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Abstract—Robustness is a key challenge in the integration
of learning and control. In machine learning and robotics,
two common approaches to promote robustness are adversarial
training and domain randomization. Both of these approaches
have analogs in control theory: adversarial training relates to H∞

control and dynamic game theory, while domain randomization
relates to theory for systems with stochastic model parameters.
We propose a stochastic dynamic game framework that integrates
both of these complementary approaches to modeling uncer-
tainty and promoting robustness. We describe policy iteration
algorithms in both model-based and model-free settings to
compute equilibrium strategies and value functions. We present
numerical experiments that illustrate their effectiveness and the
value of combining uncertainty representations in our integrated
framework. We also provide an open-source implementation of
the algorithms to facilitate their wider use.

Index Terms—Stochastic optimal control, robust control, game
theory, uncertain systems, numerical algorithms.

I. INTRODUCTION

ROBUSTNESS has been a perennial concern in control
system analysis and design, and remains a major chal-

lenge for emerging control systems and networks that integrate
machine learning components and algorithms. Robustness under
adversarial additive disturbances and systems with stochastic
parameters have each seen extensive study, but have largely
been treated separately. Here, we consider solving a linear
quadratic game with stochastic parameters (SLQ game) via the
dynamic programming technique of policy iteration.

The canonical linear quadratic regulator (LQR) problem was
shown to be efficiently solvable via an iterative technique [1],
later recognized as equivalent to policy iteration applied to the
LQR problem. Connections between dynamic LQ games and
H∞ control were recognized and made popular in [2]. In [3] it
was shown that the solution of a generalized algebraic Riccati
equation (GARE) gave equilibrium strategies for LQ games.
Nearly all work on solving this equation has focused on either
value iteration [2] or semidefinite programming (SDP) methods
[4]. One exception was [5] where the model-free Q-learning
algorithm, a type of approximate policy iteration, was proposed.
In [6], model-free first-order policy optimization techniques
were shown to converge to solutions of the GARE using nested
updates, which are known to be sample inefficient for LQ
systems [7].

Systems with stochastic parameters, equivalent to state- and
control-multiplicative noise, arise naturally in a variety of
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settings such as networked systems with noisy communication
channels, modern power networks with large penetration of
intermittent renewables, turbulent fluid flow, and neuronal brain
networks. Optimal control [8] and (mean-square) stabilizability
[9] of such systems have been analyzed nearly as long as that
for deterministic systems. In [10] the solution to the LQR
problem for discrete-time systems with multiplicative noise
was given via a GARE, and in [11] it was shown that policy
iteration solves this problem.

For systems with truly stochastic parameters, as for those
with deterministic ones, it is advantageous to consider an
adversarial disturbance in order to synthesize H∞ robust
controllers to ensure mean-square stability of the system. In
[12] a generalized stochastic bounded real lemma (SBRL)
and nonlinear matrix inequalities were developed for discrete-
time systems in the more general output feedback setting, but
only state- and disturbance input-multiplicative noises were
considered, with control inputs perfectly executed, and the
practical control design task was not investigated thoroughly.
Perhaps most directly related to our work is [13] which
considered the mixed H2/H∞ control design problem for
systems with stochastic parameters, and showed that the SBRL
of [12] was equivalent to a GARE, and offered a convex SDP
approach towards suboptimal solutions.

As an alternative view, stochastic parameters can be used
as a device during control design to induce robustness to
structured parametric uncertainty [14], [15], which can be
combined in a complementary way with additive adversarial
disturbances to handle unstructured model uncertainty. This
is analogous to developments in machine learning where
unstructured uncertainty is addressed by adversarial training
examples [16] while structured uncertainty is addressed by
domain randomization [17]; this perspective is elaborated
on in Section II. To our knowledge, such a perspective and
formulation is essentially absent in the control literature.

In contrast to the existing literature, our current work frames
the problem as a zero-sum dynamic game, considers control-
dependent noise, and offers an efficient policy iteration scheme
that works both when the model is known and unknown. Our
main contributions are:
• We present a zero-sum dynamic linear quadratic game

with stochastic parameters that allows a distinct and
complementary treatment of structured (parametric) and
unstructured (nonparametric) model uncertainty.

