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Abstract— We consider formation shape control of four point
agents in the plane. Control laws based on specified interagent
distances are used. For a complete graph, specification of all
interagent distances determines the formation shape uniquely.
Krick, Broucke and Francis showed that for a standard control
law, there may exist equilibrium formations with incorrect
interagent distances. This paper studies such equilibria and
derives two main results. That each such incorrect equilibrium
is attached to at most one desired formation. That all such
equilibria are unstable if the desired formation is a rectangle.

I. INTRODUCTION

A key problem in autonomous vehicle formations is their
shape control. In this paper we analyze the stability properties
of a control law, now almost standard, for a class of simple
four-agent formation in which all interagent distances are
to be preserved. These simple formations are considered
because we do not know how to handle more complicated
formations, and believe that studying a simple formulation
may help provide the tools for addressing general formations.
As is now standard we regard each formation as a graph.
Each agent is treated as a node. If the distance between
two agents is specified then the graph has an edge between
the two corresponding nodes. The formations we consider
have associated graphs that are K4, the complete graph on
4 vertices.

Our control objective is to force the agents to cooperatively
and autonomously achieve a specified desired formation
shape, with each agent working to change its associated
interagent distances to the correct values. Related work
includes [1] that proposes the use of graph rigidity theory
(see e.g. [2]) for modeling information architectures; [3]
which also uses graph rigidity theory and proposes gradient
control laws based on structural potential functions which
are generated from the graph; [4] which using graph rigidity
theory discusses application to formations of non-holonomic
robots.

It has recently been observed that there is a fundamental
distinction between formations where distances are main-
tained by both agents of a pair and where they are maintained
by only one agent of a pair [5], [6], [7]. Triangular for-
mations, modelled by directed graphs rather than undirected
graphs so that only one agent of a pair is responsible for
maintaining the interagent distance, have been studied in
detail, see [8], [9], [10]. It has been pointed out in [11] that
for a triangular formation, stability properties are essentially
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independent of whether the control structure is unidirectional
(single agent controls a distance) or bidirectional (two agents
control a distance), so that the triangle results almost all
apply to the bidirectional case. The results in this paper are
for formations where bidirectional control is used.

In [12] Krick et al provide a complete analysis showing
that the desired formation shape is locally asymptotically
stable under a gradient control law, provided that the in-
formation architecture is rigid (see [12] for a definition
of rigidity). However, the global stability properties of the
desired formation shape remain a challenging open problem.
Krick et al also consider by way of example the four-
agent formation considered here, with a complete graph
information architecture (i.e. all interagent distances are
actively controlled). A simulation shows that the formation
appears to converge to an incorrect shape (i.e. to a formation
with interagent distances not all the same as those in the
desired shape), and they conclude that the desired shape is
not globally asymptotically stable.

In [13] and [14], we have shown that the incorrect station-
ary point discovered by [12] is in fact a saddle point, and
for all practical purposes, unlikely to be attained. We should
note that [13] has a fundamental mistake that renders its
principal results incorrect. It purported but failed to present
a proof of the instability of equilibria corresponding to an
incorrect shape when the incorrect shapes contained certain
acute angles. In [14], we corrected [13], provided insights
into the structure of false equllibria, and showed that should
such an equllibrium represent a rectangle, then it must be
unstable.

We derive here two results about the false equilibria: That
at most one true formation can be associated with a given
false stationary point. That should the true formation be a
rectangle then all false equilibria are necessarily unstable.

Section II, contains preliminaries. Section III primarily
reviews such results of [14] as are used in this paper. Section
IV introduces a matrix that is very useful for subsequent
analysis, and also shows that a given false stationary point
can only result from at most one desired formation. Section
V proves that when the desired formation is a rectangle, all
false stationary points are unstable. Section VI concludes.

II. EQUATIONS OF MOTION AND EXAMPLES

We first present equations of motion for the four-agent
formation shape control problem. We then show that the
incorrect equlibrium example of [12] and is an unstable
saddle.

