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Performance bounds for optimal feedback control
performance and robustness in networks

Karthik Ganapathy, Justin Ruths, Tyler Summers

Abstract—Important complex networks including critical in-
frastructure and emerging industrial automation systems are
becoming increasingly intricate webs of interacting feedback
control loops. A fundamental concern is to quantify the control
properties and performance limitations of the network as a
function of the structure of its dynamics and control architecture.
We study performance bounds for networks in terms of both
optimal and robust feedback control costs as a function of the
system dynamics and actuator structure. For unstable network
dynamics, we demonstrate a trade-off between feedback control
performance and the number of control inputs, in particular
showing that optimal cost can increase exponentially with the
size of the network. Likewise, we demonstrate a trade-off between
robustness and the numbers of control and adversarial inputs.
We also derive a bound on the performance of the worst-
case actuator subset for open-loop stable networks, providing
insight into dynamics properties that affect the potential efficacy
of actuator selection. However, we show that such a bound is
generally not guaranteed even for open-loop stable networks in
terms of robustness to adversarial inputs. When the open-loop
network dynamics has a finite H∞ norm with respect to the
adversarial inputs, we find an analogous performance bound
of the worst case actuator set. We illustrate our results with
numerical experiments that analyze performance in regular and
random networks.

I. INTRODUCTION

Recent spectacular advances in computation and commu-
nication technologies are transforming our ability to control
complex networked systems. Critical infrastructure, industrial
automation systems and many other technological and social
networks crucial to modern society are becoming increasingly
intricate webs of interacting feedback loops. As this com-
plexity increases, a fundamental concern is to quantify the
control properties and performance limitations of the network
as a function of the structure of its dynamics and control
architecture.

A variety of metrics have been theorized to quantify notions
of network controllability. Significant recent research has been
devoted to studying connections between such notions and the
structural properties of the network, and to studying algorithms
for designing networks with good controllability and observ-
ability properties. One broad line of work has focused on
classical binary controllability metrics based on Kalman rank
[1]–[8]. Another line of work has focused on metrics based
on the Gramian [9]–[15]. These binary and open-loop notions

The authors are with the Department of Mechanical Engineering, University
of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080 USA. E-
mail: {karthik.ganapathy, tyler.summers, jruths}@utdallas.edu. The work of T.
Summers was sponsored by the Army Research Office and was accomplished
under Grant Number: W911NF-17-1-0058.

fail to capture essential feedback and robustness properties,
and other recent work has considered more general optimal
control and estimation metrics and algorithms [16]–[28].

An important part of understanding network controllability
in terms of any metric is expressing fundamental performance
limitations. A clear understanding of performance limitations
can set practical expectations and guide the design and analysis
of network control architectures. Recent work on performance
limitations and network controllability include [9] in the
context of the Gramian, and [21] in the context of sensor
selection and Kalman filtering. However, to the best of our
knowledge, no such studies have been done in a network
context for more general optimal control metrics.

Here we study performance bounds for networks in terms of
both optimal and robust feedback control costs as a function
of the system dynamics and actuator structure. Our main
contributions are as follows.

• We derive performance bounds for the linear quadratic
regulator (LQR), showing that for open-loop unstable
systems the optimal cost can increase exponentially with
network size for any fixed-size actuator set (Theorem 1).

• For open-loop stable systems, we derive a bound on the
performance of the worst-case actuator subset for open-
loop stable networks, providing insight into dynamics
properties that affect the potential efficacy of actuator
selection (Theorem 2).

• We derive robustness bounds for open-loop unstable
dynamics in the presence of adversarial inputs (Theorem
3) with a two-player zero-sum dynamic game (ZSDG)
framework.

• We illustrate that there is not necessarily any guarantee
for finite cost for open-loop stable networks under ad-
versarial inputs. In this case, we derive a relationship
between open-loop and closed-loop stable dynamics of
a system under attack in terms of the H∞ bounds of the
system and then derive the controller performance bounds
(Theorem 4).

• We present extensive numerical experiments on regular
and random networks to illustrate the relationship be-
tween cardinality and position of actuators and attackers
in networks, network size, open-loop stability and the
optimal or equilibrium cost of the system. A key conclu-
sion is the importance of the position of the actuators in
determining network control performance and robustness,
especially scaling with network size.

A preliminary version of this work appeared in [29], which
featured performance bounds only for LQR performance
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metrics. We significantly extend this preliminary version by
developing analogous bounds for network robustness using a
two-player zero-sum dynamic game (ZSDG) framework that
incorporates the effects of strategic adversarial inputs, and we
significantly expand the numerical experiments. We conclude
in Section VI with a brief summary of the results from the
paper and possible future directions of research.

II. NETWORK DESCRIPTION FOR OPTIMAL CONTROL AND
ROBUSTNESS PERFORMANCE METRICS

We begin by formulating actuator selection problems based
on optimal feedback control performance and robustness for
linear dynamical networks with quadratic costs.

A. Network performance for optimal control

The network dynamics are modeled by the discrete-time
linear dynamical system evolving on a graph G = (V, E)

xt+1 = Axt +BSut, t = 0, ..., T, (1)

where xt ∈ Rn is the system state at time t, ut ∈ R|S| is
the input at time t, and A is the network dynamics matrix,
which encodes the weighted connections in the underlying
graph G and we assume to be invertible throughout. Let B =
{e1, ..., eM} be a finite set of the canonical column vectors in
Rn associated with possible locations for actuators that could
be placed in the network to affect the dynamics of nodes in the
graph. For any subset S ⊂ B, the input matrix BS comprises
the columns indexed by S, i.e., BS = [es1 , ..., es|S| ] ∈ Rn×|S|.

We first consider an optimal open-loop linear quadratic
regulator performance index associated with an input sequence
u = [u>0 , ..., u

>
T−1]>. The optimal cost function is

V ∗LQR(S, x0) = min
u

T−1∑
t=0

(x>t Qxt + u>t RSut) + x>TQTxT (2)

where Q � 0 and QT � 0 are state and terminal cost matrices
and RS � 0 is an input cost matrix associated with actuator
subset S.

This standard least squares problem has the solution

V ∗LQR(S, x0) = x>0 G
>(I +HBSB

>
SH
>)−1G︸ ︷︷ ︸

P0

x0 (3)

where

H = diag(I ⊗Q 1
2 , Q

1
2

T )



0 0 0 · · · 0
I 0 0 · · · 0
A I 0 · · · 0

A2 A I
. . . 0

...
...

...
. . . 0

AT−1 AT−2 · · · A I


,

G = diag(I ⊗Q 1
2 , Q

1
2

T )


I
A
A2

...
AT

 ,BS = diag(BSR
− 1

2

S ).

Alternatively, dynamic programming can be used to compute
the optimal cost matrix P0 via the backward Riccati recursion

Pt−1 = Q+A>PtA−A>PtBS(RS +B>S PtBS)−1B>S PtA,
(4)

for t = T, ..., 1 with PT = QT . The infinite horizon cost
matrix P can be computed from the limit of the recursion,
resulting in the algebraic Riccati equation

P = Q+A>PA−A>PBS(RS +B>S PBS)−1B>S PA. (5)

The optimal cost function (3) also quantifies feedback
control performance as a function of the actuator subset and
the initial state. Our performance bounds will be expressed in
terms of worst-case and average values of this cost over initial
states. In particular, we define

ĴLQR(S) = max
‖x0‖=1

V ∗(S, x0) = λmax(P0)

J∗LQR(S) = Ex0
V ∗(S, x0) = tr[P0X0],

(6)

where ĴLQR(S) represents a worst-case cost and J∗LQR(S)
represents an average cost over a distribution of initial states
with zero-mean and finite covariance X0.