• We describe policy iteration algorithms in both model-
based and model-free settings to compute saddle point
equilibrium strategies and value functions. In the model-



based setting, the equilibrium strategies are computed
from model and uncertainty representation parameters. In
the model-free setting, they are computed by approximate
policy iteration with least-squares estimation of the state-
action value function from sample trajectory data.

• We present numerical experiments that illustrate and
demonstrate the effectiveness of the algorithms and the
value of combining uncertainty representations.

• We provide an open-source implementation of the algo-
rithms to facilitate their wider use.

The rest of the paper is organized as follows. In Section II
we formulate the stochastic dynamic game. In Section III we
describe a model-based policy iteration algorithm. In Section
IV we present a model-free variation that utilizes least-squares
temporal difference Q-function learning from trajectory data.
Section V provides numerical experiments to illustrate the
results, and Section VI concludes.

II. STOCHASTIC DYNAMIC GAMES WITH MULTIPLICATIVE
NOISE

We consider the zero-sum stochastic dynamic game

minimize
πu∈Πu

maximize
πv∈Πv

E
α,β ,γ

∞

∑
t=0

ct ,

subject to xt+1 = Ãxt + B̃ut +C̃vt ,

(1)

where xt ∈Rn is the system state, ut ∈Rm is the control input,
vt ∈ Rp is the (adversarial) disturbance input, the initial state
x0 is distributed according to distribution D0, and ct is the
quadratic stage cost

ct := c(xt ,ut ,vt) := xᵀt Qxt +uᵀt Rut − vᵀt Svt ,

where Q� 0, R� 0, S� 0. The dynamics are described by the
random system matrices

Ã = A+
q

∑
i=1

αtiAi, B̃ = B+
r

∑
j=1

βt jB j, C̃ =C+
s

∑
k=1

γtkCk,

which incorporate a (deterministic) mean dynamics matrix
A ∈ Rn×n, control input matrix B ∈ Rn×m, disturbance input
matrix C ∈ Rn×p and multiplicative noise terms modeled by
the i.i.d. (across time), zero-mean, mutually independent scalar
random variables αti, βt j, and γtk, which have variances σ2

α,i,
σ2

β , j, and σ2
γ,k respectively. The matrices Ai ∈Rn×n, B j ∈Rn×m,

Ck ∈Rn×p specify how each scalar noise term affects the system
dynamics, control input, and disturbance input matrices. Noises
are assumed zero-mean without loss of generality; non-zero-
mean noises can be accommodated by simply subtracting the
mean from the noises and shifting the A, B, and C matrices
by corresponding amounts. The expectation is with respect to
the noises {αti},{βt j},{γtk}, hereafter abbreviated to simply
Eα,β ,γ .

The goal is to determine saddle point equilibrium state
feedback policies πu and πv with ut = πu(xt) and vt = πv(xt)
from sets Πu and Πv of admissible policies. We assume that the
problem data A, B, C, Q, R, S, Ai, B j, Ck, σ2

α,i, σ2
β , j, and σ2

γ,k
permit existence of a saddle point equilibrium in pure policies
and finiteness of the corresponding equilibrium value of the

problem. This can be interpreted as a problem of designing a
feedback controller for the nominal system (A,B) that is robust
to the worst-case inputs of the adversary and the stochastic
variations of model parameters. These two uncertainty represen-
tations are complementary: the adversarial input is well-suited
to promoting robustness to non-parametric uncertainty, such
as unmodeled dynamics, bounded nonlinearities, and truncated
infinite-dimensionalities, while the stochastic model parameters
promote robustness to parametric uncertainties in the model
parameters, which may result from their estimation from noisy
data or from inherent multiplicative noise phenomena (e.g.,
packet dropouts in networks). As a special case, taking S = γ2I
gives a connection to H∞ control since γ is an upper bound
on the L2 gain disturbance attenuation i.e. the H∞ norm of the
system [2]. In machine learning, domain randomization is a
heuristic for inducing robustness of a classifier by randomly
changing the parameters of the environment (domain) during
training [17]. Likewise, in (1) stochastic parameters randomly
change the Ã, B̃, C̃ matrices (domain) at each time step, which
gives guaranteed robustness margins [14], [15].

Notation. Let ρ(M) denote the spectral radius (largest
magnitude of an eigenvalue) of matrix M. Let ‖M‖ denote the
spectral norm (largest singular value) of matrix M. Let ⊗ denote
the Kronecker product. Let vec(M) denote the vectorization
of matrix M by stacking its columns. Let svec(M) denote the
symmetric (or half) vectorization of matrix M by vectorization
of the upper triangular (including the main diagonal) part of
matrix M with off-diagonal entries multiplied by

√
2 such that

‖M‖2
F = svec(M)ᵀ svec(M) where ‖ ·‖F is the Frobenius norm.

