is assumed to be 3% of the actual value for the first
hour in the prediction and 7% for future timesteps. Two test
cases are considered here: (C1) 2 hours, with a granularity of 5
minutes during the first hour and 15 minutes during the second
hour; and, (C2) 2 hours with the same granularity as before,
but using a (deterministic) certainty equivalent formulation
where the forecasted available powers and loads are utilized in
the MPC strategy. Particularly, for (C2) the voltage constraints
in (P1) are reformulated into simpler deterministic constraints
where the forecasted values of loads and available power
from PV systems are utilized. The solver SDPT3 is utilized
to solve the optimization problems in MATLAB. The solver
took 1.7 seconds to solve the centralized multi-period OPF
over 12 time instants on a Macbook Pro laptop with 16 GB
of memory and 2.8 Ghz Intel Core i7. An implementation
of the distributed ADMM algorithm described in Section IV
will require longer computation times from multiple iterations
and communication delays but allows decomposition of the
computations across customers and the utility.

B. Approximation accuracy

First, the accuracy of the voltage approximation is tested
in two cases: i) no RES generation (Case I) and ii) in the
presence of reverse power flow (Case II). Fig. 3 shows the
actual voltage profile as well as the voltage magnitudes across
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Fig. 2. Total feeder loading and available PV generation.
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Fig. 3. Actual and approximated values of the voltage magnitude. The
linearized model closely approximates the actual nonlinear powerflow.

the nodes obtained by using the linearized model explained in
Section II-B. It can be seen that the approximation is accurate
in both cases. See e.g., [10], [12] for additional numerical
results as well as analytical bounds for the approximation
errors.

C. Example of performance of the proposed method

A sample of the voltage profiles achieved with (C1) is
provided in Fig. 4. It can be seen that the voltages are confined
within the desired limits. This will be further confirmed shortly
when describing the results provided by Fig. 7. The state
of charge of the batteries are shown in Fig. 5, and the
corresponding charging/discharging pattern for each battery is
shown in Fig. 6, demonstrating the charging of the batteries
during peak solar irradiance times and discharging as the
available solar energy decreases. When avoiding curtailment,
the batteries charge at their maximum charge rate and the
batteries become fully charged for a small amount of time.

Fig. 7 compares snapshots of the voltage profiles obtained
with strategies (C1), (C2), and in the vase where no active
power curtailment or reactive power strategies are imple-
mented. Voltage profiles correspond to 12PM. The strategy
(C2) is tested for three different realizations of the forecasting
errors: i) in case of perfect forecast, which serves as a
benchmark; ii) when the available active power from the PV
system is underestimated by 10%; and, iii) when the available
active power from the PV system is overestimated by 10%. It is
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Fig. 4. Voltage profile achieved with the chance-constrained OPF method in
the considered test case.

clearly seen that when no active power curtailment or reactive
power strategies are implemented the voltages exceed the limit
of 1.05 pu at a number of nodes. The strategy (C2) based on
the certainty equivalent formulation works well when the fore-
cast is perfect, and the only factor affecting the voltage profile
is the error in the linear approximation of the AC power-flow
equations. However, (C2) leads to overvoltage conditions when
the power available from the PV is underestimated, and to an
over-conservative solution when P τav,i is overestimated. The
proposed chance-constrained approach is more conservative,
but drives the voltage magnitudes within the desired range in
spite of forecasting errors.

Figure 8 illustrates the probability distribution of the voltage
magnitudes for strategies (C1) and (C2). Recall that the
forecasting errors for load and available active power from
the PV systems are assumed to follow a truncated Gaussian
distribution, with the distribution truncated at ±3σ, with σ
denoting the standard deviation. For the test reported in Fig-
ure 8, the truncated Gaussian distribution is centered around
the true values of loads and available active powers. The
standard deviation of the forecasting errors is assumed to be
3% of the actual value for the first hour in the prediction
and 7% for future timesteps. As expected, it can be seen that
the proposed strategy (C1) leads to a less frequent violation
of the voltage magnitudes. Particularly, the upper limit on
the voltage magnitudes is violated 0.74% of the time, which
satisfies the maximum violation probability of 1% specified in
the chance-constraints. On the other hand, strategy (C2) leads
to a violation probability larger than 2% even if the truncated
Gaussian distribution is centered around the true values of
loads and available active powers.

VI. CONCLUDING REMARKS

The paper developed an adaptive AC OPF approach to opti-
mize the operation of distribution systems featuring RESs and
energy storage devices under forecasting errors. Controllability
of output active and reactive power is presumed for RESs.
The proposed method utilizes a chance-constrained multi-
period AC OPF formulation, where probabilistic constraints
are utilized to enforce voltage regulation with a prescribed
probability. To enable a computationally affordable convex
reformulation, a linear approximation of the AC power-flow
equations was utilized, along with conservative approxima-
tions for the chance constraints. An adaptive optimization
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strategy was then obtained via receding horizon control. A
distributed solution strategy was developed to enable utility
and customers to pursue their own optimization objectives,
while ensuring that voltage constraints are satisfied. Future
efforts will explore alternative linearization techniques for the
AC power-flow equations, convex approximation techniques
for chance constraints that are robust to inaccuracies in the
forecasting error distribution, strategies for learning and im-
proving forecast error distribution models from empirical oper-
ational data, and translating probabilistic constraint satisfaction
guarantees from the linearized to the full nonlinear model.
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