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Abstract

In this paper, we propose a data-based methodology to solve a multi-period stochastic optimal water flow (OWF) problem
for water distribution networks (WDNs). The framework explicitly considers the pump schedule and water network head
level with limited information of demand forecast errors for an extended period simulation. The objective is to determine
the optimal feedback decisions of network-connected components, such as nominal pump schedules and tank head levels and
reserve policies, which specify device reactions to forecast errors for accommodation of fluctuating water demand. Instead of
assuming the uncertainties across the water network are generated by a prescribed certain distribution, we consider ambiguity
sets of distributions centered at an empirical distribution, which is based directly on a finite training data set. We use a
distance-based ambiguity set with the Wasserstein metric to quantify the distance between the real unknown data-generating
distribution and the empirical distribution. This allows our multi-period OWF framework to trade off system performance
and inherent sampling errors in the training dataset. Case studies on a three-tank water distribution network systematically
illustrate the tradeoff between pump operational cost, risks of constraint violation, and out-of-sample performance.

Key words: optimal water resource management, hydraulic dynamics, flow control, head management, data-driven,
distributionally robust optimization, water distribution networks.

1 Introduction

Due to a broad range of future energy and environmen-
tal issues [24], water distribution network operators are
seeking improved strategies to deliver energy-efficient,
reliable, and high quality service to consumers [29]. How-
ever, the increasing complexity (e.g., due to high dimen-
sionality, nonlinearities, operation constraints and un-
certainties) in municipal water supply network opera-
tion is challenging the current management and control
strategies and may threaten the security of this vital in-
frastructure. Future urban water supply systems will re-
quire more sophisticated methods to function robustly
and efficiently in the presence of this increasing com-
plexity.
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Science Foundation under grant CMMI-1728605 and CMMI-
1728629. (Corresponding author: Tyler H. Summers).
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Summers).

The flexibility of water flow manipulators (pumps and
valves) in water networks has been utilized to optimize
various objectives, including production and transporta-
tion costs, water quality, safe storage, smoothness of
control actions, etc. [15,11,22,46,38,9,27,47,40,39]. How-
ever, most optimal water flow control methods use de-
terministic point forecasts of exogenous water demands,
which neglects their inherent stochasticity. In practice,
the variation of water demands in real water distribution
networks is high and difficult to predict [16]. Further, as
complexity of network topology increases [3], small per-
turbations can cause significant performance decrease
and even infeasibility of optimal water flow problems
[16].

Recent research on optimal water network operation
has been shifting from deterministic to stochastic mod-
els, since uncertainties (e.g., human usage, unexpected
component failures, climate change) are increasingly
key factors in many sectors of water resource manage-
ment [3,6,16,43,34,18,29,17,42,8,35,41]. Most stochastic
formulations assume that the uncertain water demands
follow a prescribed distribution (e.g., Gaussian [42,17]),
or enforce constraint for all possible water demand re-
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alization by assuming only knowledge of bounds on un-
certainties [16,8], and then utilize robust optimization.
In addition, sampling-based stochastic optimization has
also been applied to water flow manipulation problem
[34] to quantify the probability of constraint violation
based on an assumed data generating mechanism. How-
ever, the underlying assumptions in these approaches
can be too strong or overly conservative, which can lead
to underestimation or overestimation of the actual risks,
and therefore to ineffective operation. The methods
based on chance-constraints effectively only measure
the frequency of constraint violations not the severity,
which can underestimate risk. The robust methods can
enforce constraints for extreme and highly unlikely un-
certainty realizations, effectively overestimating risk.
Furthermore, some sampling-based methods are com-
putational intensive due to their requirement of a large
numbers of samples. In practice, forecasts of water de-
mand are never perfect, and their distributions must be
estimated from finite data.

In this paper, we investigate a multi-period data-driven
optimization problem to tackle a stochastic optimal wa-
ter flow (OWF) problem for optimal pump schedule
and head management in water distribution networks
(WDNs). The proposed framework uses the limited in-
formation of water demand forecasting errors from a fi-
nite training dataset to explicitly balance the tradeoffs
between performance and the risk of constraint viola-
tions in the presence of large water demand variations.
A preliminary version of this work present in [20]; here
we significantly extend the work in several directions.
The main contributions are:

1) We formulate a general multi-period distributionally
robust optimal water flow problem for optimal pump
schedule and head management. The distributionally
robust OWF model predictive controller uses data-
driven distributionally robust optimization [14] to
tractably obtain control decisions for network com-
ponents at each stage. This allows the data-driven
distributionally robust MPC OWF controller to up-
date the water demand forecast with a finite time
horizon and then re-compute the real-time optimal
decision based on the latest and future forecasting
information. In general, this OWF controller accepts
the training data set from all forecasting frameworks
and the decisions can be robust to various ambigu-
ity sets (i.e., moment-based or metric-based). In this
paper, we assume the unknown real data generating
distribution is located in a metric-based ambiguity
set, which is constructed by a Wasserstein ball with
constant radius centered at an empirical distribution
supported by the finite training dataset. In contrast
to other stochastic OWF formulations, this approach
makes the resulting control policies explicitly robust
to the inherent sampling errors in the training dataset,
which leads to superior out-of-sample performance.
We can appropriately parameterize the ambiguity

set to avoid the overly conservative decisions due to
overfitting and finite sampling.

2) To handle computationally difficulties with the non-
linear/nonconvex water network hydraulics, we lever-
age a pertinent linear approximation of water net-
work hydraulic coupling (i.e., flow-head coupling) to
promote a computationally-efficient stochastic opti-
mal water flow formulation for optimal pump control
and nodal pressure management. In contrast with the
literature, we further establish a generic matrix lin-
earization in compact format between water flow and
nodal head by re-defining a network Laplacian ma-
trix based on linearization coefficients. This provides
a unified framework that is applicable for approxima-
tion algorithms after linearization (i.e., successive lin-
earization algorithms or piece-wise linearization algo-
rithms). We empirically observe that the convergence
of successive linearization algorithm provides an ex-
cellent approximation to the nonlinear water flow.