A. Equations of Motion
Let p = [p1, p2, p3, p4]T ∈ ℜ8 be a vector of the four

agent positions in the plane. Following [12], we use a single
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integrator agent model to describe the motion of each agent
ṗi = ui where ui is the control input to be specified. Let
d̄ = [d̄12, d̄13, d̄14, d̄23, d̄24, d̄34]T be a vector of desired
interagent distances that define the formation shape. Let
d = [d12, d13, d14, d23, d24, d34]T , sometimes written as
d(p), denote instantaneous interagent distances, which are
to be actively controlled to obtain d̄. We assume that the
entries of d̄ correspond to a realizable shape.

Evidently,

d2(p) = [||p1 − p2||2, ||p1 − p3||2, ||p1 − p4||2,
||p2 − p3||2, ||p2 − p4||2, ||p3 − p4||2]T (1)

We define also the error function

e(p) = d2(p)− d̄2 = [e12, e13, e14, e23, e24, e34]
T (2)

The desired formation shape is a three-dimensional manifold
in ℜ8, non-empty for a realizable d̄ and given by

Pd = {p ∈ ℜ8|d2(p) = d̄2}. (3)

Now consider the potential function

V (p) =
1

2
||e(p)||2 =

1

2
(e212 + e213 + e214 + e223 + e224 + e234).

The function quantifies the total interagent distance error
between the current formation and the desired formation d̄.
Note that V ≥ 0 and V = 0 if and only if e(p) = 0, that
is if and only if the formation is in the desired shape. Thus,
V is a suitable potential function from which to derive a
gradient control law. Accordingly, let the control input be
given by u = −∇V (p). Then the closed-loop system is
given by ṗ = −∇V (p) = −[Je(p)]T e(p), where Je(p) is
the Jacobian of the error function e(p) (also known as the
rigidity matrix). With ⊗ the Kronecker product, this can be
expressed in the following form

ṗ = −(E(p)⊗ I2)p (4)

where the matrix E(p) is given by

E(p) = (5)[
e12 + e13 + e14 −e12 −e13 −e14

−e12 e12 + e23 + e24 −e23 −e24
−e13 −e23 e13 + e23 + e34 −e34
−e14 −e24 −e34 e14 + e24 + e34

]
.

B. Equilibrium points and their stability
Following the work of [12]-[14], convergence occurs to

one of the stationary points of (4). Among these those
corresponding to the true formation form a manifold. This
is so because by definition the true formation is specified
by interagent distances. If a given formation meets these
distance specifications then so would any that is obtained by
rotating and translating it. In [12] this manifold is shown to
be locally attractive. Moreover, all initializations sufficiently
close to it, lead to exponential convergence to a point on this
manifold.

As demonstrated in [12] there are potentially other sta-
tionary points that do not meet the requisite distance spec-
ifications. These would be variously called incorrect/false
equilibria. Each set of of these too comprises a manifold as
if a particular p = p∗ = [p∗T1 , p∗T2 , p∗T3 , p∗T4 ]T is a stationary

point of (4) then so is any obtained by a translation and
rotation, i.e. any that for arbitrary orthogonal Ω ∈ ℜ2×2 and
ω ∈ ℜ2 obeys,

p = [Ωp∗T1 +ωT ,Ωp∗T2 +ωT ,Ωp∗T3 +ωT ,Ωp∗T4 +ωT ]T (6)

Such manifolds are locally attractive only if the negative of
the Jacobian of the right side of (4), which is the same
as, HV (p), the Hessian of V , given below, is positive
semidefinite, [13].

HV (p) = 2RT (p)R(p) + E ⊗ I2, (7)

were R(p) is the rigidity matrix of the K4 graph correspond-
ing to p, i.e. obeys:

R =

⎡

⎢⎢⎢⎢⎢⎢⎣

pT1 − pT2 pT2 − pT1 0 0
pT1 − pT3 0 pT3 − pT1 0
pT1 − pT4 0 0 pT4 − pT1

0 pT2 − pT3 pT3 − pT2 0
0 pT2 − pT4 0 pT4 − pT2
0 0 pT3 − pT4 pT4 − pT3

⎤

⎥⎥⎥⎥⎥⎥⎦
. (8)

It is readily seen that HV (p) is congruent to:

H = 2

[
RT

x

RT
y

] [
Rx Ry

]
+ diag {E,E}, (9)

where with pi = [xi, yi]T , Rx and Ry are obtained by,
replacing pi in (8) by xi and yi, respectively.

