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Robust Distributed Formation Control of Agents
With Higher-Order Dynamics
Kaveh Fathian , Tyler H. Summers , and Nicholas R. Gans

Abstract—We present a distributed control strategy
for agents with a variety of holonomic dynamics to
autonomously achieve a desired formation. The proposed
control is fully distributed, and can be implemented locally
on agents using the relative position measurements.
Furthermore, agents do not need to communicate or have a
common sense of orientation. Our strategy allows control
gains designed for agents with single-integrator dynam-
ics to be used directly for agents with higher-order linear
(or linearizable) holonomic dynamics. We provide rigorous
mathematical analysis to prove convergence of the agents
to the desired formation. The proposed method is applied
to quadrotors with linearized dynamics, and simulations are
provided to typify the theoretical results.

Index Terms—Multi-agent systems, formation control,
distributed control, agent-based systems.

I. INTRODUCTION

TECHNOLOGICAL advances in recent years have made
it possible to deploy a large number of autonomous vehi-

cles (agents) to execute tasks such as search and rescue [1],
inspection [2], and monitoring [3]. In these applications, the
ability of agents to autonomously achieve a desired formation
is the fundamental building block upon which more sophis-
ticated navigation capabilities can be constructed. Distributed
formation control can prescribe local control laws to agents,
such that the desired formation emerges as their collective
team behavior. Compared to the centralized methods, dis-
tributed control strategies offer better scalability, naturally
parallelized computation, resilience to communication loss and
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hardware failure, and robustness to uncertainty and lack of
global measurements.

In the distributed formation control literature, often agents
are assumed to have a simplified dynamic model, such as the
single-integrator dynamics [4], [5], and the main focus is to
derive the conditions in terms of the sensing topology among
agents under which the desired formation is realized [6]–[8].
Since, in practice, agents often have more complicated dynam-
ics, it is important to extend the control to agents with
higher-order models and ensure the stability of the desired
formation in such cases.

In this letter, we present a unified control strategy for agents
with linear (or linearizable) holonomic dynamics. This strat-
egy is distributed, only local relative position measurements
are needed, and convergence to the desired formation is global.
These advantages distinguish our approach from many exist-
ing works, such as the position-based or displacement-based
methods [9], in which knowledge of a global coordinate frame
or a common sense of orientation is required. By formulating
a semidefinite programming (SDP) problem, formation control
gains are initially designed for agents with the single-integrator
model. We show that this design enjoys a robustness property,
where if the agents move in the desired direction perturbed by
a rotation up to ±90◦, convergence to the desired formation is
still guaranteed. Furthermore, the control can be augmented by
an integrator term to reject constant input/output disturbances.
Our analysis follows by considering agents with higher-order
holonomic dynamics, where we show how the set of previously
designed control gains can be used directly to achieve the for-
mation. As an example, we use the proposed method for a team
of quadrotors and present simulations to typify the theoretical
results.

The linear formulation for the control used in this letter is
inspired by [6] and [7]. The aforementioned work, and our
previous work on formation control [10], [11], are based on
agents with the single-integrator model. In [12], a SDP for-
mulation has been considered, and extension of the control to
agents with feedback-linearized dynamics is briefly discussed.
In comparison, the SDP formulation proposed here provides
robustness to the direction of motion, and the extension of the
control law to higher-order dynamics is extensively studied.

In extending our work in distributed formation control, the
main contributions of this letter include: 1) A novel gain design
based on the SDP formulation, which provides robustness for
the direction of motion; 2) Addition of integrator terms in
the control to reject input/output disturbances; 3) Extension
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of the single-integrator control to agents with higher-order
linear holonomic dynamics, or nonlinear dynamics that can
be linearized via methods such as feedback linearization, or
local approximation.

The organization of this letter is as follows. The notation
and assumptions used in this letter are introduced in Section II.
In Section III, the control strategy for agents with the
single-integrator model is designed, and its robustness to
perturbations and disturbances is studied. In Section IV-A,
the control is extended to agents with the double-integrator
and higher-order dynamics. Simulations are presented in
Section V, followed by concluding remarks in Section VI.