Let smat(v) denote the symmetric matricization of vector v i.e.
the inverse operation of svec(·) such that smat(svec(M)) = M.

III. MODEL-BASED COMPUTATION OF EQUILIBRIUM
POLICIES AND VALUE FUNCTIONS VIA POLICY ITERATION

In contrast to deterministic linear systems and linear systems
with additive noise, proper functioning (i.e., finite infinite-
horizon quadratic cost) of linear systems with stochastic
parameters requires satisfaction of the stronger mean-square
stability condition:

Definition 1: The closed-loop system in (1) is said to be
mean-square stable if

lim
t→∞

E
α,β ,γ

[xtx
ᵀ
t ] = 0 ∀x0.

Throughout the paper we abbreviate “mean-square stability” to
“ms-stability” for brevity.

We use policy iteration to solve (1); this requires first
characterizing the cost under non-equilibrium ms-stable policies
(those which admit finite cost in (1), but are not the minimax
solution), and under equilibrium policies (those which solve
(1)). It is well known (e.g. [13]) that equilibrium policies are
linear state-feedback of the form ut = Kxt , vt = Lxt where
K and L are control and disturbance gain matrices, so we
consider policies only of this type. We begin by defining
several quantities which admit compact cost characterizations,
which arise naturally in the study of linear optimal control.



A. Non-equilibrium strategies

Denote the deterministic nominal closed-loop system matrix
as AKL := A + BK +CL, the stochastic closed-loop system
matrix as ÃKL := Ã+ B̃K +C̃L, and the closed-loop state-cost
matrix as QKL := Q+KᵀRK − LᵀSL. Define the stage cost
matrices PKL,t :=Eα,β ,γ

[
(Ãᵀ

KL)
t
QKLÃt

KL

]
. Following [18], [19],

we define the linear operator FKL(·) which operates on a
constant symmetric matrix X :

FKL(X) := E
α,β ,γ

Ãᵀ
KLXÃKL

= Aᵀ
KLXAKL +

q

∑
i=1

σ
2
α,iA

ᵀ
i XAi

+
r

∑
j=1

σ
2
β , j(B jK)ᵀX(B jK)+

s

∑
k=1

σ
2
γ,k(CkL)ᵀX(CkL),

where expectation in the first line is with respect to the noises
in ÃKL, and the second line follows by mutual independence
of the noises. Likewise, we define FKL (without an argument)
as a matrix which acts on the vectorization of X :

FKL := Aᵀ
KL⊗Aᵀ

KL +
q

∑
i=1

σ
2
α,iA

ᵀ
i ⊗Aᵀ

i

+
r

∑
j=1

σ
2
β , j(B jK)ᵀ⊗ (B jK)ᵀ+

s

∑
k=1

σ
2
γ,k(CkL)ᵀ⊗ (CkL)ᵀ,

so that vec(FKL(X)) = FKL vec(X). These operators charac-
terize the cost dynamics as

PKL,t+1 = E
α,β ,γ

[
(Ãᵀ

KL)
t+1

QKLÃt+1
KL

]
= E

α,β ,γ

[
Ãᵀ

KLPKL,t ÃKL

]
= FKL(PKL,t).

This gives an easy way to check ms-stability, as stated in the
following fact, which is straightforward to prove by following
similar arguments as in [9], [19]:

Fact 1: A pair of gains K and L are ms-stabilizing if and
only if the spectral radius ρ(FKL)< 1.

Now we characterize the costs (values) associated with a
pair of gains (K,L). The state-value function determines the
cost of starting in state x = x0 and following policies ut = Kxt ,
vt = Lxt forever, defined as

VKL(x) := E
α,β ,γ

∞

∑
t=0

xᵀt QKLxt = xᵀPKLx,

where PKL is the positive semidefinite solution to the gener-
alized Lyapunov equation (which generalizes one given for
systems with multiplicative noise in e.g. [13])

PKL = QKL +FKL(PKL).