In the sequel we will call a false stationary point p = p∗

unstable/locally unstable if H(p∗) is not positive semidef-
inite. The corresponding distances will be called d∗ij . As
argued in [13], the linearization of (4) around such a p∗ has
at least one real positive pole, and is consequently unstable.
Such unstable equilibria, if at all attained, can rarely be
maintained in the presence of noise or other inaccuracies, and
should all such be unstable, then for all practical purposes
global convergence to the true formation is assured.

A crucial point to be exploited in the sequel is that the
stability of an equilibrium point is independent of rotation
and translation of the formation shape. Similarly one can
independently rotate and translate the desired formation
without altering the stationary points or their stability as such
transformations leave d̄ unaltered.
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Fig. 1. The desired formation is rectangular and there are two possible
“twisted rectangles” that are incorrect equilibrium shapes. Note that each
formation has two different pairs of agents on the diagonals of the rectangle:
(a) 13 and 24, (b) 12 and 34, and (c) 14 and 23.

C. The Krick Example
In [12], Krick et al study a four-agent example with

K4 information architecture where the formation appears to
converge to an incorrect equilibrium formation shape. The
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example is as follows. Suppose the desired formation is a
1× 2 rectangle given by d̄2 = [1, 5, 4, 4, 5, 1]T . It is easy to
verify that when we use the desired distances specified by d̄,
any formation with distance set d∗2 = [ 113 , 7

3 ,
4
3 ,

4
3 ,

7
3 ,

11
3 ]T is

also an equilibrium with incorrect interagent distances. The
incorrect equilibrium is a “twisted rectangle” with the term
twisted referring to a change in agent ordering, as illustrated
in the middle formation of Figure 1. Krick et al concluded
that the desired shape is not globally attractive since the
control law appears to cause convergence to an incorrect
equilibrium shape. However, as depicted through simulation
in Figure 2, convergence is only apparent, occurring along
the ridge of a saddle. There is initial convergence along a
ridge to the saddle point representing a false equlibrium.
The formation stays that way between about 1.5 to 2.5s,
until numerical errors drive the formation away to the correct
formation.The curves are the errors for the four agents from
the true formation. Indeed, three eigenvalues of the Hessian
evaluated at the incorrect shape are negative, [14], i.e. the
shape is a saddle and thus unstable. Much of this paper is
concerned with examining this sort of phenomenon.

Fig. 2. Illustration of saddle point. The curves are the errors for the four
agents from the true formation.

III. SOME KNOWN PROPERTIES OF INCORRECT
EQUILIBRIA

In this section, we recount certain results from [14]. The
first result concerns the structure of E(p) and has largely
been given in [14]. The proof is omitted.

Theorem 3.1: Suppose p = p∗ is an incorrect equilibrium
of (4). Then E(p∗) cannot be positive semidefinite. Further
if p∗1 to p∗4 are noncollinear, then for some real µ > 0 and
z ∈ ℜ4, there holds:

E(p∗) = −µzzT . (10)

Further: [
1 1 1 1
p∗1 p∗2 p∗3 p∗4

]
z = 0. (11)

We next set up a standing assumption to be made in most
of subsequent results.

Theorem 3.2: Suppose the desired formation has a non-
zero area. Also assume that some p = p∗ is a stationary point
of of (4), and p∗1 to p∗4 are collinear. Then this stationary point
is unstable.

Proof: As stability is invariant under translation and ro-
tation of the incorrect formation one can without loss of gen-
erality assume it to be aligned with the x-axis, i.e. Ry(p∗) =
0. Then because of Theorem 3.1, 2RT

y (p
∗)Ry(p∗) + E(p∗)

and hence H(p∗) cannot be positive semidefinite.

As we are primarily interested in the stability of incorrect
formations, in light of Theorem 3.2, in most of the subse-
quent results we make the following assumption.

Assumption 3.1: Both the desired formation and the for-
mation representing a false stationary point have non-zero
area.

The remaining results are all from [14].
Lemma 3.1: If there is an incorrect equilibrium with

quadrilateral convex hull, with agent pairs 12, 34 diagonally
opposite. Let d̄ij and d∗ij denote the distance sets of the
correct and incorrect equilibrium respectively. Then there
holds: d∗12 > d̄12, d∗34 > d̄34, d∗13 < d̄13, d∗14 < d̄14,
d∗23 < d̄23, and d∗24 < d̄24.
A corresponding lemma applies to triangles.