II. NOTATION AND ASSUMPTIONS

We consider a team of n ∈ N agents with the inter-
agent sensing topology described by an undirected graph
G = (V, E), where V := Nn is the set of vertices, and
E ⊂ V ×V is the set of edges. Each vertex of the graph repre-
sents an agent. An edge from vertex i ∈ V to j ∈ V indicates
that agents i and j can measure the relative position of each
other in their local coordinate frames. In such a case, agents i
and j are called neighbors. The set of neighbors of agent i is
denoted by N i := {j ∈ V | (i, j) ∈ E}. We denote by σ(A) ⊂ C

the set of eigenvalues of matrix A.
The SDP gain design proposed in this letter, which allows

robustness to the direction of motion, is based on the assump-
tion that the sensing graph is undirected. However, extension
of the control strategy to higher-order dynamics does not
require this assumption. Gain design strategies for directed
sensing topologies are presented in [7] and [12]. We assume
that the desired formation is feasible and the sensing topology
is such that the desired formation is realizable. The necessary
and sufficient topological conditions for a formation to be real-
izable are studied in [7] and [13]. We do not control the scale
of the formation, i.e., by “formation” we mean a desired geo-
metric shape up to a scale factor. We assume that the sensing
topology is fixed through all time, and collision avoidance is
not considered. In Section VI, we provide some remarks on
how to relax these assumptions.

III. FORMATION CONTROL FOR SINGLE-INTEGRATOR

AGENTS

In this section, we briefly discuss the distributed forma-
tion control strategy that was introduced in [6] and [7] for
agents with the single-integrator dynamics. We then propose
a novel gain design approach based on formulating a SDP
problem. These gains will be used to control agents with more
complicated dynamics in the next section.

A. Control for Agents With the Single-Integrator Model

Consider n agents with the single integrator dynamics

q̇i = ui, i ∈ {1, 2, . . . , n}, (1)

where qi := [xi, yi]T ∈ R
2 is the coordinate of agent i in a

common global coordinate frame (unknown to agents), and ui
is the control law, that is chosen as

ui :=
∑

j∈Ni

Aij
(
qj − qi

)
, (2)

where Aij ∈ R
2×2 are constant control gain matrices to be

determined. By constraining the gain matrices to the form

Aij :=
[

aij bij
−bij aij

]
, aij, bij ∈ R, (3)

it can be shown that the closed-loop dynamics with coordinates
qi and qj expressed in agents’ local coordinate frames are iden-
tical to the case that coordinates are expressed in a common
global frame (for more details see [11]). Therefore, while the
implementation is distributed and uses the local relative posi-
tion measurements, the control strategy can be designed and
analyzed in a global coordinate frame.

Let q := [q�
1 , q�

2 , . . . , q�
n ]� ∈ R

2n, and u :=
[u�

1 , u�
2 , . . . , u�

n ]�∈ R
2n denote the aggregate state and

control vectors of all agents, respectively. Using this notation,
the closed-loop dynamics can be expressed as

q̇ = A q, (4)

where

A =

⎡

⎢⎢⎢⎢⎢⎣

−∑n
j=2 A1j A12 · · · A1n

A21 −∑n
j=1
j �=2

A2j · · · A2n

...
. . .

...

An1 An2 · · · − ∑n−1
j=1 Anj

⎤

⎥⎥⎥⎥⎥⎦
∈ R

2n×2n,

(5)

is the aggregate state matrix that consists of Aij’s, and has
block Laplacian structure. Note that if j /∈ Ni, then Aij in (5)
is zero. Also, the 2 × 2 diagonal blocks are the negative sum
of the rest of the blocks on the same row. From the block
Laplacian structure of A, it follows that vectors

1 := [1, 0, 1, 0, . . . , 1, 0]� ∈ R
2n

1̄ := [0, 1, 0, 1, . . . , 0, 1]� ∈ R
2n (6)

are in the kernel1 of A.
Let q∗ ∈ R

2n denote the coordinates of agents in an arbitrary
embedding of the desired formation. That is, coordinates of
agents at their desired formation in a coordinate frame that is
chosen arbitrarily. Further, let q̄∗ ∈ R

2n be the coordinates of
agents in this embedding when the formation is rotated by 90
degrees about the origin.