Actuator selection. The mappings J∗LQR : 2B → R and
ĴLQR : 2B → R shown above are set functions that map
actuator subsets to optimal feedback control performance. We
pose set function optimization problems to select a k-element
subset of actuators to optimize control performance

min
S⊂B, |S|=k

ĴLQR(S), min
S⊂B, |S|=k

J∗LQR(S). (7)

Our performance bounds will also be expressed and interpreted
in terms of actuator subset selections.

B. Network robustness metrics

The network dynamics are modeled by the discrete-time
linear dynamical system evolving on a graph G = (V, E)

xt+1 = Axt +BSut + FSa
vt (8)

where here vt ∈ R|Sa| represents the input of a strategic
adversary. Note that the adversary need not represent an actual
malicious input, but can be viewed as a worst-case disturbance
or model perturbation. Let F = {e1, ..., eMa

} be a finite set of
the canonical column vectors in Rn associated with possible
locations for the adversarial inputs to affect the dynamics. For
any subset Sa ∈ F , the input matrix FSa comprises of a
possibly empty input matrix or columns indexed by Sa, i.e.,
FSa

= [esa,1
, ..., esa,|Sa|

] ∈ Rn×|Sa|. We consider a zero-sum
dynamic game between the control input and the adversary. In
zero-sum dynamic games, the appropriate equilibrium concept
is the saddle point, whose value is given by

V ∗ZSDG(S, Sa, x0) = min
u

max
v

T−1∑
t=0

(x>t Qxt + u>t RSut

− γ2v>t vt) + x>TQxT , (9)

where v = [v>0 , ..., v
>
T−1]> and γ is a parameter penalizing

the adversarial input. The saddle point value in open-loop
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strategies can also be computed by solving least squares
problems and is given by

V ∗ZSDG(S, Sa, x0) = x>0 G
>(I +HBSB

>
SH
>

− γ−2HFF>H>)−1Gx0

= x>0 Z0x0

(10)

where F = diag(FSa
)1. The optimal cost matrix Z0 can be

computed through a generalized backwards Riccati recursion

Zt−1 = Q+A>Zt[I + (BSB
>
S − γ−2FSa

F>Sa
)Zt]

−1A (11)

with ZT = QT and t = T, T − 1, . . . 1. Over an infinite
horizon, the cost matrix Z can be computed from the limit
of the recursion. This results in the algebraic Riccati equation

Z = Q+A>Z[I + (BSB
>
S − γ−2FSaF

>
Sa

)Z]−1A. (12)

It is well known that the optimal open-loop input sequences
and closed-loop feedback strategies yield the same state tra-
jectories and associated saddle point equilibrium value [30].

The adversary penalty parameter, γ, determines the exis-
tence of an upper value for the game. It can be interpreted as
a quantification of model uncertainty, with large γ representing
small model uncertainty and smaller γ representing larger
model uncertainty. We can see from (10) that as γ → ∞
the game equilibrium value equals the optimal LQR value. As
γ decreases, the equilibrium cost increases; there is a critical
value, which we denote by γ∗(S, Sa), below which the upper
value of the game is infinite. This value represents the best
possible closed-loop H∞ norm from the adversarial input to
the state, which quantifies the achievable robustness of the
network in closed-loop. Clearly, this value depends on the
actuator subsets S and Sa.

We thus define the following network robustness metrics

ĴZSDG(S, Sa) = max
‖x0‖=1

V ∗(S, Sa, x0) = λmax(Z0)

J∗ZSDG(S, Sa) = Ex0
V ∗(S, Sa, x0) = tr[Z0X0]

J∗H∞(S, Sa) = γ∗(S, Sa),

(13)

where ĴZSDG(S, Sa) represents a worst-case equilibrium cost,
J∗ZSDG(S, Sa) represents an average equilibrium cost over a
distribution of initial states with zero-mean and finite covari-
ance X0, and J∗H∞(S, Sa) represents a robustness level (with
lower being better).

Actuator selection. The mappings J∗ZSDG, ĴZSDG, and J∗H∞
are set functions that map actuator subsets to network robust-
ness. We pose set function optimization problems to select a
k-element subset of actuators to optimize robustness as

min
S⊂B, |S|=k

ĴZSDG(S, Sa), min
S⊂B, |S|=k

J∗ZSDG(S, Sa),

min
S⊂B, |S|=k

J∗H∞(S, Sa)

(14)
Our robustness bounds will also be expressed and interpreted
in terms of actuator subset selections.

1For the dynamic game we assume RS = I, which is without loss of

generality since u>t RSut can be written as ũ>t ũt with ũt = R
1
2
S ut.

Notation. The eigenvalues of a square matrix A are denoted
by λi(A) and ordered |λmax(A)| = |λ1(A)| ≥ |λ2(A)| ≥
· · · ≥ |λn(A)| = |λmin(A)|. The singular values of a matrix
F are denoted and ordered as σ1(F ) ≥ σ2(F ) ≥ · · · ≥ σn(F ).
The condition number of a matrix V is denoted cond(V ).

III. BOUNDS ON OPTIMAL FEEDBACK CONTROL
PERFORMANCE

We now develop a set of complementary bounds on the op-
timal feedback control performance in networks as a function
of the system dynamics and the actuator subset S. We start
with a worst-case lower bound for the best possible actuator
subset selection for unstable networks. This result shows that
the optimal cost can be exponentially large even with the
best fixed-size set of actuators. We then derive a worst-case
upper bound for the worst possible actuator subset selection
for stable networks. This result shows that even the worst set of
actuators cannot have arbitrarily bad performance. Our results
are inspired by bounds for the controllability Gramian [9] and
an analogous bound for the Kalman filter in the context of
sensor selection for state estimation [21].

A. Performance bound for unstable network dynamics

We begin with the following performance bound on optimal
feedback control of networks with unstable open-loop network
dynamics for a Linear Quadratic Regulator. To simplify the
exposition, we will assume throughout this subsection that
B = {e1, ..., en}, the canonical set of unit vectors (i.e., each
input signal affects the dynamics of a single node), and that
RS = I , ∀S. However, it is straightforward to generalize the
results to arbitrary input vectors and cost matrices. We focus
here on the infinite horizon cost given by the algebraic Riccati
equation (5).

Theorem 1. Consider a network G = (V, E) with dynamics
matrix A and input set S ⊂ B. Suppose that A is Schur
unstable and let λmax(A) > 1 denote the eigenvalue of A with
maximum magnitude. Suppose further that A is diagonalizable
by the eigenvector matrix V , and for any η ∈ (1, λmax(A)]
define n̄ = |{λ : λ ∈ spec(A), |λ| ≥ η}|. For all
η ∈ (1, λmax(A)] and for any Q � 0 such that (A,Q

1
2 ) is

detectable, it holds

λmax(P ) ≥ cond−2(V )
η2 − 1

η2
η2(d n̄

|S| e−1), (15)

where P is the optimal closed-loop cost matrix that satisfies
the algebraic Riccati equation (5).