3) The effectiveness and flexibility of our proposed
stochastic water flow formulation are demonstrated
on a model of the Barcelona water distribution net-
work. We illustrate the inherent tradeoff between the
system conservativeness and forecasting errors. The
results can help the operators to explicitly prioritize
the tradeoff between the pump operational efficiency
and the risk of tank head constraint violation, and
then develop the appropriate control strategies to
balance their our objectives and risk aversion.

The rest of paper is organized as follows: Section 2 de-
scribes a generic model of water distribution networks,
and the successive linearization approach; Section 3
presents the general formulation of proposed data-based
multi-period distributionally robust stochastic optimal
water flow problems. Section 4 specifies the proposed
stochastic OWF to a stochastic optimal pump schedule
and head management. Section 5 demonstrates the flex-
ibility and effectiveness of the proposed methodologies
via numerical experiments. Section 6 concludes.
Notation: The inner product of two vectors a, b ∈ Rm

is denoted by 〈a, b〉 := aᵀb, and (·)ᵀ denotes the trans-
pose of a vector or matrix. The Ns-fold product of
distribution P on a set Ξ is denoted by PNs , which rep-
resents a distribution on the Cartesian product space
ΞNs = Ξ× . . .× Ξ. We use Ns to represent the number
of samples inside the training dataset Ξ̂. Superscript “ ·̂
” is reserved for the objects that depend on a training
dataset Ξ̂Ns . The cardinality of set J is denoted by |J |.
The Kronecker product operator is defined as ⊗.

2 Hydraulic Model and Leveraging Linear Ap-
proximation

In this section, we consider a water distribution net-
work model associated with active and passive net-
worked components, and then we leverage a pertinent
linear approximation, which leads to a novel network
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Laplacian-based matrix expression. This allows us to
use successive linearization to approximate the original
nonlinear hydraulic relationship for several topologies.
WDNs control actions include speeds of pumps and
settings of valves. In the rest of this section, we intro-
duce the network and hydraulic modelling of networked
components.

2.1 Network Modelling

We consider a water distribution network as a directed
graph G(N , E) with a set N := {1, 2, . . . , N} of vertices.
These vertices include junctions, reservoirs, and tanks
that are collected in setsJ , S, and T , andN = J∪S∪T .
Similarly, the set E ⊆ N × N of all links including the
sets of pipes, pumps, and valves represented by I, M,
and V so that E = I ∪M∪V. Let N in

i and N out
i collect

the supplying and carrying neighboring vertices of ith

node , respectively. We use qij ∈ R to denote the water
flow through the link (i, j) ∈ E , and hi ∈ R+ denotes
the head of node i ∈ N . We assume each pipe has the
prescribed flow direction and the actual flow direction
on pipes are either following the assumption (qij ≥ 0)
or appearing in the opposite direction (qij < 0).

2.1.1 Junctions

The water demand is assumed to be a constant di(t)
in gallons per hour (GPM), which is applied for time
interval t at junction i ∈ J . Mass conservation must be
hold any time at ith node∑

j∈N in
i

qji(t)−
∑

j∈N out
i

qij(t) = di(t), ∀i ∈ J , (1)

where N in
i and N out

i are the sets of nodes supplying
and carrying flow at ith junction, respectively. If there
is no water demand consumption for nodes i ∈ N\Nd,
we have di(t) = 0 for all time slots. Here we define an
aggregated vector d(t) := [d1(t), . . . , dN (t)]ᵀ ∈ RN .

2.1.2 Reservoirs

The set S collects all reservoirs in a water distribution
network. We assume that all reservoirs have infinite wa-
ter resource supply, and that the head of each reservoir
is a constant, which can be treated as an operational
constraint

hR
i = helv

i , ∀i ∈ S,
where helv

i represents the elevation for ith reservoir.

2.1.3 Tanks

The head of tank at node i ∈ T at time t is represented
by hTK

i (t). The dynamics of these elements are given by

the discrete-time difference equations

hTK
i (t+1) = hTK

i (t)+
∆t

ATK
i

 ∑
j∈N in

i

qji(t)−
∑

j∈N out
i

qij(t)

 ,

(2)
where ∆t is the duration of the time interval (t, t + 1].
The cross-section area of tank is defined by ATK

i .

2.1.4 Pumps

The pumps provide head gain in the water distribution
networks on the links (i, j) ∈M connecting the suction
jth node and the delivery ith node. The head gain ex-
plicitly depends on the pump flow and pump property.
Now we consider the variable speed pump (VSP) in the
network, and the head gain is given by

hM
ij (t) = hi(t)−hj(t) = αijq

M
ij (t)2 +βijq

M
ij (t)+γij , (3)

where coefficients αij , βij , and γij are determined by the
pump operation curve.

2.1.5 Pipes

The head loss of of pipe (i, j) ∈ I described via the
empirical Chezy-Manning (C-M) is given as follows

hP
ij = hi(t)− hj(t) = RCM,ijq

P
ij(t)

2, (4)

where the resistance coefficient is denoted by RCM,ij ∈
R++ and defined by [33]

RCM,ij = 4.66
LCM,ijC

2
CM

D5.33
CM,ij

.

Note that CCM ∈ R++ is the Manning roughness coeffi-
cient; DCM,ij ∈ R++ is the diameter of pipeline in feet;
and LCM,ij ∈ R++ is the length of pipeline in feet.