Theorem 1: Consider a team of n single-integrator agents
with closed-loop dynamics (4). Assume that A is such that

• Vectors 1, 1̄, q∗ and q̄∗ are in the kernel of A.
• Other than the four zero eigenvalues associated with

these eigenvectors, the remaining eigenvalues of A have
negative real parts.

Then, starting from any initial condition, agents converge to
the desired formation up to a rotation, translation, and a non-
negative scale factor.

Proof of Theorem 1 follows from the following Lemma,
which is well-known from the linear systems theory (for more
details on the proof see [11, Th. 1]).

Lemma 1: Suppose that nonzero eigenvalues of A have
negative real parts. Then, all trajectories of q̇ = A q
exponentially converge to the kernel of A.

1If A ∈ R
n×n, the kernel or null space of A is defined as

ker(A) := {v ∈ R
n | A v = 0}.
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The conclusion of Theorem 1 follows from Lemma 1 and
noting that the kernel of A is nothing but all rotations, transla-
tions, and non-negative scale factors of the desired formation.
Note that the kernel vectors 1, 1̄ correspond to the case where
all agents coincide, which can be considered as the desired for-
mation achieved with zero scale. Further, note that if agents
are not initially coinciding, they will never converge to this
coinciding equilibrium. To find a gain matrix that meets the
conditions of the Theorem, one can formulate an optimization
problem.

Remark 1: The topological conditions that guarantee the
existence of a symmetric matrix A satisfying the conditions
of Theorem 1 are studied in [12, Th. 3.2], which presents the
necessary and sufficient condition that the sensing graph is
universally rigid. Throughout this letter, we assume that this
condition is met.

B. Control Gain Design via SDP

Given a desired formation, we proceed by showing how
a stabilizing gain matrix can be designed to meet the con-
ditions of Theorem 1. Let q∗ and q̄∗ respectively denote
the coordinates of agents in an arbitrary embedding of the
desired formation and 90◦ rotated desired formation. Define
N := [q∗, q̄∗, 1, 1̄] ∈ R

2n×4, where 1, 1̄ are given in (6).
Notice that N is a set of bases for the kernal of A. Let
U S V� = N be the (full) singular value decomposition (SVD)
of N, where

U = [
Q̄, Q

] ∈ R
2n×2n, (7)

with Q ∈ R
2n×(2n−4) being the last 2n − 4 columns of U.

Lemma 2: Using Q in (7), define

Ā := Q�A Q ∈ R
(2n−4)×(2n−4). (8)

Matrices A and Ā have the same set of nonzero eigenvalues.
Proof of Lemma 2 follows by observing that U is an orthog-

onal matrix, and range(Q̄) = range(N). Therefore Ā is the
projection of A onto the orthogonal complement of range(N).
Effectively, the projection (8) removes the zero eigenvalues of
A and allows us to formulate the stability of A in terms of Ā.

For an undirected sensing topology, matrix A can be
designed to be symmetric by imposing the constraints aij = aji,
bij = −bji in (3). In this case, Ā is symmetric, and its eigen-
values are real and can be ordered. Hence, A can be computed
by solving the optimization problem

A = argmax
aij, bij

λ1
(−Ā

)

subject to A N = 0 (9)

where λ1(·) denote the smallest eigenvalue of a matrix.2 Note
that (9) is a concave maximization problem [14], and can be

2This objective effectively maximizes convergence rate to the desired for-
mation. However, any convex objective could be used, and there are several
interesting possibilities that we are exploring in ongoing work. For example,
trace(Ā−1) is convex and relates closely to the average dispersion around the
desired formation in the presence of an additive stochastic disturbance.

formulated as the SDP problem

A = argmax
aij, bij, γ

γ

subject to Ā + γ I 	 0

A N = 0 (10)

where the first constraint is a linear matrix inequality. In recent
years, effective algorithms for numerically solving SDPs have
been developed and are now available [15]. For our simula-
tions, we used CVX [16], which is available free online, to
solve problem (9).