Proof. Given in Appendix 0a.

Discussion. Although our result is inspired by and utilizes
a bound on the minimum eigenvalue of the controllability
Gramian in [9], we emphasize that it is not a trivial inversion
of their bound. The Gramian quantifies input energy required
for state transfer from the origin, so that a limiting feature
of the dynamics is stable modes. In contrast, the optimal cost
matrix quantifies input energy and state regulation costs (to
the origin) for feedback control, and a limiting feature of the
dynamics is unstable modes. Of course, this is as expected,
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but one arrives at significantly different conclusions about how
easy or difficult it is to control a network, depending on which
quantitative notion of network controllability is used. Our
bound involves a fundamental closed-loop, feedback notion
of controllability.

The bound expresses a fundamental performance limitation
for feedback control of networks with unstable dynamics.
Specifically, if the number of unstable modes grows, then the
feedback control costs increase exponentially for any fixed-
size set of actuators, even if they are optimally placed in the
network. An immediate corollary (cf. Corollary 3.3 in [9])
is that in order to guarantee a bound on the optimal control
cost, the number of actuators must be a linear function of the
number of unstable modes, even though a single actuator may
suffice to stabilize the network dynamics in theory. As in [9]
and as we will see in our numerical experiments, the bound is
loose in many cases, so that large costs can be incurred even
with a small number of unstable modes.

There are several ways the bound might be improved. It only
accounts for the number of actuators, and not how effectively
they control crucial state space dynamics. It could be im-
proved, for example, by incorporating the angles that the input
vectors make with the left eigenvectors of the dynamics matrix.
Furthermore, the bound excludes the contribution of state
regulation costs, so a sharper bound could be developed that
includes and distinguishes both. It would also be interesting to
explore possible connections with classical frequency domain
performance limitations, such as Bode sensitivity theorems.

We conclude this subsection with a corollary that expresses
a simplified bound for symmetric networks.

Corollary 1. Consider a network G = (V, E) with dynamics
matrix A and input set S ⊂ B. Suppose that A is Schur un-
stable and symmetric. Let λmax(A) > 1 denote the eigenvalue
of A with maximum magnitude and λ̄u(A) > 1 denote the
unstable eigenvalue of A with minimum magnitude. For any
Q � 0 such that (A,Q

1
2 ) is detectable, it holds

λmax(P ) ≥ max

{
λmax(A)2 − 1

λmax(A)2
,

λ̄u(A)2 − 1

λ̄u(A)2
λ̄u(A)2(d n̄

|S| e−1)

}
.

(16)

Proof. Given in Appendix 0b.

B. Performance bound for stable network dynamics

Next we derive a complementary performance bound for
stable network dynamics. It establishes a worst case perfor-
mance bound for actuator subsets produced by any selection
algorithm and quantifies how the difference between the best
and worst possible actuator subsets depends on the network
dynamics. This analysis is inspired by analogous results for
sensor selection in the context of a state estimation metric
involving the Kalman filtering error covariance matrix [21].
We focus here on the infinite horizon cost given by the
solution to the algebraic Riccati equation (5), though it is also
straightforward to derive for finite horizon costs.

We consider the following ratio

r(P ) =
tr(Pworst)

tr(Popt)
, (17)

where Pworst and Popt are the solutions to the algebraic Riccati
equation (5) corresponding to the optimal and worst k-element
selection of actuators.

Analogous to the sensor information matrix defined in
[21], we also define the actuator influence matrix R(S) :=
BSR

−1
S B>S corresponding to an actuator subset S ⊆ B.

We have the following results, whose proofs follow directly
along the lines of the analogous proofs of Theorem 3 and
corresponding Corollary in [21], which we omit here due
to space limitations. To prove the result, we will utilize the
following lemmas.

Lemma 1 ( [31]). The solution P � 0 of (5) with Q � 0
satisfies P � A>(Q−1 +R(S))−1A+Q.

Lemma 2 ( [32]). For symmetric matrices Y, Z ∈ Rn×n,
there holds λn(Y + Z) ≥ λn(Y ) + λn(Z), λ1(Y + Z) ≤
λ1(Y ) + λ1(Z), and λn(Y )tr(Z) ≤ tr(Y Z) ≤ λ1(Y )tr(Z).

Lemma 3 ( [33]). A square matrix A ∈ Rn×n is Schur stable
if and only if there exists a nonsingular matrix T such that
σ1(TAT−1) < 1.

Based on the similarity transformation T in Lemma 3, we
define a positive constant which will appear in our bound:

αA =
σ2

1(T )

σ2
n(T )(1− σ2

1(TAT−1))
. (18)

Theorem 2. Let R = {R(S) | S ⊂ B, |S| ≤ k} be the set of
all actuator influence matrices for actuator subsets with k or
fewer elements. Let λmax1 := max{λ1(R) | R ∈ R}. Suppose
the dynamics matrix A is stable and Q � 0. Then the cost
ratio satisfies

r(P ) ≤ αA(1 + λmax
1 λn(Q))tr(Q)

nσ2
n(A)λn(Q) + (1 + λmax

1 λn(Q))tr(Q)
(19)

Proof. Given in Appendix 0c.

We also state the following corollary, which provides a
simplified bound for stable and normal dynamics matrices.

Corollary 2. If the system dynamics matrix A is Schur stable,
then r(P ) ≤ αA, where αA is a constant that depends only on
the network dynamics matrix. Moreover, if A is also normal,
i.e., A>A = AA>, then

r(P ) ≤ 1

1− λ2
1(A)

. (20)

Proof. Given in Appendix 0d.

Discussion. Although it is not surprising that such bounds
should exist for stable networks, they provide insight into the
properties of the dynamics matrix A that affect the potential
efficacy of actuator selection. The effect is most clearly seen
in Corollary 2, where we observe that the difference between
worst and optimal increases as A approaches instability,
confirming intuition. The bounds complement those in the
previous subsection: here, even the worst k-element actuator
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selection cannot have arbitrarily bad performance for stable
networks, whereas even the best selection may incur large
costs in unstable networks. However, even in stable networks,
effective actuator set selections (perhaps obtained with greedy
algorithms [16]) can greatly improve feedback control costs.

IV. BOUNDS ON ROBUSTNESS VIA ZERO-SUM DYNAMIC
GAMES

In this section, we extend the analysis of performance
bounds for the optimal controller problem to a more general
robust performance metric. We quantify performance in terms
of the equilibrium cost of the two-player, zero-sum dynamic
game using the framework described in Section II-B and the
adversarial input set Sa.

A. Performance bound for unstable network dynamics

We begin with a generalization of Theorem 1 that bounds
the equilibrium value of the two-player zero-sum dynamic
game (9) for networks with unstable open-loop dynamics.

Theorem 3. Consider a network G = (V, E) with dynamics
matrix A, actuator control input set S ⊆ B, adversary input set
Sa ⊆ F and adversary penalty parameter γ. Suppose that A
is Schur unstable and let λmax(A) > 1 denote the eigenvalue
of A with maximum magnitude. Suppose further that A is
diagonalizable by the eigenvector matrix V , and for any
η ∈ (1, λmax(A)] define n̄ = |{λ : λ ∈ spec(A), |λ| ≥ η}|.
For all η ∈ (1, λmax(A)], ΛF = λmax(FSaF

>
Sa

) and for any
Q � 0 such that (A,Q

1
2 ) is detectable, it holds

λmax(Z) ≥
η2 − 1cond2(V )

(
η−2(d n

|S| e−2) − γ−2η−2(d n
|Sa|
e−2)

)
+ γ−2ΛF (η2 − 1)


(21)

where Z is the optimal closed-loop cost matrix that satisfies
the infinite-horizon algebraic Riccati equation (12).