2.1.6 Pressure Reduce Valves

There are several types of controllable valves in a wa-
ter distribution network, such as pressure reduce valves
(PRVs), general purpose valves (GPVs) and flow con-
trol valves (FCVs), associated with different control vari-
ables: valve openness, pressure reduction, and flow reg-
ulation. Here, we utilize PRVs to restrict the pressure to
a certain difference φij ∈ R+, (i, j) ∈ V along a pipeline
when the upstream pressure at ith node is higher than
the downstream jth node

φij(t) = hi(t)− hj(t), (5)

where hi(t) the head of upstream junction and hj(t) is
the head of downstream junction, and the variable φij
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determines the energy conservation on pipeline (i, j).
Note that no reverse flow on PRVs is allowed, and the
water flow through PRVs, qij , (i, j) ∈ V, is not deter-
mined by (5), thereby depends on other network cou-
pling constraints (1). The implementation of valve con-
trol actions depends on valve construction. We refer in-
terested readers to [15,36,31,1,37] for more details. The
deployment of PRVs in water distribution networks can
promote the potential control availability. Here, we uti-
lize a “smart” PRV, whose pressure reduce setting can
be optimized in the real time.

2.1.7 Network Operational Constraints

We specify several constraints on network states and in-
puts in our proposed stochastic OWF problem to satisfy
the physical operation limitation of water distribution
networks (i.e., limits of nodal heads, pipe flows and tank
levels)

hmin
i ≤ hi(t) ≤ hmax

i , ∀i ∈ N ,

qmin
ij ≤ qij(t) ≤ qmax

ij , ∀(i, j) ∈ E ,

where hmin
i and hmax

i are the lower and upper heads on
ith node and qmin

ij and qmax
ij are minimum and maximum

flows on link (i, j). We introduce a binary parameter
zij(t) for link (i, j) to indicate the ON/OFF status of
the controllable devices (i.e., pumps, valves). Then the
head coupling between two neighboring nodes can be
modelled as follows

−M (1− zij(t))
≤ hij(t)− g(qij(t), φij(t)) ≤M (1− zij(t)) ,

(7)
where hij(t) := hi(t)−hj(t), g(·) is a general expression
of (3), (4), and (5) as functions of qij and φij , and M
is a large positive constant. Note that when zij(t) = 1,
the device on link (i, j) is ON (i.e., qij(t) 6= 0), then the
energy conservation constraints (3), (4), and (5) hold
on this link; otherwise zij(t) = 0, and the head at ith

node and jth node are decoupled. For the links without
a controllable device (e.g., pipes), we let zij(t) = 1 for
all time intervals.

Table 1
Variable Notations

Notation Description

hi Head at node i

hTK
i /hRi Head at tank/reservoir i

hPij/φij
Head loss on the pipe/valve from

node i to node j

hMij
Head gain on the pump from

node i to node j

qij
Flow through on the link from

node i to node j

qMij /qPij/q
V
ij

Flow through on pump/pipe/valve from

node i to node j

2.2 Leveraging Linear Approximation of Hydraulic
Coupling

The nonlinear energy conservation (7) renders the wa-
ter flow formulation nonconvex. This hinders the devel-
opment of a computationally efficient stochastic opti-
mal water flow problem where distributionally robust
optimization and risk measures can be utilized to bal-
ance system performance and robustness. To that end,
we provide a Laplacian-based linearization that utilizes
the successive linearization algorithm to enable a highly
accurate approximation of the original nonlinear energy
conservation (7).

The energy conservation (3), (4) and (5) can be con-
cluded in a compact matrix form

Bfh(t) = qᵀ(t)Nq(t) + Pq(t) + q0, (8)

where h(t) := [h1(t), . . . , hN (t)]ᵀ ∈ RN and q(t) :=
{qij(t)|(i, j) ∈ I ∪ M} ∪ {φij(t)|(i, j) ∈ V} ∈ R|E|

collect network states, e.g., head, flow, and valve set-
tings. The constant matrices/vector N ∈ R|E|×|E|, P ∈
R|E|×|E|, and q0 ∈ R|E| explicitly depend on the prop-
erty of pipelines, pump, and valves. The incident matrix
of graph G is denoted by Bf ∈ R|E|×|N |, having entries

Bf (n, i)

=


1 if flow in nth link is away from ith node

−1 if flow in nth link is towards ith node

0 if flow in nth link is not incident on ith node

.

(9)

The nonlinearities in (8) make the OWF problem non-
convex and computationally challenging. Therefore, in
the rest of this subsection, we will seek to linearize (8) in-
stead. We express the flow as q = q̄+∆q, where q̄ ∈ R|E|

is the nominal water flow vector, and ∆q ∈ R|E| cap-
tures disturbances around the nominal values. To lighten
notation we omit the time index in the discussion of lin-
earization in this section. Substituting q = q̄ + ∆q into
(8), we have

Bfh = (q̄ + ∆q)
ᵀ

N (q̄ + ∆q) + P (q̄ + ∆q) + q0

+ q̄ᵀNq̄ + Pq̄ + (2q̄ᵀN + P) ∆q + ∆qᵀN∆q + q0.

Neglecting second-order terms in ∆q, (8) becomes ap-
proximately

Bfh ≈ q̄ᵀNq̄ + Pq̄ + q0︸ ︷︷ ︸
A

+ (2q̄ᵀN + P)︸ ︷︷ ︸
B

∆q,

where matrices A,B ∈ R|E|×|E|. Now, we turn our atten-
tion to solving for the water flow perturbation vector ∆q.
Decomposing all energy conservation on each pipeline,
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we can write the above linearization in the scalar form

hi − hj = aij + bij∆qij , ∀(i, j) ∈ E ,

where aij and bij denote the elements of A and B, re-
spectively. The water flow perturbation on each link is

∆qij =
1

bij
(hi − hj)−

1

bij
aij , ∀(i, j) ∈ E .