C. Robustness to Perturbations

In practice, due to noise, disturbances, unmodeled dynam-
ics, etc., often agents do not perfectly move along the desired
control direction. Thus, it is important to analyze the stability
and convergence properties of a control strategy under per-
turbations. The following theorem provides an upper bound
for the perturbations under which convergence to the desired
formation is unaffected.

Theorem 2: Consider a symmetric gain matrix A designed
for single-integrator agents. Let Ri ∈ SO(2) denote a rotation
matrix of αi degrees, and ci ∈ R be a scalar. If αi ∈ (−π

2 ,
π
2 )

and ci > 0, under the perturbed control

ui := ci Ri

∑

j∈Ni

Aij
(
qj − qi

)
(11)

agents achieve the desired formation.
Proof: We will use Definition 1 and Lemmas 3, 4, 5 that are

given in the Appendix. Under the perturbed control (11), the
aggregate dynamics can be represented by q̇ = R A q, where
R := diag(c1R1, c2R2, . . . , cnRn) ∈ R

2n×2n is a block diag-
onal matrix that contains the perturbation terms. Due to the
special block structure of A and R, they can equivalently be
represented in complex notation by denoting the 2 × 2 blocks[

a −b
b a

]
as a complex number a + ι b ∈ C. In this nota-

tion, diagonal entries of R ∈ C
n×n are cos(αi)+ ι sin(αi), and

since αi ∈ (−π
2 ,

π
2 ), have positive real parts. This, together

with Lemma 4, implies that F (R) is contained in the right
hand plane (RHP). By design, the complex representation of
A ∈ C

n×n is Hermitian and negative semidefinite. Thus, −A
is positive semidefinite, and from Lemma 5 we conclude that
σ(−R A) is contained in the union of the RHP and the imag-
inary axis. Thus, R A is a stable matrix, and trajectories of
q̇ = R A q converge to the kernel of R A. Since R is full-rank,
the null space of A and R A are identical, which shows that
the desired formation is achieved.

D. Robustness to Constant Input/Output Disturbances

In practice, the control law (2) may not be sufficient to
achieve a desired formation. For example, consider a team of
ground robots that experience floor friction. When the mag-
nitude of control ui is less than the friction forces, the robots
stop moving toward the desired direction. By adding an inte-
grator term to the control, steady state errors induced by
the friction or other constant disturbances can be canceled.
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This augmented control can be defined by u = k1 A q +
k0

∫ t
0 A q(τ ) dτ , or in the state space form

u = k1 A q + g,

ġ = k0 A q, (12)

where k0, k1 ∈ R are scalar control gains, and g ∈ R
2n is the

state of the integrator. Under (12), the close-loop dynamics is
given by

[
q̇
ġ

]
=

[
k1 A I
k0 A 0

]

︸ ︷︷ ︸
Ā

[
q
g

]
, (13)

where I ∈ R
2n×2n is the identity matrix.

Theorem 3: If for all nonzero μ ∈ σ(A) roots of the
quadratic equation

λ2 − k1μλ− k0μ = 0 (14)

have negative real parts, then under the control (12), agents
globally converges to the desired formation.

Proof: We need to show that the nonzero eigenvalues of the
closed-loop state matrix Ā in (13) are stable. Eigenvalues of
Ā are roots of the characteristic equation

det(λ I − Ā) = det

([
λ I − k1 A −I

−k0 A λ I

])
(15)

= det(λ I) det
(
λ I − k1 A − (−I)(λ I)−1(−k0 A)

)

= λ2n det

(
1

λ
(λ2I − λ k1 A − k0 A)

)

= det
(
λ2I − λ k1 A − k0 A

)
. (16)

If μ is an eigenvalue of A, from Lemma 6 in the Appendix
and (16) it follows that the eigenvalues of Ā are roots of the
quadratic equation λ2 − k1 μλ − k0 μ = 0, where by the
condition of the theorem have negative real parts.