Lemma 3.2: If there is an incorrect equilibrium shape with
agent 2 lying in the convex hull of agents 1,3 and 4. Then
there holds: d∗12 < d̄12, d∗23 < d̄23, d∗24 < d̄24, d∗13 > d̄13,
d∗14 > d̄14, and d∗34 > d̄34.

Next we provide a twisting property for incorrect equilib-
ria.

Theorem 3.3: Consider a four agent formation with a
correct and an incorrect equilibrium which are both convex
quadrilaterals. Then a pair of vertices that are diagonally
opposite in the true formation are not diagonally opposite in
the incorrect formation. Similarly suppose both formations
are triangles of non-zero area. Then the two triangles cannot
have the same agent in the convex hull of the remaining
agents.

Finally, a result on incorrect formations that are rectangu-
lar:

Theorem 3.4: Suppose an incorrect stationary point rep-
resents a rectangle of nonzero area. Then it cannot be stable.

IV. EACH FALSE STATIONARY POINT CORRESPONDS TO A
UNIQUE DESIRED FORMATION

Much of our analysis revolves around the rank-1 charac-
terization of E(p∗) provided in Theorem 3.1. Key to this
approach is the vector z = [z1, z2, z3, z4]T in (10). This
vector is specified by the p∗i to within a scaling constant.
Further, because of (5) and (10), there holds:

d̄2ij = d∗2ij − µzizj . (12)

Given a set of d̄ij and z, not every value of µ leads to
d∗ij that represent a valid formation in the plane. Whether
a given set of interagent distances reflect a planar formation
is provided by the Cayley-Menger matrix, [15]. However,
for our purposes the Cayley-Menger matrix does not offer
the requisite analytical facility. Instead we consider a ma-
trix, proposed in [15] that does. Specifically for a given
{i, j, k, l} = {1, 2, 3, 4} and some vector d of interagent
distances, define:

Fi(d)=

⎡

⎢⎢⎣

d2ij
d2
ij+d2

ik−d2
kj

2

d2
ij+d2

il−d2
lj

2
d2
ij+d2

ik−d2
kj

2 d2ik
d2
il+d2

ik−d2
kl

2
d2
ij+d2

il−d2
lj

2
d2
il+d2

ik−d2
kl

2 d2il

⎤

⎥⎥⎦=AT
i Ai,

(13)
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where Ai =
[
pj − pi pk − pi pl − pi

]
. Also define:

Gi(z) =

⎡

⎣
zizj

zizj+zizk−zkzj
2

zizj+zizl−zlzj
2

zizj+zizk−zkzj
2 zizk

zizl+zizk−zkzl
2

zizj+zizl−zlzj
2

zizl+zizk−zkzl
2 zizl

⎤

⎦ .

(14)
We have a key Theorem stated without proof.
Theorem 4.1: Suppose p∗ is an incorrect stationary point,

and d̄ and d∗ are the vectors of interagent distances in
the desired formation and the formation represented by p∗.
Suppose Assumption 3.1 holds, µ > 0, z are as defined in
Theorem 3.1, Fi(d̄) and Fi(d∗) are as defined in (13) and
Gi(z) is as in (14). Then with {i, j, k, l} = {1, 2, 3, 4} for
all i, the following hold:
(a)

Fi(d̄) = Fi(d
∗)− µGi(z). (15)

(b) Both Fi(d̄) and Fi(d∗) are positive semidefinite and have
rank equal to two. (c) The vector [zj , zk, zl]T is in the null
space of Fi(d∗). (d) Suppose η is in the null space of Fi(d̄).
Then there hold:

[zj , zk, zl]Gi(z)[zj , zk, zl]
T ≤ 0. (16)

ηTGi(z)η ≥ 0. (17)

[zj , zk, zl]Gi(z)η = 0. (18)

(e) The matrices Fi(d̄) and Fi(d∗) do not share a nontrivial
null vector. (f) The matrix Gi(z) is not negative semidefinite.

Now we have the result implied by the title of this section
that can be proved using (a,b,e,f) of the above Theorem.

Theorem 4.2: Suppose p∗ is an incorrect stationary point,
and Assumption 3.1 holds. Then there is at most one desired
formation that gives rise to this incorrect stationary point.