The state-action value (Q-) function determines the cost of
starting in state x = x0, taking actions u = u0, v = v0, then
following policies ut = Kxt , vt = Lxt thereafter, defined as

QKL(x,u,v) := c(x,u,v)+ E
α,β ,γ

VKL(Ãx+ B̃u+C̃v),

where the expectation is with respect to the noises in the
stochastic Ã, B̃,C̃ in the argument to VKL. Expanding, we can
also write the state-action value function as a quadratic form:

QKL(x,u,v) = xᵀQx+uᵀRu− vᵀSv

+ E
α,β ,γ

[
(Ãx+ B̃u+C̃v)ᵀPKL(Ãx+ B̃u+C̃v)

]

=

x
u
v

ᵀHxx Hxu Hxv
Hux Huu Huv
Hvx Hvu Hvv


KL

x
u
v

 , (2)

where HKL is a symmetric matrix defined in terms of PKL with
blocks

Hxx = Q+AᵀPKLA+
q

∑
i=1

σ
2
α,iA

ᵀ
i PKLAi,

Huu = R+BᵀPKLB+
r

∑
j=1

σ
2
β , jB

ᵀ
j PKLB j,

Hvv =−S+CᵀPKLC+
s

∑
k=1

σ
2
γ,kC

ᵀ
k PKLCk,

Hux = BᵀPKLA, Hvx =CᵀPKLA, Hvu =CᵀPKLB,

which follows by definition and mutual independence of the
noises. If the pair (K,L) is ms-stabilizing, then VKL(x) and
QKL(x,u,v) return finite values for finite x,u,v.

B. Equilibrium strategies

Equilibrium strategies are given by solving the generalized
discrete-time algebraic Riccati equation (GARE)

P∗ = H∗xx−
[

H∗ux
H∗vx

]ᵀ [H∗uu H∗uv
H∗vu H∗vv

]−1 [H∗ux
H∗vx

]
, (3)

where H∗ is defined in terms of P∗ identically as HKL is defined
in terms of PKL. The optimal gains are then found as

K∗ = (H∗uu−H∗uvH∗vv
−1H∗vu)

−1(H∗uvH∗vv
−1H∗vx−H∗ux),

L∗ = (H∗vv−H∗vuH∗uu
−1H∗uv)

−1(H∗vuH∗uu
−1H∗ux−H∗vx).

To ensure well-posedness of the game we assume:
1) The pair (A,B) is ms-stabilizable,
2) There exists a minimal positive definite solution P∗ to the

GARE such that

H∗vv =−S+CᵀP∗C+
s

∑
k=1

σ
2
γ,kC

ᵀ
k P∗Ck ≺ 0,

3) The optimal adversary gain L∗ satisfies

Q− (L∗)ᵀSL∗ � 0.

The first condition (implicitly) imposes restrictions on the
structure of (A,B) as well as upper bounds on the noise
variances [20]. The second condition is a generalization of
a standard assumption that ensures concavity of the cost in the
adversary inputs leading to existence of the value of the game,
as in [2], [5]. The third condition ensures the saddle-point
property of the optimal gains (K∗,L∗) i.e. the input sequences
generated under the policies ut = K∗xt , vt = L∗xt constitute
the Nash equilibrium of the game, as in [6]. More directly,
this ensures QK∗L∗ � 0 so that P∗ induces a valid Lyapunov



function VK∗L∗(x) = xᵀP∗x which decreases along closed-loop
trajectories.

Existing approaches to solve the GARE are based either
on value iteration, which turns (3) into a recursive update,
or on solving an SDP which requires knowledge of the
model. As an effective alternative, we propose using policy
iteration, which also extends readily to the model-free setting.
Policy iteration, due originally to Howard [21], is a dynamic
programming technique which proceeds iteratively by updating
an approximation of the optimal value function under the
current policy (policy evaluation), updating an approximation
of the optimal policy under the current value function (policy
improvement), and repeating until convergence. For SLQ
games policy iteration specializes to Algorithm 1, where each
step involves only linear algebraic operations. This algorithm
derives from the fact that there is known to be a saddle
point equilibrium in pure linear policies, with a corresponding
quadratic equilibrium value function, under the appropriate
assumptions. In [22] it was shown that Newton’s root-finding
algorithm applied to the GARE converges at a quadratic rate
to the equilibrium strategies from any initial feasible pair of
gains. It can be shown that Newton’s method is equivalent to
the exact policy iteration described here, and thus Algorithm 1
enjoys the same convergence results.