Proof. Given in Appendix 0e.

Discussion. As γ → ∞ note that (21) reduces to (15).
This shows that this result is a two-player, zero-sum game
generalization of Theorem 1. Moreover, as the penalty on the
adversarial input decreases γ → γ∗, the bound increases and
eventually blows up. We also note that the bound can be
loose, and it is possible to have extremely large costs even
with a small number of adversarial inputs and relatively large
adversarial input penalty, depending on the system dynamics
and relative locations of actuators and adversarial input.

B. Performance bound for open-loop robust network dynamics

This section provides a bound on the equilibrium value
of a two-player zero-sum game for networks with open-loop
robust dynamics. In particular, we consider networks that have
bounded cost in the presence of a set of adversarial inputs
with a fixed adversary cost penalty γ (i.e., the H∞-norm of

the open-loop system without control inputs with respect to
the adversary inputs is bounded by

√
1/γ). This bound is

analogous to that in Section III-B on optimal feedback control
performance for stable network dynamics. However, the bound
for the game requires a stronger condition on the open-loop
dynamics, since even open-loop stable networks can fail to
have bounded cost in the presence of an adversarial input.

Example. Consider the following instance of the model

(8): A =

(
0.95 0.001
0.001 0.1

)
, B = {b1 = e1, b2 = e2},

FSa
= I2. The open-loop system does not have a bounded cost

in the presence of the adversary for γ < 1.379. Furthermore,
for γ ∈ (1.379, 19.997), using only actuator b2 results in
an unbounded equilibrium cost, whereas using only actuator
b1 results in a bounded equilibrium cost. For systems with
unbounded open-loop cost due to adversarial inputs, it is
possible that certain actuator subsets (even ones obtained from
a greedy algorithm optimizing robustness) may not guarantee
bounded closed-loop equilibrium cost.

To facilitate a performance bound, we assume finite cost for
a system with no actuator inputs, a fixed adversarial inputs and
input penalty. Then we use a similar setup to the stable LQR
system proposed in Theorem 2 and define the robustness ratio

rrobust(Z) =
tr(Zworst)

tr(Zopt)
(22)

where Zworst and Zopt are the solutions to the algebraic Riccati
equation (12) corresponding to the optimal and worst k-
element selection of actuators for the system (8). We propose
the following theorem.

Theorem 4. Let R = {R(S)|S ⊂ B, |S| ≤ k} be the set of
all actuator influence matrices for actuator subsets with k or
fewer elements, λmax

1 := max{λ1(R)|R ∈ R} and Q > 0.
Then, the robustness ratio (22) satisfies

rrobust(Z) ≤
αA(1 + λmax

1 λn(Q))tr(Q)

σ2
n(A)λn(Q) + (1 + λmax

1 λn(Q))tr(Q)
(23)

where A is the closed-loop dynamics for finite-cost for the
system xt+1 = Axt + FSa

vt given by

A = (I + FSa
(γ2I − F>Sa

ZFSa
)−1F>Sa

Z)A,

αA =
σ2

1(T )

σ2
n(T )(1−σ2

1(TAT−1))
, and T is a non-singular matrix

that ensures σ1(TAT−1) < 1.

Proof. Given in Appendix 0f.

V. NUMERICAL EXPERIMENTS

In this section, we illustrate our results with numerical
experiments in regular and random undirected graphs. We
compare the effect of parameters such as network model and
number of nodes with changing actuator and adversary sets.

The analytic expressions derived in this paper provide best
and worst case cost bounds in different contexts. In Section
III-A, for systems that are relatively difficult to regulate (i.e.,
they have at least one unstable mode), we derive a lower
bound on the cost required to regulate the system to the origin
for a fixed number of actuators. In Section IV-B, we extend
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the result to obtain a lower bound on equilibrium cost of a
dynamic game with a fixed number of actuator control and
adversarial inputs. Similarly, in Section III-B, for systems that
are relatively easy to regulate (i.e., all modes are stable), we
identify an upper bound on the cost required to regulate the
system to the origin for a fixed number of actuators. In Section
IV-B, we establish an analogous bound for dynamic games
with open-loop robust network dynamics. Effectively, when
the system is inherently hard, we quantify the best case cost;
when the system is inherently easy, we quantify the worst case
cost. These relationships are informative because they reveal
the scaling of cost based on the number of actuators. However,
the m actuator control inputs from n nodes can be selected
in many ways, the l adversary inputs may appear in various
locations in the network, and these network architectures have
different performance and robustness costs associated with
them. Likewise, the directions associated with unstable modes
can dominate the cost, and, therefore, the performance and
robustness can vary depending on the initial state. These ques-
tions of input set selection and target regulation (target control)
are not new, however, here we empirically demonstrate the
types of variation we observe by using the generalized LQR
and dynamic game cost (which has not been studied before).

A. LQR Cost Analysis in Networks

To build insight and intuition, we begin our analysis on an
undirected path network, with dynamics matrix

A =
ρ

3



1 1 0 · · · 0

1 1 1 · · ·
...

0 1
. . . . . . 0

...
...

. . . 1 1
0 · · · 0 1 1


,

where ρ > 0 is a parameter we will used to modulate the
stability of the dynamics.

Actuator Set on a Path Graph and Random Graph.
Throughout this section we assume that B = {e1, ..., en}, so
that each possible actuator injects an input into the dynamics
of a single node, and that Q = I and RS = I , ∀S. Fig. 1
shows how the optimal feedback performance varies as the
number of controlled nodes increases for a 50-node path net-
work, with varying network stability properties and actuators
spaced evenly throughout the path, which is empirically a near
optimal actuator placement. We see that when the network
becomes unstable, the optimal feedback control costs increase
significantly with only a single actuator, even though a single
actuator is sufficient to stabilize the network dynamics.

We first address the variation in the cost for a fixed number
of actuators m. We observe this variation by selecting m
nodes uniformly from n, constructing the matrix B (such that
the columns of B are columns of the identity matrix), and
calculating the LQR cost. We repeat this process 1000 times
for each choice of m ∈ {1, 5, 10, 30}, constructing the sample
distributions in Fig. 2 for the path graph with n = 100 nodes
presented earlier and for the Erdős-Rényi (ER) [34] random
graph (with edge probability p = 0.1). In both cases the
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Fig. 1. Optimal cost versus the number of controlled nodes for a 50-node
path graph. The controlled nodes were evenly spaced throughout the path. We
see that when the dynamics are stable (ρ = 0.9, 0.99, 1) the optimal cost is
not too large, even with only a single controlled node. When the dynamics
are unstable (ρ = 1.003, 1.005), the optimal cost can be large.
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Fig. 2. For the path graph and Erdos-Renyi random graph (p = 0.1) with n =
100 nodes, m ∈ {1, 5, 10, 30} actuators were selected uniformly randomly.
Each of the box plots represent a sample distribution of the costs of 1000
samples (realizations of B). These box plots demarcate the mean, first and
third quartiles (box), and minimum and maximum (whiskers).