Corollary 1: If A is symmetric, for all k0, k1 > 0 roots
of (14) have negative real parts.

Proof: Let μ = −α + ι β ∈ C, α > 0, be a nonzero eigen-
value of A. When A is symmetric, μ is real, i.e., β = 0.
From the Routh-Hurwitz stability criterion, it follows that
∀k0, k1 > 0 roots of λ2 + k1 α λ + k0 α = 0 have negative
real parts.

Theorem 4: Control (12) rejects all constant input distur-
bances. Moreover, it rejects constant output disturbances that
are identical for all agents.3

Proof: The input disturbance can be modeled by

u = k1 A q + g + d,

ġ = k0 A q, (17)

where d ∈ R
2n is an unknown constant disturbance vector.

The closed-loop system under this control is
[

q̇
ġ

]
=

[
k1 A I
k0 A 0

] [
q
g

]
+

[
d
0

]
, (18)

3Such output disturbance can model a constant bias on relative position
measurements acquired by agents.

where by setting the left hand side equal to zero, the equilib-
rium equations

k1 A q + g + d = 0, (19)

k0 A q = 0, (20)

are derived. From (20), we have that q ∈ ker(A), and hence the
desired formation is achieved. Replacing A q by 0 in (19) gives
g = −d, which indicates that the integrator has compensated
the unknown disturbance.

Let d ∈ R
2n denote a constant output disturbance vector

that is identical for all agents. That is, if di, dj ∈ R
2 are output

disturbances associated with agents i, j, then di = dj. Under
this disturbance, the input can be represented by

u = k1 A (q + d)+ g,

ġ = k0 A (q + d). (21)

Due to the block Laplacian structure of A, we have that d ∈
ker(A), and thus A d = 0. This implies that (21) is equivalent
to (12), and dynamics of the system remain unaffected.

IV. FORMATION CONTROL FOR AGENTS WITH

HIGHER-ORDER MODEL

In this section, we extend the control strategy to agents with
the double-integrator and higher-order dynamics. By using the
control gains designed for agents with the single-integrator
model, we unify the design and avoid having to formulate and
solve a new optimization problem.

A. Formation Control for Double-Integrator Agents

Dynamics of agents with the double-integrator model can
be expressed (in the vector form) by q̇ = v, v̇ = u, where
v := [v�

1 , v�
2 , . . . , v�

n ]� ∈ R
2n is the aggregate velocity

vector, and q and u are respectively aggregate position and
control vectors. Given matrix A designed for agents for the
single-integrator model in Section III-B, the control law for
double-integrator agents can be chosen as

u = k0 A q + k1 A v, (22)

where k0, k1 ∈ R are scalar control gains. Note that due to the
special structure of A, (22) can be implemented using only the
local relative position and velocity measurements. The closed-
loop dynamics under (22) is given by

[
q̇
v̇

]
=

[
0 I

k0 A k1 A

] [
q
v

]
. (23)

Due the similarity of (23) with (13), the proof of following
theorem follows the proof of Theorem 3 and is omitted.

Theorem 5: If for all nonzero μ ∈ σ(A) roots of the
quadratic equation λ2 − k1μλ − k0μ = 0 have negative real
parts, then under the control (22), double-integrator agents
globally converges to the desired formation. When A is
symmetric, this condition is satisfied for all k0, k1 > 0.
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B. Formation Control for Agents With Higher-Order
Model

We now extend the control strategy to agents with higher-
order models, where we assume that the aggregate dynamics
of the agents can be expressed as

⎡

⎢⎢⎢⎢⎢⎣

q̇
q̇(1)

...

q̇(m−1)

q̇(m)

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0
0 0 I 0
...