Algorithm 1 Exact policy iteration for SLQ games

Input: Ms-stabilizing linear policy pair (K0,L0), convergence
threshold ε > 0.

1: Initialize P0 = 0, P1 = ∞, k = 0
2: while ‖Pk+1−Pk‖> ε do
3: Policy Evaluation: Compute the value of the current

policy pair by finding the solution Pk
KL to the Lyapunov

equation Pk
KL = Qk

KL +F k
KL(P

k
KL)

4: Policy Improvement: Update the policy pair according
to the dynamic programming equations

Kk+1 = (Huu−HuvH−1
vv Hvu)

−1(HuvH−1
vv Hvx−Hux)

Lk+1 = (Hvv−HvuH−1
uu Huv)

−1(HvuH−1
uu Hux−Hvx)

with H = Hk
KL defined as before in terms of Pk

KL.
5: k← k+1
6: end while

Output: Approximately optimal policy pair (Kk+1,Lk+1)

Note that Algorithm 1 requires perfect knowledge of the
problem data A,B,C,{Ai},{B j},{Ck},{σ2

α,i},{σ2
β , j},{σ

2
γ,k} in

order to execute the policy evaluation step by solving for
PKL exactly. In practical applications, such knowledge may
be extremely difficult or impossible to acquire, motivating a
model-free formulation of policy iteration.

IV. MODEL-FREE COMPUTATION OF EQUILIBRIUM
POLICIES AND VALUE FUNCTIONS VIA APPROXIMATE

POLICY ITERATION

In the model-free setting we do not have access to the
problem data, and the value functions must be estimated from
sample trajectory data. In this case it is not necessary to estimate
the value function matrix P, but rather is sufficient to estimate

the state-action value function matrix H which is used during
policy improvement. For estimation of the Q-function we first
develop an “adaptive dynamic programming” type of least
squares (LSADP) as developed in [23], then give a more
sophisticated least-squares temporal difference learning for
Q-functions (LSTDQ) developed in [24].

First we define the concatenated pseudo-state vectors

z =
[
xᵀ uᵀ vᵀ

]ᵀ
, w =

[
xᵀ (Kx)ᵀ (Lx)ᵀ

]ᵀ
,

and similarly zt and wt using xt ,ut ,vt , so zt = wt under the
closed-loop policies ut = Kxt , vt = Lxt . With a slight abuse of
notation, the definition of the Q-function becomes

QKL(z) := c(z)+ E
α,β ,γ

VKL(Ãx+ B̃u+C̃v),

from which it follows

QKL(wt) = c(wt)+ E
α,β ,γ

VKL(Ãxt + B̃Kxt +C̃Lxt) =VKL(xt).

Noting that

EQKL(wt+1) = EVKL(xt+1) = EVKL(Ãxt + B̃ut +C̃vt),

where the expectations are all with respect to the noises
{αti},{βt j},{γtk} in the dynamic update of xt+1 in the argu-
ment to each function i.e. xt+1 = Ãxt +B̃ut +C̃vt , the Q-function
can be written recursively as

QKL(zt) = c(zt)+EQKL(wt+1).

By using symmetric vectorization we can convert QKL from a
quadratic form to a linear architecture:

QKL(z) = φ(z)ᵀΘ,

where we define the parameter vector Θ = svec(HKL), and
the feature map φ(z) = svec(zzᵀ) . Rearranging the recursive
Q-function relationship,

c(zt) = QKL(zt)−EQKL(wt+1)

= φ(zt)
ᵀ
Θ−E [φ(wt+1)

ᵀ
Θ]

However, in the model-free setting we cannot compute the
expectation E [φ(wt+1)

ᵀΘ] exactly, so a natural approximation
is to replace the expectation with transition samples:

c(zt) = (φ(zt)−φ(wt+1))
ᵀ

Θ+ et , (4)

where the error is

et = φ(wt+1)
ᵀ
Θ−E [φ(wt+1)

ᵀ
Θ] .

By exciting the system with inputs for `+ 1 time steps and
recording the trajectory of observed states, inputs, and costs we
obtain a data set {zt ,ct}`+1

t=0 , which we call a rollout. From such
a rollout, for a given (K,L) we can compute the augmented
rollout {zt ,wt ,ct}`+1

t=0 . For a rollout of length `+1, this yields
` equations of the form of (4). Stacking rows, we obtain the
matrix relation Y = ZΘ+E where

Y =


c(z0)
c(z1)

...
c(z`)

 , Z =


(φ(z0)−φ(w1))

ᵀ

(φ(z1)−φ(w2))
ᵀ

...
(φ(z`)−φ(w`+1))

ᵀ

 , E =


e0
e1
...

e`

 .