adjacency matrix A has been scaled by its largest eigenvalue
to make it marginally stable. While the exponential scaling
related to the number of actuators can still be observed clearly,
there is significant variation in the cost for a specific choice of
m, most notably for lower fractions of actuators. In addition,
the denser connectivity of the random graph yields not only
smaller costs, but also smaller variation due to selection of
B. This implies that the actuator selection problem becomes
trivial as the number of actuators or the connectivity increases
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Fig. 3. For the path graph with n = 100 nodes, m ∈ {1, 5, 10, 30}
actuators were selected in both a greedy (minimizing the cost) and anti-
greedy (maximizing the cost) fashion. Each of the box plots represent a sample
distribution of the costs associated with 1000 (normally) randomly generated
initial states x0 with that ‖x0‖ = 1. The inset plot shows the same results
for the Erdos-Renyi random graph. These box plots demarcate the mean, first
and third quartiles (box), and minimum and maximum (whiskers).

because all choices will provide roughly equivalent costs.
Optimal Actuator Sets in Path Graphs. We now turn

to look at the variation in the cost caused by selectively
choosing certain directions in state space to regulate. For a
given number of actuators m, we pick the best selection of
m actuators and also pick the worst selection of m actuators.
We find these (approximate) best and worst case actuators sets
by, respectively minimizing and maximizing the cost using a
greedy algorithm. For each of these cases, we draw 1000 initial
state vectors x0 from a normal distribution, normalize them to
lie on the ‖x0‖ = 1 ball, and compute the cost xT0 P0x0 for
regulating that specific direction. Fig. 3 displays these sample
distributions for the n = 100 path graph for m ∈ {1, 5, 10, 30}
actuators. The inset plot shows the same for the ER random
graph. By selecting the best and worst actuator choices, we
have captured the extreme cases due to actuator selection;
every other choice of B would fall (roughly) in between,
falling in line with the results of Fig. 2. We observe that ideal
actuator selection results in a system that has significantly less
variation due to direction. More specifically, the optimal choice
of actuators eliminates, or greatly reduces, the effect of the
most unstable modes present in A.

One way to interpret the distributions in Fig. 3 is that we
know the directions that are most and least costly to regulate
- these are the eigenvectors (modes) of P0 corresponding,
respectively, to the largest and smallest absolute eigenvalues
of P0. For a given box and whisker, the maximum value is

attained at vT1 P0v1, where v1 is the eigenvector corresponding
to λ1 of P0 and we have ordered our eigenvalues such that
λ1 ≥ λ2 ≥ · · · ≥ λn. Likewise, the direction cheapest
to regulate is vn, which is the minimum of the distribution
captured by the box plots. All other directions fall between
these extremes.

Modal Analysis. To see this more clearly, in Fig. 4, we
plot the first five modes of A and P0 for the path graph (again
ordering the eigenvectors according to descending absolute
value of their corresponding eigenvalue) for best and worst
actuator selection with m = 1 and m = 10. The eigenvectors
of A (dashed) encode the modes expressed in the dynamics
due to the network structure and the eigenvectors of P0

encode the directions in state space that form the overall
LQR cost. The best placed single actuator lies at the middle
of the path, whereas the worst lies at one of the ends. We
observe that the ideal actuator changes the modes of the path
network substantially whereas the worst actuator choice does
not change the modes, indicating that an actuator placed at
the end of the path does not have a significant impact on the
dynamics of the network. The largest eigenvalues in the best
and worst case differ by approximately a factor of four. The
effect is exaggerated in the m = 10 case, where the best
actuators are evenly spaced throughout the path and the worst
actuators are all aggregated at one end. A similar pattern is
observed with respect to mode shape and the difference in the
largest eigenvalue of P0 is about a factor of 80.

B. Dynamic Game Equilibrium Cost Analysis

We now empirically explore the effects of various param-
eters, including network structure, open-loop stability prop-
erties, and actuator and adversarial input locations, on the
dynamic game equilibrium cost and closed-loop H∞-norm γ∗,
which both provide related but different network robustness
metrics (recall that the adversarial input need not represent an
actual malicious attack input but can be regarded as a worst-
case disturbance or model uncertainty). We analyze the path
graph and undirected realizations of the ER and Barabási-
Albert (BA) [35] graph models. The dynamics matrix of the
graphs is scaled as in the LQR case to modulate the stability of
the open-loop dynamics. The equilibrium cost matrix Z given
by the solution to (12) is computed by value iteration with (11),
and the closed-loop H∞-norm γ∗ is computed via bisection
on γ based convergence of (11) to identify the smallest value
of γ for which (11) converges.

Adversary and actuator sets and locations in a regu-
lar and random networks. The locations of adversary and
actuator inputs in the network can have significant effects
on the equilibrium value and H∞-norm γ∗. Fig. 5 shows
how γ∗ equilibrium cost trace(Z) increase as the number
of adversarial inputs is increased, with additional adversary
inputs placed using a greedy algorithm. It can be seen that
additional adversarial inputs have diminishing returns, and that
the adversarial inputs have a larger effect when the open-loop
dynamics have eigenvalues closer to the stability boundary.

Figure 6 shows the effects of an increasing number of
actuators in the network in the presence of a fixed adversarial
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Fig. 4. For the path graph with n = 100 nodes, the first five modes (in decreasing absolute value of eigenvalue) of A are plotted in dashed black. Overlaid
in solid black are the first five modes of P0 corresponding to choices of B for (from left to right) the single best actuator (m = 1), the single worst actuator
(m = 1), the 10 best actuators (m = 10), and the 10 worst actuators (m = 10). Here “best” and “worst” are found using a greedy method.

Fig. 5. The top plot shows the variation of γ∗ with increasing cardinality of
the adversary input set. The bottom plot shows the equilibrium cost calculated
at a fixed value of γ that gives a finite value for the largest adversary set. The
magnitude of the largest eigenvalue of the dynamics matrix of each model is
shown in the legend.

input set (|FSa | = 1). Additional actuators are placed using a
greedy heuristic to optimize the marginal gain in equilibrium
cost or H∞-norm It can also be seen that additional actuators
(roughly) have diminishing returns on the equilibrium cost
and the H∞-norm, and that for open-loop dynamics closer
to and beyond the stability boundary, the effects of having
smaller actuator subsets becomes more severe. Note that the
equilibrium cost may be infinite for certain actuator subsets
even when the open-loop dynamics are stable, depending on
the locations of adversarial inputs and penalty parameter γ.

For a basic illustration of how the relative locations of
actuators and adversarial inputs can have very large effects
on the equilibrium value and H∞-norm, we evaluated various
placements in random graphs. In particular, we generated 100
realizations of connected Erdos-Renyi graphs of 21 nodes with
diffusion dynamics, and for each network we determined the
strongest (S) and weakest (W) positions of adversarial inputs

Fig. 6. The top plot shows the variation of γ∗ with increasing cardinality
of the control actuator set. The bottom plot shows the cost calculated at the
largest value of γ for the greedy assignment of actuators. The magnitude of
the largest eigenvalue of the dynamics matrix of each model is shown in the
legend. The cost matrix is unbounded in the bottom plot for |BS | = 1 for
our choice of γ = γ∗ for each plot.