. . .
...

0 0 0 I
0 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

q
q(1)

...

q(m−1)

q(m)

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎣

0
0
...

0
I

⎤

⎥⎥⎥⎥⎥⎦
u.

(24)

We should point out that (24) encompasses a large class of
agents with linear or nonlinear dynamics since by coordinate
transformation techniques such as feedback linearization, or
approximation techniques such as linearization, dynamics of
the many systems can be expressed as (24).

Given the gain matrix A designed for agents with the single-
integrator model, the control for agents with dynamics (24) can
be chosen as

u = k0 A q + k1 A q(1) + · · · + km A q(m), (25)

where k0, k1, . . . , km ∈ R are scalar control gains. Under this
control, the closed-loop dynamics is given by

⎡

⎢⎢⎢⎢⎢⎣

q̇
q̇(1)

...

q̇(m-1)

q̇(m)

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0
0 0 I 0
...

. . .
...

0 0 0 I
k0A k1A k2A · · · kmA

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ā

⎡

⎢⎢⎢⎢⎢⎣

q
q(1)

...

q(m-1)

q(m)

⎤

⎥⎥⎥⎥⎥⎦
.

(26)

Note that (25) can be implemented locally using only the
relative measurements (due to the special structure of A).

Theorem 6: If for all nonzero μ ∈ σ(A) roots of the
polynomial equation

λm+1 − km μλ
m − · · · − k1 μλ− k0 μ = 0 (27)

have negative real parts, then under control (25), agents with
dynamics (24) globally converge to the desired formation.

Proof: The closed-loop state matrix Ā given in (26) is in
the controllable canonical form, and therefore its characteristic
equation is given by

λm+1 I − km λ
m A − · · · − k1 λA − k0 A = 0. (28)

From Lemma 6 and the assumption of the theorem, the
nonzero eigenvalues of Ā have negative real parts.

To find gains k0, k1, . . . , km that satisfy the condition of
Theorem 6, the Routh-Hurwitz criterion can be used.

Remark 2: In above analysis, the control can alternatively
be chosen as u = k0 A q+k1 I q(1)+· · ·+km I q(m) to eliminate
relative measurements of q(1), . . . , q(m) from neighbors. Note
that this control can also be implemented using only the local
relative measurements.

Example 1 (Quadrotor Dynamics): The dynamics of a
hovering quadrotor can be approximated using the linear
model [17]

δẍi = g δθi δθ̈i = uy
i

δÿi = −g δϕi δϕ̈i = ux
i

δz̈i = ua
i δψ̈i = uz

i (29)

where δ represents a small displacement, g is the gravitational
constant, xi, yi, zi are the coordinates of the i’th quadrotor in
the world frame, ϕi, θi, ψi are the Euler angles that describe
the orientation of the quadrotor in the world frame, ux

i , uy
i , uz

i
are moment inputs applied to the airframe about corresponding
body axes, and ua

i is a mass-normalized thrust input.
Since we are interested in 2D formations, we only consider

the lateral dynamics along the x-y axes, and assume that z
is controlled separately to keep the quadrotors at a constant
altitude. To represent the dynamics in the canonical form (24),
let us define δθ̄i := g δθi, δϕ̄i := −g δϕi, ūy

i := g uy
i , ūx

i :=
−g ux

i . Using this notation, (29) can be described in the vector
form as

ṗi =

⎡

⎢⎢⎣

0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

⎤

⎥⎥⎦pi +

⎡

⎢⎢⎣

0
0
0
I

⎤

⎥⎥⎦ui (30)

where pi := [δxi, δyi, δẋi, δẏi, δθ̄i, δϕ̄i, δ
˙̄θi, δ ˙̄ϕi]� and

ui := [ūy
i , ūx

i ]� are respectively the state and control vectors,
and I ∈ R

2×2 is the identity matrix. Defining the aggre-
gate position vector as q = [δx1, δy1, . . . , δxn, δyn]� yields
dynamics of the form (24). This model will be used in the
next section to achieve a desired formation.