Ignoring dependence of error E on parameter Θ, the least-
squares solution, which we call the LSADP estimator, is

Θ̂ = (ZᵀZ)−1ZᵀY,

which is well-defined so long as ZᵀZ is invertible, which is
assured if

1) ` > n(n+m+ p)
(more observations than estimated parameters),

2) ε0I � 1
` ∑

`
i=1 ψt−iψ

ᵀ
t−i � ε̄0I ∀ t ≥ N0 and N ≥ N0

(persistency of excitation),
where ψt = φ(zt)− φ(wt+1), ε0 ≤ ε̄0, and N0 is a positive
number [25]. To ensure persistency of excitation almost surely,
we add stochastic Gaussian exploration noise to the control
and adversary inputs.

The LSADP estimator is biased because the errors et
are correlated with the observations c(zt), which led to the
development of the LSTDQ estimator [24]:

Θ̂ =

(
`

∑
t=1

φ(zt)(φ(zt)−φ(wt+1)
ᵀ

)†
`

∑
t=1

φ(zt)ct .

The LSTDQ estimator uses the same rollout data as the LSADP
estimator, so it can be used as a “drop-in” replacement. Using
the LSTDQ estimator, we have the model-free approximate
policy iteration for SLQ games in Algorithm 2. Due to the
stochastic parameter estimates, an increasing rollout length `
is necessary to achieve decreasing error in the gains. It is not
straightforward to determine this schedule or a meaningful
convergence threshold, so for simplicity we use a fixed rollout
length.

Algorithm 2 Approximate policy iteration for SLQ games

Input: Ms-stabilizing linear policy pair (K0,L0), number of
iterations N, rollout length `, variances σ2

u ,σ
2
v .

1: Initialize k = 0
2: while k < N do
3: Approximate Policy Evaluation:
4: Generate inputs ut = Kxt + ue,t , vt = Lxt + ve,t with

exploration noises ue,t ∼N (0,σ2
u I), ve,t ∼N (0,σ2

v I).
5: Collect rollout of length `+ 1 by exciting the system

with the inputs ut , vt , yielding {zt ,ct}`+1
t=0 .

6: Compute the augmented rollout {zt ,wt ,ct}`+1
t=0 under

policy pair (Kk,Lk).
7: Compute Ĥ = Ĥk

KL using LSTDQ estimation as

Θ̂
k
KL =

( `

∑
t=1

φ(zt)(φ(zt)−φ(wt+1)
ᵀ
)† `

∑
t=1

φ(zt)ct

Ĥk
KL = smat(Θ̂)

8: Policy Improvement: Update the policy pair according
to the dynamic programming equations

Kk+1 = (Ĥuu− ĤuvĤ−1
vv Ĥvu)

−1(ĤuvĤ−1
vv Ĥvx− Ĥux)

Lk+1 = (Ĥvv− ĤvuĤ−1
uu Ĥuv)

−1(ĤvuĤ−1
uu Ĥux− Ĥvx)

9: k← k+1
10: end while
Output: Approximately optimal policy pair (Kk,Lk)

V. NUMERICAL EXPERIMENTS

In the following example we consider the problem of
stabilizing a true system given knowledge only of a nominal
system with both parameter mis-specification as well as
unmodeled dynamics.

True system: Consider a pair of masses coupled via springs
in series to fixed walls and eachother. The first mass is heavier
with mass m1 and is connected to a fixed wall by a spring with
negative constant k1 such that the force is not restorative, but
repulsive. The second mass is less heavy with mass m2 and is
connected by springs with small positive constant to another
fixed wall (k2) and the first mass (k3). Both masses are subject
to viscous friction. An actuator applies force F = bu to the
first mass proportional to the input by strength constant b. The
continuous-time dynamics of the true system are thus

ṗ1
p̈1
ṗ2
p̈2

=


0 1 0 0

− k1+k3
m1

− c1
m1

− k1
m1

0
0 0 0 1
− k2

m2
0 − k2+k3

m2
− c2

m2


︸ ︷︷ ︸

Atrue, c


p1
ṗ1
p2
ṗ2

+


0
b
0
0


︸︷︷︸
Btrue, c

u,

where p1, p2, ṗ1, and ṗ2 are the positions and velocities
of masses 1 and 2 respectively. We choose the parame-
ters k1 =−1.00, k2 = 1.00, k3 = 0.10, m1 = 0.6, m2 = 100,
c1 = 0.10, c2 = 10, b = 1.0. Under a forward Euler discretiza-
tion with step size ∆t = 0.5 we obtain the discrete-time
dynamics xt+1 = Atruext + Btrueut where Atrue = I +Atrue, c∆t,
Btrue = Btrue, c∆t.