(A) and defending actuator inputs (D). Figure 7 shows box
plots for corresponding values of γ∗ for each combination.
The very large difference between the strongest adversary-
weakest defender and weakest adversary-strongest defender
indicate the importance of placing actuators at key locations
in the network to provide robustness.

Figure 8 shows how the best position for a single actuator
in a path network changes as a function of the location of a
single adversarial input and the adversary penalty γ. We see
that near γ∗, the optimal position of the actuator control is
the same node as the adversarial position, and as γ increases,
the optimal actuator position converges to the central node of
the path graph. This shows clearly that locations for actuators
that promote network robustness to adversarial inputs (or
uncertainty) are not the same as the ones that promote optimal
control performance in the absence of adversarial inputs.
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Fig. 7. The box plots compare values of γ∗ for the cases of strongest (S) and
weakest (W) positions of adversary inputs (A) and control actuators (D) for
100 realizations of the Erdos-Renyi graph model (edge probability p = 0.1).
SAWD has the highest γ∗ and WASD has the lowest γ∗.

Fig. 8. These plots compare convergence of cost and position for a single
actuator for all possible positions of a single adversarial input. The top plot
shows the change in equilibrium cost tr(Z) with increasing adversary penalty
γ. The bottom plot shows the change in position of the optimal defender as
with increasing adversary penalty γ. Each line on both graphs correspond to
a single fixed attacker at a different node of the path graph.

Modal Analysis. We now provide a modal analysis for the
dynamic game on a 21-node path graph, analogous to that
provided above for optimal LQR performance. Figure 9 shows
the mode shapes and corresponding eigenvalues for the first
5 modes of the dynamics matrix A and the dynamic game
equilibrium cost matrix Z for various values of γ. The first
mode is emphasized in Figure 10. For the cost matrix, these
represent state space directions that have the largest influence
on cost. A single adversarial input (|FSa

| = 1) is randomly
located, here at node 5, and the corresponding best actuator
(|BS | = 1) is placed for each value of γ.

We observe that both the adversarial input location and the
actuator location effect the resulting mode shapes of the cost
matrix, and that as the adversary penalty γ increases, the mode
shapes of the LQR cost are recovered, as expected. Figure 11
also shows how the eigenvalues and trace of the equilibrium

Fig. 9. The modal plot compares the first 5 normalized modes of a stable
dynamics matrix for a path graph of n = 21 nodes, the cost matrix of LQR
(P) and cost of the dynamic game with varying γ from γ∗ = 1.373 to
γ = 50 (nearly LQR). The eigenvalues of the dynamics matrix A and cost
matrices (P for LQR and Z@γ∗ for ZSDG) are annotated for each mode.
This is comparable to earlier analysis The convergence of the first mode is
highlighted in a following figure.

Fig. 10. The plot shows the convergence of the eigenvectors for the 1st mode
of the cost matrix for a stable open-loop dynamics matrix with variation of
gamma from near critical gamma to LQR conditions.

cost matrix converge to those of the LQR cost matrix as γ is
increased. The kinks in the curves correspond to changes in
the location of the optimal actuator input node.

VI. CONCLUSIONS

We have derived a set of performance bounds for opti-
mal feedback control in networks in terms of performance
and robustness for both LQR and zero-sum dynamic game
problems that provide insight into fundamental difficulties
of network control as a function of the dynamics structure
and control architecture. Ongoing and future work includes
deriving tighter and more general bounds to include input ef-
fectiveness and logarithmic capacity of dynamics eigenvalues
[36] and conducting case studies on more complicated network
dynamics structures.
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Fig. 11. The top plot compares the eigenvalues of the first 5 modes of the cost
matrix for variation of γ from ZSDG to LQR values for a stable dynamics
matrix. The lower plot shows the cost monotonically reduce to LQR values.
In both plots, the solid lines are the ZSDG cost and eigenvalues and dotted
lines are the LQR costs and eigenvalues.

APPENDIX

a) Proof of Theorem 1: We first make a connection
between the optimal cost matrix for small Q and a control-
lability Gramian associated with the inverse of the dynamics
matrix. Applying the Woodbury matrix identity to the Riccati
recursion (4) yields

Pt−1 = Q+A>(P−1
t +BSR

−1
S B>S )−1A. (24)

As Q→ 0 the inverse cost matrix satisfies

P−1
t−1 = A−1(P−1

t +BSR
−1
S B>S )A−>. (25)

Defining XT−t = P−1
t + BSB

>
S , setting RS = I , and

rearranging, we obtain the recursion

Xτ+1 = A−1XτA
−> +BSB

>
S , τ = 0, ..., T − 1 (26)

with X0 = P−1
T +BSB

>
S = Q−1

T +BSB
>
S . This gives

XT =

T−1∑
τ=0

(A−1)τBSB
>
S (A−>)τ︸ ︷︷ ︸

X̄T

+(A−1)TQ−1
T (A−>)T .

(27)
We see that X̄T is the T -stage controllability Gramian as-
sociated with the system (A−1, BS). Then directly applying
Theorem 3.1 of [9], for any µ ∈ [λmin(A−1), 1) and any
T ∈ [1,∞) it holds that

λmin(X̄T ) ≤ cond2(V )
µ2(d n̄

|S| e−1)

1− µ2
(28)

where n̄ = |{λ : λ ∈ spec(A−1), |λ| ≤ µ}|. Defining η =
1/µ, we see that n̄ = |{λ : λ ∈ spec(A), |λ| ≥ η}| and
η ∈ (1, λmax(A)]. Since P−1

0 = XT −BSB>S , it follows that
λmin(P−1

0 ) ≤ λmin(XT ). Since A has at least one unstable
eigenvalue, then A−1 has at least one stable eigenvalue, and
in this direction the minimum eigenvalue of the second term
in (27) approaches zero as T →∞ for any fixed QT � 0, so

that in the limit as T →∞, λmin(XT ) is also bounded by the
right side of (28). Thus we have in the limit as T →∞

λmax(P ) ≥ 1/λmin(X̄T )

≥ cond−2(V )(1− µ2)µ−2(d n̄
|S| e−1)

(29)

Substituting µ = 1/η yields the expression (15).
Finally, this analysis for small Q accounts only for input

energy costs and not for state regulation costs. It is clear
from the structure of the recursion (4) (and from standard
comparison lemmas; see, e.g., Chapter 13 in [37]) that for
any Q � 0 such that (A,Q

1
2 ) is detectable the costs can only

increase. In particular, if PQ→0 denotes the solution to (5)
for small Q and PQ the solution for any Q � 0 such that
(A,Q

1
2 ) is detectable, then PQ � PQ→0. Thus, the bound

remains valid for any such choice of Q.
b) Proof of Corollary 1: To obtain the bound for the

first term, consider the controllability Gramian X̄T relating
to the inverse cost matrix for small Q in (27). Let X̄T,B be
the Gramian for S = B. Since X̄T � X̄T,B, it follows that
λmin(X̄T ) ≤ λmin(X̄T,B). We then have

λmin(X̄T,B) = λmin

(
T−1∑
τ=0

A−2τ

)
=

1− λmin(A−1)2T

1− λmin(A−1)2

⇒ lim
T→∞

λmin(X̄T,B) =
λmax(A)2

λmax(A)2 − 1
.