V. RECTANGULAR DESIRED FORMATIONS

In this section we prove that when the desired formation is
a rectangle, all incorrect stationary points are locally unsta-
ble. Our approach to proving this is to first characterize the
µ, z combinations that indirectly define the false stationary
points. We show that these belong to three distinct categories.
The first that can occur only if the desired formation is a
square, and corresponds to an incorrect stationary point that
defines a formation where two of the p∗i are identical, and the
formation is an isosceles right-angled triangle. The second
corresponds to a isosceles trapezoid; the third to a rectangle.

Throughout we will assume that the desired formation is a
rectangle with the same orientation as in Fig. 1(a). Further,
we will assume that the horizontal and vertical sides have
lengths whose squares are a and b, respectively. Our approach
will extensively use Fi and Gi with i = 1 and j, k, l 2,3
and 4 respectively. It is easy to see that in this case with
u1 = [1, 1, 0]T and u2 = [0, 1, 1]

F1(d̄) = au1u
T
1 + bu2u

T
2 . (19)

It is also evident that a null vector of this matrix is
[1,−1, 1]T .

A. Characterizing z

We begin with a Lemma.
Lemma 5.1: Suppose Assumption 3.1 holds and the de-

sired formation is a rectangle with the same orientation as
in Fig. 1(a), with the horizontal and vertical sides having
lengths whose squares are a and b, respectively. Consider z
as in Theorem 3.1, with z1 = 1. Then:

(z2 + z4)
[
z2 + z4 −

(
z22 + z23 + z24 + z2z4

)]
= 0

Proof: Because of Theorem 4.1 and the
fact that [1,−1, 1]T is a null vector of F1(d̄),
[1,−1, 1]TG1(z)[z2, z3, z4]T = 0. As z1 = 1, direct
verification proves that this implies:

z22+z24+z2z4−
z2(z23 + z24)

2
+
z3(z22 + z24)

2
−z4(z23 + z22)

2
= 0

From (11) we have that 1 + z2 + z3 + z4 = 0. Substituting,
the result is proved as

(z2 + z4)2

2
− (z2 + z4)(z23 + z22 + z24 + z2z4)

2
= 0

The next Lemma establishes a structural property of z.
Lemma 5.2: Suppose Assumption 3.1 holds and the de-

sired formation is a rectangle with the same orientation as
in Fig. 1(a), with the horizontal and vertical sides having
lengths whose squares are a and b, respectively. Then to
within a scaling constant, z in Theorem 3.1 is one of the
following:

z = [1, z2,−1,−z2]T , (20)

z = [0, z2, 0,−z2]T . (21)
Proof: Note, [1,−1, 1]TG1(z)[z2, z3, z4]T = 0 holds

from Theorem 4.1 . First assume that z1 = 0. In this case
(14) holds. Further because of (11), z3 = −z2 − z4. Direct
verification shows that [1,−1, 1]TG1(z)[z2, z3, z4]T equals
(z2+z4)(2z22+2z24+3z2z4) ≥ (z22+z24)/2. Thus z2 = −z4.
Then because of (11), (21) holds.

Now suppose z1 ̸= 0. Then to within a scaling of z one can
assume that z1 = 1. Because of Lemma 5.1, either z2 = −z4,
in which case (20) holds because of (11) or

z2 + z4 −
(
z22 + z23 + z24 + z2z4

)
= 0. (22)

Because of (11) some manipulation shows that the left hand-
side of (22) equals −(z22+z24)/2−(z3+1)2−(z23+1)/2 < 0,
violating (22). Thus (20) is true.

In either case for some β,

z2 = −z4 = β. (23)

B. Implications of (21)
We now show that under (21) the desired formation must

be square, and the false stationary point is an isosceles right
triangle and moreover, unstable.

Lemma 5.3: Under the conditions of Lemma 5.2, suppose
(21) and (23) hold. Then: (a) The false stationary point
represents an isosceles right angled triangle with d∗231 = 2a,
and d∗221 = d∗223 = a; (b) p∗2 = p∗4, (c) the desired formation
is a square i.e. a = b; and (d) µβ2 = 2a.
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Proof: First, (11) proves (b) as because the stationary
point is false z2 ̸= 0. As z1 = z3 = 0, because of (12), for all
i there hold, d∗2i1 = d̄2i1 and d∗2i3 = d̄2i3. Consequently, d∗231 =
d̄231 = d̄221+ d̄232 = d∗221+d∗232 . Thus the false stationary point
represents a right angled triangle with the segment joining
p∗1 and p∗3 as the hypotenuse. Further, because of (b), b =
d̄241 = d∗241 = d∗221 = d̄221 = a. Thus (a) and (c) hold. Further
because of (12) and (b) 0 = d∗224 = d̄224−µβ2 = a+b−µβ2.
Thus (d) follows because of (c).