The sum of water perturbation carrying away from ith

node is defined as ∆Qi ∈ R around the nominal opera-
tion point q̄ given by

∆Qi =
∑
j

[
1

bij
(hi − hj)

]
−
∑
j

[
aij
bij

]
︸ ︷︷ ︸

Q̄i

, ∀i ∈ N . (10)

Note that the first term in (10) can be expressed using
the network Laplacian matrix L ∈ RN×N defined by the
edge weights 1

bij
. The second term in (10) is the nominal

carrying flow Q̄i ∈ R at ith node. Then the linear energy
conservation of water distribution network in compact
form is

Lh = ∆Q + Q̄,

where the network’s Laplacian matrix L has elements

Lij =


∑
l∼i

1
bil

if i = j

− 1
bij

(i, j) ∈ E
0 (i, j) /∈ E

.

We define two vectors as ∆Q := [∆Q1, . . . ,∆QN ]ᵀ and
Q̄ := [{Q̄i ∈ R|Q̄i =

∑
j
aij
bij
}. Given the incidence ma-

trix defined in (9), the following energy conservation con-
straint holds as a function of water flow perturbations

Lh = Bᵀ
f∆q + Q̄, (11)

where the Laplacian-based compact form maps the wa-
ter flow disturbance ∆q to the network head h around
the linearized point of nodal water carrying Q̄.

2.3 Verifying Feasibility of Laplacian Approximation

To validate the effectiveness and feasibility of the pro-
posed Laplacian approximation, we solve a water flow
feasibility problem

WFP-0: min
h,∆q

0

subject to (1) and (11).
(12)

by utilizing successive linearization algorithm, and
compare the solutions to the water flow results from

EPANET [33] modelled via the nonlinear energy conser-
vation constraints (8). The overall successive lineariza-
tion process is presented in Algorithm 1.

We empirically observe that the successive linearization
algorithm for WDN in Algorithm 1 provides a nearly ex-
act approximation of the nonlinear hydraulic dynamics
(q,h) and flow directions if the following assumptions
holds

Assumption 1 The water distribution network G is a
pure tree.

Assumption 2 Pumps and valves are all active, i.e.,
zij = 1,∀(i, j) ∈M∪ V.

The main purpose of this paper is to seek the optimal
pump schedules satisfied the network constraints (e.g.,
flows and head limits) under network uncertainties. The
proposed stochastic OWF formulation is designed for
the real-time optimal control, which is based on the pre-
determined operation status of all active devices, i.e.,
zij is not an optimization variable in (7). Additionally,
we assume the network topology is a pure tree. This
ensures that the successive linearization algorithm con-
verges (12) to a nonlinear feasible point and gives the
correct directions of water flows.

Algorithm 1 Successive Linearization Algorithm for
Water Distribution Networks

Input:.EPANET Network Information .inp source
file 1 , demand d, incidence matrix Bf

Output: System operating points h∗ and q∗

1: Initialize: n = 0, initial nominal water flow q̄0 and
Linearization error Err > δ

2: while Err > δ do
3: Calculate Laplacian Ln and flow carrying vector
Q̄n for nth iteration

4: Solve WFP-0 for ∆q∗n and h∗n from (12)
5: Compute the linearization error, Err = ‖∆q∗n‖22
6: Update nominal water flow points q̄n+1 = q̄n +

∆q∗n
7: n = n+ 1
8: end while
9: return solutions q∗ = q̄n+1, h∗ = hn

Remark 3 (Hydraulic-Network Simplification). Our
proposed framework focuses on optimal operation for
water distribution networks instead of hydraulic design
and analysis. Therefore, we assume all networks are
pure trees, where the proposed linearization approach
is highly effective. Many networks can be simplified or
approximated as a pure tree network using various tech-
niques, which facilitates a higher-level interpretation of
the main network structure [30,2].

1 The EPANET network information source file contains
the topology of water networks and the properties of the
hydraulic components (e.g., pipes, pump, tank and etc..).
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Remark 4 (Successive Linearization Initialization).
The initial nominal water flow q0 is an input of suc-
cessive linearization algorithm for WDNs. We suggest
here a possible q0 for various components (e.g., pumps
and pipes) to initialize Algorithm 1 for improved con-
vergence. For all pipes I in WDNs, the initial water
flow is corresponding to the flow speed 1 CFS [33]. The
actual input initial water flow is adjusted based on the
properties of individual pipeline (i.e., length and diam-
eter). The initial linearized water flow point of pumps
will come from the pump efficiency curve [38]

Eij = e1
ijq

2
ij + e2

ijqij + e3
ij , ∀(i, j) ∈M.

The successive linearization of pumps starts from the
most efficient point as

∂Eij
∂qij

= 2e1
ijqij + e2

ij = 0, q̄ij =
e2
ij

2e1
ij

, ∀(i, j) ∈M.

Empirical speaking, starting points satisfying the physical
constraints often lead to a feasible solution.

3 Data-based Multi-period Stochastic Optimal
Water Flow

In this section, we formulate a stochastic OWF problem
as a distributionally robust stochastic optimal control
problem. We first pose the problem generically to high-
light the overall approach, and in subsequent sections we
incorporate the linearization of hydraulic modelling in
Section 2 for a tractable and computationally-efficient
stochastic OWF. This framework is more general than
most stochastic OWF in the literature, which typically
focus only on individual or single-stage optimization
problems, or has a less sophisticated approach for ex-
plicitly incorporating uncertainties. Consider a multi-
period data-driven distributionally robust optimization
problem

inf
π∈Π

sup
P∈P

EP
T∑
t=0

ht(xt, ut, ξt) (13a)

subject to xt+1 = ft(xt, ut, ξt) (13b)

ut = π(x0, . . . , xt, ξt,Dt) (13c)

(xt, ut) ∈ Xt (13d)

where xt ∈ Rn represent the state vector at time t that
includes the internal states of all elements (i.e., valves,
tanks and pipes). Let ut ∈ Rm denote a control in-
put vector that includes inputs for all controllable com-
ponents (e.g., pump output and valve settings). The
ξt ∈ RNξ denote random vectors in a probability space
(Ω,F ,Pt) which includes forecast errors of all uncertain-
ties in the network.