(30)

The first part then follows since as T → ∞ we have
λmax(P ) ≥ 1/λmin(X̄T ) ≥ 1/λmin(X̄T,B). The bound for the
second term follows from Theorem 1 with η = λ̄u(A) > 1 and
since the symmetric dynamics matrix admits an orthonormal
eigenvector matrix V with cond(V ) = 1.

c) Proof of Theorem 2: Our proof follows along the lines
of the analogous proof of Theorem 3 in [21], which we include
here for completeness even though the proofs are nearly
identical. We begin by deriving an upper bound for tr(Pworst),
based on the fact that for stable systems the cost is finite
even without any actuation. Specifically, with no actuators
(S = ∅) the algebraic Riccati equation (5) reduces to the
Lyapunov equation P ∅ = A>P ∅A+Q. Since A is stable, from
Lemma 3 there exists a nonsingular similarity transformation
T satisfying σ1(TAT−1) < 1. Defining P̄ = TP ∅T>,
Q̄ = TQT>, and D = TAT−1, we have P̄ = DP̄D> + Q̄.
Using trace and eigenvalue interlacing properties for sums of
symmetric matrices from Lemma 2, there holds tr(DP̄D>) =

tr(D>DP̄ ) ≤ σ2
1(D)tr(P̄ ) so that tr(P̄ ) ≤ tr(Q̄)

1−σ2
1(D)

.

Similarly, we have tr(P̄ ) = tr(T>TP ∅) ≥ σ2
n(T )tr(P ∅) and

tr(Q̄) = tr(T>TQ) ≤ σ2
1(T )tr(Q). Putting it all together

yields

tr(Pworst) ≤ tr(P ∅)

≤ σ2
1(T )

σ2
n(T )

tr(Q)

1− σ2
1(D)

= αAtr(Q).
(31)

where αA is the constant defined in (18).



We now provide a lower bound for Popt. For any k-element
actuator subset S, there holds

tr(P ) ≥ tr(A>(Q−1 +R(S))−1A+Q)

≥ λn(AA>)tr(Q−1 +R(S))−1 + tr(Q)

= σ2
n(A)

n∑
i=1

1

λi(Q−1 +R(S))
+ tr(Q)

≥ nσ2
n(A)

λ1(Q−1 +R(S))
+ tr(Q)

≥ nσ2
n(A)

λ1(Q−1) + λ1(R(S))
+ tr(Q)

≥ nσ2
n(A)

1
λ1(Q) + λmax1

+ tr(Q).

(32)

The first inequality follows from Lemma 1, and the second
and fourth from Lemma 2. Since the bound above holds for
any k-element actuator subset, it also holds for the optimal
k-element selection. Finally, combining the upper bound for
tr(Pworst) and the lower bound for tr(Popt) gives (19).

d) Proof of Corollary 2: Since the denominator in the
bound (19) is lower bounded by (1 +λmax

1 λn(Q))trace(Q), a
looser bound r(P ) ≤ αA is obtained that only depends on the
system dynamics, and not on the cost matrix Q. In addition,
if A is normal, its singular values are equal to the magnitude
of its eigenvalues [32], and since A is Schur stable, we have
σ1(A) = |λ1(A)| < 1. Further, the similarity transformation T
described in Lemma 3 can be taken to be the identity matrix.
Under these conditions, the bound reduces to (20).

e) Proof of Theorem 3: As in Theorem 1, we make a
connection between the equilibrium cost matrix for small Q
and controllability Gramians for each input associated with in
inverse dynamics matrix. As Q → 0, the inverse equilibrium
cost matrix in the recursion (11) becomes

Z−1
t−1 = A−1[Z−1

t + (BSB
>
S − γ−2FSa

F>Sa
)]A−>.

Defining XT−t = Z−1
t + (BSB

>
S − γ−2FSa

F>Sa
), we follow

a similar approach to the proof to Theorem 1 to obtain

XT =

T−1∑
τ=0

(A−1)τBB>(A−>)τ︸ ︷︷ ︸
XT

− γ−2
T−1∑
τ=0

(A−1)τFF>(A−>)τ︸ ︷︷ ︸
X̃T

+ (A−1)TQ−1
T (A−>)T︸ ︷︷ ︸
Q̃

= XT − γ−2X̃T + Q̃. (33)

Note that XT and X̃T are T-stage controllability Gramians
for the systems (A−1, BS) and (A−1, FSa

), respectively. We
again apply Theorem 3.1 from [9] to obtain

λmin(XT ) ≤ cond2(V )
µ2(d n

|S| e−1)

1− µ2
, (34)

λmin(X̃T ) ≤ cond2(V )
µ2(d n

|Sa|
e−1)

1− µ2
. (35)

for any µ ∈ [λmin(A−1), 1) and any T ∈ [1,∞). Applying
Weyl’s inequality to the matrix WT = XT − γ−2X̃T gives

λmin(WT ) ≤ λmax(−γ−2X̃T ) + λmin(XT )

= −γ−2λmin(X̃T ) + λmin(XT ).
(36)

Combining (34)-(36) yields

λmin(WT ) ≤ cond2(V )

1− µ2

[
µ

2(d n
|S1|
e−1) − γ−2µ2(d n

|Sa|
e−1)

]
.

(37)
Since A has at least one unstable eigenvalue, then A−1 has

at least one stable eigenvalue, and the corresponding block of
(A−1)T goes to zero as T →∞. In view of (33), this means
that X∞ := limT→∞ λmin(XT ) is also bounded by the right
side of (37).

Since Z−1
0 = XT − (BSB

>
S − γ−2FSa

F>Sa
), by Weyl’s

inequality we have

λmin(Z−1
0 ) ≤ λmin(XT ) + λmax(−BSB>S + γ−2FSa

F>Sa
)

≤ λmin(XT )− λmin(BSB
>
S ) + γ−2λmax(FSa

F>Sa
)

≤ λmin(XT ) + γ−2λmax(FSa
F>Sa

)

Thus λmax(Z0) ≥ 1/(λmin(XT ) + γ−2λmax(FSa
F>Sa

)). In
the limit as T →∞ we have

λmax(Z) ≥ 1− µ2cond2(V )
(
µ2(d n

|S| e−1) − γ−2µ2(d n
|Sa|
e−1)

)
+ γ−2λmax(FSaF

>
Sa

)(1− µ2)

 .

Setting η = 1
µ and defining ΛF = λmax(FSa

F>Sa
) gives (21),

proving the theorem.
f) Proof of Theorem 4: To facilitate a performance

bound, in this section we assume that the cost with a set of
adversarial inputs with fixed input penalty γ and without any
actuators is bounded. Specifically, we assume that the optimal
control problem maxv

∑∞
t=0(x>t Qxt−γ2v>t vt) for the system

xt+1 = Axt + FSa
vt has a finite value. This assumption is

equivalent to the existence of a positive definite solution Z to
the equation

Z = Q+A>Z[I − γ−2FSa
F>Sa

Z]−1A (38)

that satisfies γ2I−F>Sa
ZFSa

> 0. Under this assumption, the
optimal adversary state feedback policy is

vt = (γ2I − F>Sa
ZFSa

)−1F>Sa
ZAxt, (39)

and hence the (stable) closed-loop dynamics matrix is

A = (I + FSa
(γ2I − F>Sa

ZFSa
)−1F>Sa

Z)A. (40)

It is now possible to utilize the theorem for performance
bounds of the stable LQR system proposed in III-B to es-
tablish a worst-case network robustness bound for actuator
subsets obtained through any selection algorithm. Consider
the robustness ratio rrobust(Z) = tr(Zworst)

tr(Zopt)
, where Zworst and

Zopt are the solutions to the algebraic Riccati equation (12)
corresponding to the optimal and worst k-element selection of
actuators for the system (8). The result follows directly from
applying Theorem 2 to the system xt+1 = Axt +BSut.