We now show that this stationary point represented by (21)
cannot be stable.

Theorem 5.1: Under the conditions of Lemma 5.3, the
false stationary point is unstable.

Proof: It suffices to show that 2RT
xRx − µzzT is not

positive semidefinite, where Rx is defined in Section (II).
Because of Lemma 5.3 to within a translation and rotation it
is enough to consider, p∗1 = 0, p∗2 = p∗4 = [

√
a, 0]T and p∗3 =√

a[1,±1]T . Then using the value of µ proved in Lemma 5.3
one obtains the indefinite matrix:

2RT
xRx − µzzT = 2a

⎡

⎢⎢⎣

3 −1 −1 −1
−1 0 0 1
−1 0 1 0
−1 1 0 0

⎤

⎥⎥⎦ .

C. Implications of (20)

We first show that under (20) the false stationary point is
an isosceles trapezoid.

Lemma 5.4: Under the conditions of Lemma 5.2, suppose
(20) and (23) hold. Then: (a) (β2 − 1)(d∗224 − µ) = 0. (b) To
within a rotation and a translation for some nonzero y, x2,
x3 and x4, with x3 = β(x2 − x4), there hold, p∗1 = 0,
p∗2 = [x2, y]T , p∗3 = [x3, 0]T and p∗4 = [x4, y]T . (c) The
false stationary point represents an isosceles trapezoid with
d∗231 = β2d∗224, d∗221 = d∗243 and d∗241 = d∗223.

Proof: To within a rotation and translation one can
always choose p∗1 and p∗3 as in (b). Then the rest of (b)
follows as from (11):

[
β −1 −β

]
⎡

⎣
x2 y2
x3 0
x4 y4

⎤

⎦ = 0.

Then the false stationary point represents at least a trapezoid.
Further as y2 = y4, d∗231 = x2

3 = β2(x2−x4)2 = β2d∗224. The
remaining equalities in (c) follow because from (12) one has,
d̄212 = d∗212 − βµ = d̄234 = d∗234 − βµ and d̄214 = d∗214 + βµ =
d̄232 = d∗232 + βµ. Thus the figure is an isosceles trapezoid.

To prove (a) observe because of (12) d̄231 = d∗231 + µ =
β2d∗224 + µ and d̄224 = d∗224 + µβ2. Then (a) follows because
d̄231 = d̄224.

Observe (a) in particular presents two possibilities. One
has β2 = 1 and/or d∗224 = µ. The first possibility in fact
forces the false stationary point to represent a rectangle. The
next lemma is preparatory to proving this fact.

Lemma 5.5: Under the conditions of Lemma 5.4 suppose
β = 1. Then µ = 2b/3. If β = −1 then µ = 2a/3.

Proof: Recall, (19) holds. When β = 1, using (14) we
obtain that:

G1(z) =

⎡

⎣
1 1

2
1
2

1
2 −1 − 3

2
1
2 − 3

2 −1

⎤

⎦ =
1

2
u1u

T
1 −

3

2
u2u

T
2 +

1

2
u3u

T
3 .

Thus from (a) of Theorem 4.1

F1(d
∗) =

(
a+

µ

2

)
u1u

T
1 +

(
b− 3µ

2

)
u2u

T
2 +

µ

2
u3u

T
3 .

As µ > 0, the result follows from (b) of Theorem 4.1. The
case of β = −1 is similarly handled.