The goal of (13) is to find a optimal feedback policy
that minimizes the expected value of the system objec-
tive function ht : Rn ×Rm ×RNξ → R robust to the
worst-case distribution in the forecast error ambiguity
set P. We consider a setting where the objective func-
tion ht includes both operating costs and risks of vi-
olating various network and device constraints and is
assumed to be continuous and convex as functions of
(xt, ut) for any fixed ξt. The system dynamics function
ft : Rn × Rm × RNξ → Rn models internal dynam-
ics of all network-connected components, such as water
storage tanks. The general feasible set Xt includes other
network and device constraints, such as mass balance,
energy conservation, operational bounds on nodal heads
and pipe flows (some constraints may be modeled deter-
ministically with respect to mean values and others may
be included as risk terms in the objective function).

Since the real distributions of forecast errors are never
known in practice, we explicitly account for uncertainty
in their distributions themselves by assuming that the
real but unknown distribution Pt belongs to an ambi-
guity set Pt of distributions which will be constructed
from a forecast sampling dataset.We collect the forecast
error over an operating horizon t as ξt := [ξᵀ1 , . . . , ξ

ᵀ
t ]ᵀ ∈

RNξt, which has joint distribution P and corresponding
ambiguity set P.

In this multi-period stochastic OWF, we are seeking a
series of closed-loop feedback policies in the form ut =
π(x0, . . . , xt, ξ0:t,Dt) explicitly considering forecast er-
rors describing historical patterns, where the term Dt
indicates all network component model information and
the parameterization of the ambiguity set of the forecast
error distribution. This framework allows for design of
not only for current nominal reaction, but also reactions
to future uncertainty realizations. The policy function π
maps all available information to control actions and is
an element of a set Π of measurable functions.

3.1 Ambiguity Sets based on Wasserstein Metric

One of the main challenges for solving (13) is how to
utilize our available information of uncertainties to
appropriately realize the distributions for a tractable
problem reformulation. There is a variety of ways to
reformulate the general stochastic OWF problem (13)
to obtain tractable subproblems that can be solved by
standard convex optimization solvers. These include
assuming specific functional forms for the forecast error
distribution (e.g., Gaussian)[34] and using specific con-
straint risk functions, such as those encoding value at
risk (i.e., chance constraints)[17,19], conditional value
at risk (CVaR) [20], distributional robustness[20], and
support robustness[16]. In all cases, the out-of-sample
performance of the resulting decisions in operational
practice ultimately relies on 1) the quality of data
describing the forecast errors and 2) the validity of as-
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sumptions made about probability distributions. Many
existing approaches make either too strong or too weak
assumptions that possible lead to underestimation or
overestimation of risk.

In this paper, we utilize a recently proposed tractable
method [14] in a multi-period data-based stochastic
OWF, in which the ambiguity set is based on a finite
forecast error training dataset Ξ̂Ns via Wasserstein
balls. Comparing with others existing ambiguity sets
[25,44,4,45,21,13], Wasserstein balls offer the power-
ful out-of-sample performance and provide the water
distribution network operators to control the conserva-
tiveness of the decisions, which promote the flexibility
of water distribution network from a practical per-
spective. We optimize an expected objective over the
worst-case distribution in the ambiguity set P, which
can be formulated as a finite-dimensional convex pro-
gram. The decisions from this stochastic OWF provide
an upper confidence bound under forecast errors real-
ization, quantified by the size of the ambiguity set (i.e.,
Wasserstein radius [14]).

The Wasserstein metric defines a distance in the space
M(Ξ) of all probability distributions Q supported on a
set Ξ with EQ[‖ξ‖] =

∫
Ξ
‖ξ‖Q(dξ) <∞.

Definition 5 (Wasserstein Metric [23]) Given all
distributions Q1,Q2 supported on Ξ, the Wasserstein
metric dW :M(Ξ)×M(Ξ)→ R+ is defined as

dW (Q1,Q2) :=

∫
Ξ

‖ξ1 − ξ2‖Θ(dξ1, dξ2),

where Θ represent a joint distribution of ξ1 and ξ2 with
marginals Q1 and Q2, respectively, and ‖ · ‖ indicates an
arbitrary norm on RNξ .

The Wasserstein metric quantifies the “transportation
costs” to move mass from one distribution to another.
The Wasserstein ambiguity set is defined by

P̂Ns :=

{
Q ∈M(Ξ) : dW (P̂Ns ,Q) ≤ ε

}
. (14)

This ambiguity set P̂Ns constructs a ball with radius ε in
Wasserstein distance around the empirical distribution
P̂Ns on the training dataset. The radius ε can be chosen
so that the ball contains the true distribution P with
a prescribed confidence level and leads to performance
guarantees [14]. The radius ε also explicitly controls the
conservativeness of the resulting decision. Large ε would
produce decisions that rely less on the specific features
of the uniform empirical distribution supported by the
training dataset Ξ̂Ns and improve robustness to inherent
sampling errors. We will discuss the use of this conser-
vativeness index for our stochastic OWF problem.

3.2 Data-based Distributionally Robust Model Predic-
tive Control of Optimal Water Flow

The goal of our data-based distributionally robust
stochastic OWF framework is to interpret and demon-
strate inherent tradeoffs between efficiency and risk
of constraint violations. Accordingly, the objective
function comprises a weighted sum of an operational
cost function and a constraint violation risk function:
ht = J tCost + ρJ tRisk, where ρ ∈ R+ is a weight that
quantifies the network operator’s risk aversion. The op-
erational cost function is assumed to be linear or convex
quadratic. The cost functions will be discussed in detail
in Section 4.