V. SIMULATIONS

To validate the proposed strategy, a simulation with 9
quadrotors is performed. The desired formation is defined as
a square grid and can be seen in Fig. 1(e), where the sensing
graph among agents is shown by gray lines connecting the
quadrotors. Notice that this sensing graph is undirected and is
fixed throughout the simulation.

Stabilizing control gains associated to the desired forma-
tion are computed from the optimization routine explained in
Section III-B. The nonzero eigenvalues of computed A matrix
range from −0.72 to −10. The control law used for each
quadrotor is chosen according to (25), where gains are set
as k0 = 0.6, k1 = 2, k2 = 3, k3 = 3 to make the closed-loop
state matrix Ā given in (26) stable. The original nonlinear
quadrotor dynamics given in [17] is used in the simulation to
test the control law.

The initial positions of the quadrotors are chosen randomly,
as shown in Fig. 1(a). The locations of the quadrotors at other
instances of time are shown in Figs. 1 (b)-(e). The proposed
control strategy brings the agents to the desired formation.
Notice that since the control only uses the local relative posi-
tion measurements, the desired formation is achieved up to a
rotation and translation. That is, the orientation of the square
formation is not controlled. Furthermore, the scale of the for-
mation is not controlled, and depends on the starting position
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Fig. 1. Simulation of 9 quadrotors with a square grid desired formation. (a) Initial pose at t = 0s. (b) t = 3s. (c) t = 5s. (d) t = 8s. (e) t = 20s.

of the agents. Links to simulation code and video are provided
in the Supplementary Material section.

VI. CONCLUDING REMARKS AND FUTURE WORK

We presented a distributed formation control strategy for
a team of agents to autonomously achieve a desired forma-
tion. We showed that formation control gains can be designed
by solving a SDP problem. This design enjoys a robustness
property, where positive scaling and rotation of the control vec-
tors (up to ±90◦) does not affect the stability. By augmenting
the control with an integrator term, constant input/output dis-
turbances were rejected. The control was extended to agents
with higher-order linear (or linearizable) holonomic dynamics.
Simulation of a quadrotor formation was presented to typify
the proposed strategy.

The robustness property of SDP design allows agents to
move along a rotated control direction. This property can
be used to prevent collision among agents. Designing a dis-
tributed collision avoidance strategy based on this observation
is a topic of future work. Throughout this letter, we assumed
that the sensing topology is fixed, and scale of the desired
formation is not controlled. We previously proposed a design
strategy for time-varying sensing topologies and an augmented
control to fix the scale of desired formation [11]. Incorporating
these strategies for agents with higher-order dynamics will
further be investigated.

APPENDIX

Definition 1: The field of values of matrix A ∈ C
n×n is

defined as F(A) := {x∗ A x | x ∈ C
n, x∗x = 1}, where x∗ is

the conjugate transpose of x.
One can show that F(A) is a convex and compact subset of

C. The following Lemmas are proved in [18] and [19].
Lemma 3: Denote by σ(A) ⊂ C the set of eigenvalues of

A ∈ C
n×n. Then σ(A) ⊂ F(A).

Lemma 4: If A ∈ C
n×n is a diagonal matrix, F(A) is the

convex hull of the diagonal entries (the eigenvalues) of A.
Lemma 5: Let R ∈ C

n×n be nonsingular and A ∈ C
n×n be

a positive (semi-) definite matrix. Then σ(R A) is contained
in the RHP (union the imaginary axis) if and only if F(R) is
contained in the union of the RHP and {0}.

Lemma 6: Let p(·) be a given polynomial. If μ is an
eigenvalue of matrix A with v as the associated eigenvector,
then p(μ) is an eigenvalue of the matrix p(A) with v as the
associated eigenvector.

REFERENCES

[1] M. A. Goodrich et al., “Supporting wilderness search and rescue using
a camera-equipped mini UAV,” J. Field Robot., vol. 25, nos. 1–2,
pp. 89–110, 2008.