We now show that when β2 = 1 the incorrect equilibrium
is a rectangle. Because of Theorem 3.4 this must thus be
unstable. This Lemma and subsequent development rely on
the following equalities that follow because of (12) and (20).

d̄212 = d∗212 − µz1z2 = d∗212 − µβ (24)

d̄231 = d∗231 − µz1z3 = d∗231 + µ (25)

d̄214 = d∗214 − µz1z4 = d∗214 + µβ (26)

d̄223 = d∗223 − µz2z3 = d∗223 + µβ (27)

d̄224 = d∗224 − µz2z4 = d∗224 + µβ2 (28)

d̄234 = d∗234 − µz3z4 = d∗234 − µβ (29)

Lemma 5.6: Under the conditions of Lemma 5.5 the false
stationary point represents a rectangle.

Proof: Because of Lemma 5.5 µ = 2b/3 when β = 1.
In such a case (24) to (29) imply,

d∗212 = d∗234 = a+
2b

3
, d∗231 = d∗224 = a+

b

3
and d∗214 = d∗232 =

b

3
.

Recall that the false stationary point represents a trapezoid.
Further from Theorem 3.3 neither the pairs p∗1 and p∗3 and p∗2
and p∗4 are not diagonally opposite. Thus, the opposite sides
are equal and the diagonals obey:

d∗212 = d∗234 = d∗231+d∗232 = d∗231+d∗214 = d∗241+d∗242 = d∗224+d∗232.

The case β = −1 is similarly handled.

There remains (20) under d∗224 = µ. We fold this and the
other cases into the following main result of this section.

Theorem 5.2: Suppose the desired formation is a rectangle
with the same orientation as in Fig. 1(a), with the horizontal
and vertical sides having lengths whose squares are a and b,
respectively. Then every incorrect stationary point of (4) is
unstable.

Proof: Because of Theorems 3.2, 5.1, and 3.4, and
Lemmas 5.2 to 5.6 we only need to consider the case where
under Assumption 3.1, d∗224 = µ and (20) hold. To prove
the theorem it suffices to show that 2RT

y Ry − µzzT is not
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positive semidefinite. From (b) of Lemma 5.1, the definition
of Ry , and he fact that d∗224 = µ it follows that

2RT
y Ry − µzzT = 2y2

⎡

⎢⎢⎣

2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

⎤

⎥⎥⎦− d∗224zz
T .

(30)
To establish a contradiction, suppose B = 2RT

y Ry − µzzT

is positive semidefinite. Then using (20) and (23) one must
have:

zTBz = 2y2zT

⎡

⎢⎢⎣

2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

⎤

⎥⎥⎦ z − d∗224(z
T z)2

= 8y2(1 + β2)− 4d∗224(1 + β2)2 ≥ 0

⇒ 2y2(1 + β2)− d∗224(1 + β2)2 ≥ 0.

Now observe from (28) (20) and d∗224 = µ that a+b = d̄224 =
d∗224 −µz2z4 = d∗224(1+ β2). Thus 2y2 ≥ a+ b. Using (b) of
Lemma 5.1, (24), (26), (27) and (29) we have a contradiction
as under Assumption 3.1 :

4y2 < 4y2 + x2
2 + x2

4 + (x2 − x3)
2 + (x4 − x3)

2

= d̄212 + d̄214 + d̄232 + d̄234 = 2(a+ b).

VI. CONCLUSIONS AND FUTURE WORK

Our ultimate goal is to show how to control an arbitrary
formation to a shape that is uniquely specified, i.e. specified
up to congruence, by a sufficiently large number of distance
constraints (in effect, the associated graph must be what is
known as globally rigid). A K4 graph is the second simplest
such graph, after the triangle, and one might reasonably ex-
pect that a general theory would need to properly encompass
this special case. In this paper we have shown that for such a
K4 graph each incorrect equilibrium can result from at most
one desired formation. We have also shown that rectangular
desired formations have incorrect equilibria that are necessar-
ily unstable. The most significant open problem is to show
whether or not there can ever exist an incorrect attractive
equilibrium for arbitrary K4 formations. We believe that
there are certain avenues that must be explored en route to
such a result. First, while we have shown that each incorrect
equilibrium is tied to at most one desired formation, the
following reverse question should be answered: How many
false equilibria are associated with a given desired formation?
One possible tool for addressing such a question is Morse
theory, [16]. An initial application of Morse theory in this
context is presented in [17]. Ultimately to examine whether
stable false equilibria exist at all, we need to determine
whether the underlying Hessian is positive semidefinite. We
believe that this would involve the sizing of the parameter
µ. The matrix Fi introduced in Section IV may hold the key
to this task.
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