The constraint violation risk function JRisk comprises
a sum of the conditional value-at-risk (CVaR) [32] of a
set of N` network and device constraint functions. The
conditional value-at-risk is a well known and coherent
risk measurement in finance [32]. Here we introduce the
CVaR risk metric to solve a MPC-based OWF engineer-
ing problem, due to the large variation of water demand
uncertainties. Minimizing the CVaR of constraint viola-
tion limits both the frequency and expected severity of
constraints. Specifically, we have

J tRisk :=

N∑̀
i=1

CVaRβ
P[`i(xt, ut, ξt)],

where β ∈ (0, 1] refers to the confidence level of CVaR
under the distribution P of random variable ξt. Intu-
itively, the constraint violation risk function JRisk could
be understood as the sum of networks and devices con-
straint violation magnitude at risk level β. The details
of CVaR constraint convex reformulation are shown in
the next Section.

The general problem (13) will be approached with a
distributionally robust model predictive control (MPC)
algorithm. MPC is a feedback control technique that
solves a sequence of open-loop optimization problems
over a planning horizon Ht (which in general may be
smaller than the overall horizon T ). At each time t, we
solve the distributionally robust optimization problem
over a set Πaffine of affine feedback policies using the
Wasserstein ambiguity set (14)
Distributionally Robust MPC for Stochastic
OWF:

inf
π∈Πaffine

sup
P∈P̂Ns

EP
t+Ht∑
τ=t

JτCost + ρJτRisk (15a)

subject to xτ+1 = fτ (xτ , uτ , ξτ ) (15b)

uτ = π(x0, . . . , xτ , ξτ ,Dτ ) (15c)

(xτ , uτ ) ∈ Xτ . (15d)

Only the immediate control decisions for time t are im-
plemented on the controllable device inputs. Then time
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shifts forward one step, new forecast errors and states
are realized, the optimization problem (15) is re-solved
at time t+ 1, and the process repeats. This approach al-
lows any forecasting methodology to be utilized to pre-
dict uncertainties over the planning horizon. Further-
more, the forecast error dataset P̂Ns , which defines the
center of the ambiguity set P̂Ns , can be updated online
as more forecast error data is obtained. It is also possi-
ble to remove outdated data online to account for time-
varying distributions.

In the rest of the paper, we will use the specific model
of water distribution networks discussed in Section 2,
where the subproblems (15) have exact tractable convex
reformulations as quadratic programs [14] and can be
solved to global optimality with standard solvers.

4 Chance-constraints and Distributionally Ro-
bustness Formulation

Following our proposed formulation above, we begin
this section by introducing the state space expression
of WDN hydraulic dynamics, briefly discuss chance
constraints, and describe a convex reformulations of
the stochastic optimal water flow problem based on
conditional value-at-risk and distributionally robust
optimization.

4.1 Network Dynamics in State-Space Format

The WDN model discussed in the previous section can
be summarized in a difference algebraic equation (DAE)
model

x(t+ 1) = Āx(t) + B̄uu(t) + B̄vv(t), (16a)

d(t) = Ēuu(t) + Ēvv(t), (16b)

F̄xx(t) + F̄ll(t) = F̄uu(t) + F̄vv
P(t) + F̄φφ(t) + F̄0,

(16c)

where the decision variables {x, u, l, v, vP, φ} are de-
fined in Table 2 and the constant matrices {A,B,E, F}
are derived from the hydraulic dynamics in Section 2.
We detail these constants in term of the Laplacian-
based hydraulic model (11) in the Appendix. The
dynamics of tank head (2) is given in (16a), and
the mass balance (1) and linearized energy conser-
vation (11) are summarized in (16b) and (16c), re-
spectively. For compact notation, we concatenate
the states, inputs and demands over the planning
horizon as xt = [x(1)ᵀ, . . . , x(t)ᵀ]ᵀ ∈ RnTKt, ut =
[u(0)ᵀ, . . . , u(t−1)ᵀ]ᵀ ∈ Rnut, vt = [v(1)ᵀ, . . . , v(t)ᵀ]ᵀ ∈
Rnvt, vP

t = [vP(1)ᵀ, . . . , vP(t)ᵀ]ᵀ ∈ Rnpt, lt =
[l(1)ᵀ, . . . , l(t)ᵀ]ᵀ ∈ Rnlt, φt = [φ(1)ᵀ, . . . , φ(t)ᵀ]ᵀ ∈

Rnφt and dt = [d(0)ᵀ, . . . , d(t− 1)ᵀ]ᵀ ∈ RNt, yielding

xt = Ax0 +Buut +Bvvt,

dt = Euut + Evvt,

Fxxt + Fllt = Fuut + Fvv
P
t + Fφφt + F0,

where It indicates a t-dimensional identity matrix

Eu = It ⊗ Ēu, Ev = It ⊗ Ēv, Fx = It ⊗ F̄x,
Fl = It ⊗ F̄l, Fu = It ⊗ Ēu, Fv = It ⊗ F̄v,
Fφ = It ⊗ F̄φ, F0 = It ⊗ F̄0,

A =


Ā

Ā2

...

Āt

 , Bd =


B̄u 0 · · · 0

ĀB̄u B̄u
. . . 0

...
. . .

. . .
...

Āt−1B̄u · · · ĀB̄u B̄u

 ,

Bv =


B̄ 0 · · · 0

ĀB̄v B̄v
. . . 0

...
. . .

. . .
...

Āt−1B̄v · · · ĀB̄v B̄v

 .

Table 2
Variable Description in DAE Model

N* Description Dimension

x a vector collecting heads at tanks nTK = |T |

l
a vector collecting heads

at junctions & reservoirs
nl = |J | + |S|

u a vector collecting flow at pumps nu = |M|

v
a vector collecting flows

through pipes & valves
nv = |I| + |V|

vP a vector collecting flows through pipe np = |I|
φ a vector collecting head loss on PRVs nφ = |V|
N* indicates a abbreviation of Notation.