REFERENCES

[1] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex
networks,” Nature, vol. 473, no. 7346, pp. 167–173, 2011.

[2] I. Rajapakse, M. Groudine, and M. Mesbahi, “Dynamics and control
of state-dependent networks for probing genomic organization,” Pro-
ceedings of the National Academy of Sciences, vol. 108, no. 42, pp.
17 257–17 262, 2011.

[3] N. Cowan, E. Chastain, D. Vilhena, J. Freudenberg, and C. Bergstrom,
“Nodal dynamics, not degree distributions, determine the structural
controllability of complex networks,” PLOS ONE, vol. 7, no. 6, p.
e38398, 2012.

[4] T. Nepusz and T. Vicsek, “Controlling edge dynamics in complex
networks,” Nature Physics, vol. 8, no. 7, pp. 568–573, 2012.

[5] W.-X. Wang, X. Ni, Y.-C. Lai, and C. Grebogi, “Optimizing controllabil-
ity of complex networks by minimum structural perturbations,” Physical
Review E, vol. 85, no. 2, p. 026115, 2012.

[6] J. Ruths and D. Ruths, “Control profiles of complex networks,” Science,
vol. 343, no. 6177, pp. 1373–1376, 2014.

[7] A. Olshevsky, “Minimal controllability problems,” IEEE Transactions
on Control of Network Systems, vol. 1, no. 3, pp. 249–258, 2014.

[8] S. Pequito, S. Kar, and A. Aguiar, “A framework for structural in-
put/output and control configuration selection in large-scale systems,”
IEEE Transactions on Automatic Control, vol. 61, no. 2, pp. 303–318,
2016.

[9] F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics,
limitations and algorithms for complex networks,” Control of Network
Systems, IEEE Transactions on, vol. 1, no. 1, pp. 40–52, 2014.

[10] T. Summers, F. Cortesi, and J. Lygeros, “On submodularity and control-
lability in complex dynamical networks,” IEEE Transactions on Control
of Network Systems, vol. 3, no. 1, pp. 91–101, 2016.

[11] T. Summers and J. Lygeros, “Optimal sensor and actuator placement in
complex dynamical networks,” in IFAC World Congress, Cape Town,
South Africa, 2014, pp. 3784–3789.

[12] G. Yan, G. Tsekenis, B. Barzel, J.-J. Slotine, Y.-Y. Liu, and A.-L.
Barabási, “Spectrum of controlling and observing complex networks,”
Nature Physics, vol. 11, pp. 779–786, 2015.

[13] V. Tzoumas, M. Rahimian, G. Pappas, and A. Jadbabaie, “Minimal
actuator placement with bounds on control effort,” IEEE Transactions
on Control Of Network Systems, vol. 3, no. 1, p. 67, 2016.

[14] A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “Submodularity
in input node selection for networked linear systems: Efficient algorithms
for performance and controllability,” IEEE Control Systems Magazine,
vol. 37, no. 6, pp. 52–74, 2017.

[15] G. Lindmark and C. Altafini, “Minimum energy control for complex
networks,” Scientific reports, vol. 8, no. 1, pp. 1–14, 2018.

[16] T. Summers, “Actuator placement in networks using optimal control
performance metrics,” in IEEE Conference on Decision and Control.
IEEE, 2016, pp. 2703–2708.

[17] B. Polyak, M. Khlebnikov, and P. Shcherbakov, “An lmi approach to
structured sparse feedback design in linear control systems,” in European
Control Conference. IEEE, 2013, pp. 833–838.

[18] U. Munz, M. Pfister, and P. Wolfrum, “Sensor and actuator placement
for linear systems based on and optimization,” IEEE Transactions on
Automatic Control, vol. 59, no. 11, pp. 2984–2989, 2014.

[19] N. K. Dhingra, M. R. Jovanovic, and Z.-Q. Luo, “An ADMM algorithm
for optimal sensor and actuator selection,” in IEEE Conference on
Decision and Control. IEEE, 2014, pp. 4039–4044.

[20] I. Yang, S. A. Burden, R. Rajagopal, S. S. Sastry, and C. J. Tomlin,
“Approximation algorithms for optimization of combinatorial dynamical
systems,” IEEE Transactions on Automatic Control, vol. 61, no. 9, pp.
2644–2649, 2016.

[21] H. Zhang, R. Ayoub, and S. Sundaram, “Sensor selection for kalman
filtering of linear dynamical systems: Complexity, limitations and greedy
algorithms,” Automatica, vol. 78, pp. 202–210, April, 2017.

[22] M. Siami and N. Motee, “Growing linear dynamical networks endowed
by spectral systemic performance measures,” IEEE Transactions on
Automatic Control, vol. 63, no. 7, pp. 2091–2106, 2017.

[23] A. Haber, F. Molnar, and A. E. Motter, “State observation and sensor
selection for nonlinear networks,” IEEE Transactions on Control of
Network Systems, vol. 5, no. 2, pp. 694–708, 2017.

[24] A. F. Taha, N. Gatsis, T. Summers, and S. A. Nugroho, “Time-varying
sensor and actuator selection for uncertain cyber-physical systems,”
IEEE Transactions on Control of Network Systems, vol. 6, no. 2, pp.
750–762, 2018.

[25] V. M. Deshpande and R. Bhattacharya, “Sparse sensing for H2/H∞
optimal observer design with bounded errors,” arXiv preprint
arXiv:2003.10887, 2020.

[26] A. Kohara, K. Okano, K. Hirata, and Y. Nakamura, “Sensor placement
minimizing the state estimation mean square error: Performance guar-
antees of greedy solutions,” arXiv preprint arXiv:2004.04355, 2020.

[27] L. Ye, N. Woodford, S. Roy, and S. Sundaram, “On the complexity
and approximability of optimal sensor selection and attack for kalman
filtering,” arXiv preprint arXiv:2003.11951, 2020.

[28] L. F. Chamon, G. J. Pappas, and A. Ribeiro, “Approximate supermodu-
larity of kalman filter sensor selection,” IEEE Transactions on Automatic
Control, 2020.

[29] T. Summers and J. Ruths, “Performance bounds for optimal feedback
control in networks,” in 2018 Annual American Control Conference
(ACC). IEEE, 2018, pp. 203–209.

[30] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory.
Siam, 1999.

[31] N. Komaroff, “Iterative matrix bounds and computational solutions to
the discrete algebraic Riccati equation,” IEEE Transactions on Automatic
Control, vol. 39, no. 8, pp. 1676–1678, 1994.

[32] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university
press, 1985.

[33] J. Liu and J. Zhang, “The open question of the relation between square
matrix’s eigenvalues and its similarity matrix’s singular values in linear
discrete system,” International Journal of Control, Automation and
Systems, vol. 9, no. 6, pp. 1235–1241, 2011.
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