[2] J. Zhang et al., “Seeing the forest from drones: Testing the potential
of lightweight drones as a tool for long-term forest monitoring,” Biol.
Conserv., vol. 198, pp. 60–69, Jun. 2016.

[3] J. Scherer and B. Rinner, “Persistent multi-UAV surveillance with
energy and communication constraints,” in Proc. Conf. Autom. Sci. Eng.,
Fort Worth, TX, USA: IEEE, 2016, pp. 1225–1230.

[4] L. Krick, M. E. Broucke, and B. A. Francis, “Stabilisation of infinitesi-
mally rigid formations of multi-robot networks,” Int. J. Control, vol. 82,
no. 3, pp. 423–439, 2009.

[5] A. N. Bishop, T. H. Summers, and B. D. O. Anderson, “Stabilization
of stiff formations with a mix of direction and distance constraints,” in
Proc. IEEE Int. Conf. Control Appl., 2013, pp. 1194–1199.

[6] Z. Lin, L. Wang, Z. Han, and M. Fu, “Distributed formation control
of multi-agent systems using complex Laplacian,” IEEE Trans. Autom.
Control, vol. 59, no. 7, pp. 1765–1777, Jul. 2014.

[7] Z. Lin, L. Wang, Z. Han, and M. Fu, “A graph Laplacian approach
to coordinate-free formation stabilization for directed networks,”
IEEE Trans. Autom. Control, vol. 61, no. 5, pp. 1269–1280,
May 2016.

[8] T. Han, R. Zheng, Z. Lin, and M. Fu, “A barycentric coordinate based
approach to formation control of multi-agent systems under directed
and switching topologies,” in Proc. IEEE Conf. Decis. Control, Osaka,
Japan, 2015, pp. 6263–6268.

[9] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-
agent formation control,” Automatica, vol. 53, pp. 424–440,
Mar. 2015.

[10] K. Fathian, D. I. Rachinskii, M. W. Spong, and N. R. Gans, “Globally
asymptotically stable distributed control for distance and bearing based
multi-agent formations,” in Proc. Amer. Control Conf., Boston, MA,
USA: IEEE, 2016, pp. 4642–4648.

[11] K. Fathian, D. I. Rachinskii, T. H. Summers, M. W. Spong, and
N. R. Gans, “Distributed formation control under arbitrarily chang-
ing topology,” in Proc. Amer. Control Conf., Seattle, WA, USA, 2017,
pp. 271–278.

[12] Z. Lin, L. Wang, Z. Chen, M. Fu, and Z. Han, “Necessary and sufficient
graphical conditions for affine formation control,” IEEE Trans. Autom.
Control, vol. 61, no. 10, pp. 2877–2891, Oct. 2016.

[13] L. Wang, Z. Han, and Z. Lin, “Realizability of similar formation and
local control of directed multi-agent networks in discrete-time,” in Proc.
IEEE Conf. Decis. Control, Florence, Italy, 2013, pp. 6037–6042.

[14] S. Boyd, “Convex optimization of graph Laplacian eigenvalues,” in Proc.
Int. Congr. Math., vol. 3, 2006, pp. 1311–1319.

[15] R. H. Tütüncü, K.-C. Toh, and M. J. Todd, “Solving semidefinite-
quadratic-linear programs using SDPT3,” Math. Program., vol. 95, no. 2,
pp. 189–217, 2003.

[16] M. Grant and S. Boyd. (Mar. 2014). CVX: MATLAB Software for
Disciplined Convex Programming, Version 2.1. [Online]. Available:
http://cvxr.com/cvx

[17] F. Sabatino, “Quadrotor control: Modeling, nonlinear control design, and
simulation,” M.S. thesis, School Elect. Eng., KTH Roy. Inst. Technol.,
Stockholm, Sweden, 2015.

[18] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1990.

[19] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge,
U.K.: Cambridge Univ. Press, 1994.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