4.2 Cost Functions and Constraints

Multiple objective functions can be included in the
stochastic optimal water flow problem

J t1 = u(t)ᵀHu(t)u(t) + fᵀu (t)u(t) + f0, (18a)

J t2 = ∆u(t)ᵀ∆u(t), (18b)

J t3 =
(
x(t)− V safe

)ᵀ (
x(t)− V safe

)
, (18c)

where (18a) captures the pump operational cost based
on time-varying electricity tariffs. The matrix Hu is pos-
itive semi-definite. The control input variation between
consecutive time slots (e.g., ∆u(t) := u(t) − u(t − 1))
can be also penalized in (18b) to avoid large transient in
pipes, and to satisfy treatment requirements. Addition-
ally, tank management requires a safety head level V safe

to account for unexpected demand given in (18c).
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The system constraints are introduced due to the phys-
ical nature of the decision variables (i.e, x and u). We
seek to enforce state and input constraints

umin ≤ ut ≤ umax, (19a)

xmin ≤ xt ≤ xmax. (19b)

where (19a) corresponds to actuator limits (e.g., pumps
and valves) and (19b) captures bounds on pipe flows,
nodal heads and tank levels. Here, xmin and xmax de-
note the minimum and maximum admissible bounds of
states. The lower and upper physical limits of actuators
are umin and umax, respectively. In general, these con-
straints can not be violated strictly due to the mass con-
servation principles and physical restriction of compo-
nents. For the rest of this paper, we assume that these
hard bounds can be “softened” to non-physical upper
and lower bounds from a pre-specified safe operation
zone, which can be violated probabilistically but results
in safety or operational risk [19].

4.3 Multi-Period Stochastic Optimal Water Flow

In a deterministic optimal water flow control problem,
water demand uncertainty is not explicitly considered.
Since actual water demands can exhibit large variations
and unpredictability [6], we model demand stochasti-
cally as dt = d̄t+ξt, with a nominal predicted value d̄ ∈
RNt and a zero-mean forecast error ξt = [ξᵀ1 , . . . , ξ

ᵀ
t ]ᵀ ∈

RNt from a probability space (Ω,F ,Pξ). The distribu-
tion captures spatiotemporal variations and dependen-
cies among the demands.

To explicitly account for this stochasticity of water de-
mands, we formulate the following general stochastic op-
timal water flow problem to find an optimal strategy
for responding to forecast errors via an optimal con-
trol policy for the flow actuators ut = πt(ξt), where
πt : RNt → Rnut is a function from a set Πc of causal
policies. Specifically, we consider a multi-period optimal
water flow problem with finite time horizon T

inf
πT∈Πc

T∑
τ=1

EPξ
[
Jτ (xτ , πτ (ξτ ), ξτ

]
, (20a)

subject to dT = EuπT (ξT ) + EvvT , (20b)

xT = Ax0 +BuπT (ξT ) +BvvT , (20c)

FxxT + FllT = FuuT + Fvv
P
T + FφφT + F0,

(20d)

R
(
umin − πT (ξT )

)
≤ 0, (20e)

R
(
πT (ξT )− umax

)
≤ 0, (20f)

R
(
xmin − xT

)
≤ 0, (20g)

R
(
xT − xmax

)
≤ 0, (20h)

where R donates risk measure, which maps a random
variable to a real number and will be described in more

detail shortly. Note that this transformation can be dif-
ferent in general for each constraint. For constraints that
represent physical limits, we consider tightened non-
physical upper and lower bounds on states and inputs
from a pre-specified safe operation zone, which can be
violated probabilistically but results in safety or opera-
tional risks [19]. Since optimizing over general policies
makes problem (20) infinite dimensional, we optimize
instead over a set of affine control policies

uτ = Dτξτ + eτ , (21)

where eτ ∈ Rnuτ represents a nominal plan for pumps,
and the block lower-triangular matrix Dτ ∈ Rnuτ×Nτ

ensures that the controller is causal. In this case, the in-
put design variables turn to an uncertainty feedback ma-
trix Dτ and nominal input vector eτ . Unlike traditional
state-driven feedback control, the optimal feedback ma-
trix Dτ acts as reserve policies of pumps to respond to
realized water demand variations ξτ .

Substituting the affine control policies into (20), the ob-
jective function (20a) becomes convex quadratic in Dτ

and eτ and depends on the distributional information
of ξτ . Since the policy is affine, the robust equality con-
straint (20b) is equivalent to

EuDT = 1, d̄T = EueT + EvvT . (22)

With affine policies, (20e)-(20h) become

R (DT ξT + eT − umax) ≤ 0, (23a)

R (umin −DT ξT − eT ) ≤ 0, (23b)

R (Ax0 +Bu(DT ξT + eT ) +BvvT − xmax) ≤ 0,
(23c)

R (xmin −Ax0 −Bu(DT ξT + eT )−BvvT ) ≤ 0,
(23d)

We collect all above affine constraints inside the
risk measures (23a)–(23d) into a set V{1:T} of N` =
2T (nTK + nu) constraints, and the expressions inside
the brackets can be written in a general linear form
ai(DT )ᵀξT + bi(eT ), where index i refers to each indi-
vidual constraint in V{1:T}.