Nominal system: The nominal model neglects the dynamics
of the second mass i.e. treats it as a fixed wall. Thus, the
system matrices are

A =

[
1 ∆t

−
(

k1+k3
m1

)
∆t 1−

(
c1
m1

)
∆t

]
, B =

[
0

b∆t

]
.

From the full dynamics of the true model, it is apparent that
the effect of the dynamics of the second mass (p2, ṗ2) on
the first mass is only on p̈1, so we model uncertainty due to
the unmodeled dynamics as an adversary with input matrix
C =

[
0 ∆t

]ᵀ
. For the cost weight matrices we chose

Q =

[
1 0
0 1

]
, R = 1, S = 7.

The nominal model assumes both a smaller spring constant
of the first block, k1 = 0.7, and a larger actuator strength,
b = 1.2, than the true model. It is easy to see that parametric
uncertainty on the spring constant k1 and actuator strength b can
be modeled naturally by multiplicative noises with directions

A1 =

[
0 0
1 0

]
, B1 =

[
0
1

]
.

For the variances, we chose σ2
α,1 = 0.8 and σ2

β ,1 = 0.4.
We evaluated the following control synthesis methods on

the nominal model:
1) Open-loop response (OL) i.e. with zero gain
2) Certainty-equivalent (CE) i.e. no mult. noise or adversary
3) Multiplicative noise only (MN) i.e. no adversary



4) Dynamic game adversary only (DG) i.e. no mult. noise
5) Combined mult. noise and adversarial input (MNDG)
6) LQR optimal control given knowledge of the full dynamics

of the true system (OPT)
The stability (ρ(A+BK)) and performance (Tr(PK)) of each
control when applied to the true system are summarized in
Table I. For this example, excluding the baseline control
OPT, only the control MNDG was able to stabilize the true
system, while the other methods CE, MN, DG were unable
to do so. This can be seen in the fact that only control
MNDG achieves ρ(A+BK) < 1 and finite cost Tr(PK). This
means that our approach of combining multiplicative noise and
adversarial input control design achieves superior robustness
when compared with methods which only accounted for a
single type of uncertainty or did not account for uncertainty at
all. These conclusions persist using different Q and R if S is
chosen small enough.

Due to space constraints we have omitted the results of
numerical experiments for the model-free setting, but given
sufficient sample data the quality of the synthesized controls
is only slightly degraded compared to the exact case.

Code which implements the algorithms and experiments
described in this paper are available from the web link:
https://github.com/TSummersLab/policy-iteration-slq-games.

TABLE I
ROBUST CONTROL OF SPRING-COUPLED MASSES

Method ρ(A+BK) Tr(PK) K

OL 1.570 ∞
[
+0.0 +0.0 +0.0 0.0

]
CE 1.031 ∞

[
−1.6 −1.5 +0.0 0.0

]
MN 1.021 ∞

[
−1.7 −1.6 +0.0 0.0

]
DG 1.018 ∞

[
−1.8 −1.7 +0.0 0.0

]
MNDG 0.994 31074

[
−2.3 −2.1 +0.0 0.0

]
OPT 0.965 3019

[
−2.6 −2.0 −2.1 2.9

]

VI. CONCLUSIONS

We developed a general framework and effective solution
algorithm for performing optimal control synthesis for linear
quadratic games with stochastic parameters. We envision this
framework being applied by practitioners in the following two
broad use-cases:

1) Enhancing stability robustness of a deterministic linear
system with unknown parameters to both structured and
unstructured model errors.

2) Enhancing ms-stability robustness of linear systems with
stochastic parameters to unstructured model errors.

Future work will go towards proving finite-sample conver-
gence results for the model-free approximate policy iteration,
which was empirically observed here.
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