4.4 Chance-Constraints

Using a Value-ar Risk measure, the OWF problem can
be posed as a chance-constrained optimization problem

inf
D,e

T∑
τ=1

EPξ [Jτ (xτ ,uτ , ξτ )] ,

subject to Pξ (ai(DT )ᵀξT + bi(eT ) ≤ 0) ≥ 1− β,
EuDT = 1, d̄T = EueT + EvvT ,

FxxT + FllT = FueT + Fvv
P
T + FφφT + F0,

∀i ∈ V{1:T},
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where β ∈ R is the prescribed safety parameter or “risk
budget” for the linear constraint in set V{1:T}. The sub-
script {1 : T} of set V{1:T} indicates the set exclusively
includes the state and input constraints between time
interval [1, T ]. If ξT is normally distributed, then it is
known that the chance constraint can be written as a
second-order cone constraint [12,7]. However, in general
chance constraints only restrict the frequency of con-
straint violations, not the severity. Since the real dis-
tribution is never known in practice, this approach can
lead to underestimation of actual risks and poor out-of-
sample performance. In this paper, we leverage a data-
driven distributionally robust optimization methodol-
ogy to account for both frequency and severity of con-
straint violation via conditional value-at-risk (CVaR)
metric without assuming a particular distribution.

4.5 Stochastic OWF based on Distributionally Ro-
bust Optimization and Conditional Value-at-Risk
(CVaR)

We treat the constraints (23a)–(23d) with a risk mea-
sure derived from distributionally robust optimization
techniques. It is possible to allow some constraints to
be reformulated by other risk measures and optimiza-
tion techniques, such as sample average approximation,
moment-based distributionally robust optimization,
robust optimization and Gaussian-based chance con-
straints. We restrict the model here only for Wasserstein
metric distributionally robust techniques, and leave
potential combinations for the future work.

For simplicity, we consider the risk of each constraint
individually; it is possible to consider risk of joint con-
straint violations, but this is more difficult and we leave it
for future work. Recall each individual affine constraint
between the finite time horizon Ht in the set V{t:t̄} can
be written in a compact form as follows. The [t, t̄] here
refers to the finite time horizon [t, t+Ht].

Cti (Dt, et, ξt) = ai(Dt)
ᵀξt + bi(et), t ∈ [t, t̄],

where Cti (·) is the ith affine constraint in the set V{t,t̄}.
The CVaR with risk level β of the each individual con-
straint in the set V{t,t̄} is

inf
κt
i

Eξt

{
[Cti (Dt, et, ξt)+κti]+−κtiβ

}
≤ 0, t ∈ [t, t̄], (25)

where κti ∈ R is an auxiliary variable [32]. The expres-
sion inside the expectation in (25) can be expressed in
the form with risk level β

Qti = max
k=1,2

[
〈aβik(Dt, et), ξt〉+ bβik(κti)

]
, t ∈ [t, t̄].

This expression is convex in (Dt, et) for each fixed ξt
since it is the maximum of two affine functions. Our risk

objective function is expressed by the distributionally
robust optimization of CVaR

Ĵ tRisk =
t+Ht∑
τ=t

N∑̀
i=1

sup
Qτ∈P̂Nsτ

EQτ max
k=1,2

[
〈aβik(Dτ , eτ ), ξ̂τ 〉+ bβik(κτi )

]
.

The above multi-period distributionally robust opti-
mization can be equivalently reformulated the following
quadratic program, the details of which are described
in [14]. The objective is to minimize a weighted sum of
an operational cost function and the total worst-case
CVaR of the affine constraints in set V{t,t̄} (e.g., nodal
head and tank level).
Data-based Distributionally Robust MPC Stochas-
tic OWF:

inf
Dτ ,eτκ

τ
i

v,vP,x,l,φ

t+Ht∑
τ=t

{
E[ĴτCost] + ρ sup

Qτ∈P̂Nsτ

N∑̀
i=1

EQτ [Qτi ]

}
,

= inf
Dτ ,eτκ

τ
i ,

λτi ,s
τ
io,ς

τ
iko

v,vP,x,l,φ

t+Ht∑
τ=t

{
E[Ĵ tCost] +

N∑̀
i=1

(
λiετ +

1

Ns

Ns∑
o=1

sτio

)}
,

(26a)

subject to[
EuDt̄ − 1

]
[t,t̄]

= 0NHt , (26b)[
Euet̄ + Evvt̄ − d̄t̄

]
[t,t̄]

= 0NHt , (26c)[
Fxxt̄ + Fllt̄ − Fuet̄ − FvvP

t̄ − Fφφt̄ − F0

]
[t,t̄]

= 0NHt ,

(26d)

ρ(〈aβik(Dτ , eτ ), ξ̂oτ 〉+ bβik(κτi ) + 〈ςiko, zτ − Fτ ξ̂
o
τ 〉) ≤ sτio,

(26e)

‖Fᵀ
τ ςiko − ρa

β
ik(Dτ , eτ )‖∞ ≤ λτi , (26f)

ςiko ≥ 0, (26g)

∀o ≤ Ns,∀i ≤ N`, k = 1, 2, τ = t, ..., t+Ht

where ρ ∈ R+ quantifies the water network operators’
risk aversion. This is a quadratic program that explic-

itly uses the training dataset Ξ̂Nsτ = {ξ̂oτ}o≤Ns . The risk
aversion parameter ρ and the Wasserstein radius ετ al-
low us to explicitly balance tradeoffs between efficiency,
risk and sampling errors inherent in Ξ̂Nsτ . The support is
modeled as a polytope Ξτ := {ξτ ∈ RNξτ : Fτξτ ≤ zτ}.
The constraint ςiko > 0 holds since the uncertainty set
is not-empty; on the other hand, in a case with no un-
certainty (i.e, ςiko = 0), the variable λ does not play any

role and sτio = ρ(〈aβik(Dτ , eτ ), ξ̂oτ 〉+ bβik(κτi )).

Remark 6 There are three important tuning parame-
ters in our proposed multi-period data-based stochastic
OWF (26) corresponding to different performance-risk
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Fig. 1. Flowchart of data-based distributionally robust
stochastic OWF.

tradeoffs, which all function in the ways with their unique
interpretation

• The Wasserstein radius ε improves out-of-sample
performance and mitigates the effects of inherent sam-
pling errors, which here is our main focus. The deci-
sions optimize performance under the worst-case dis-
tributions within Wasserstein distance ε of the em-
pirical distribution in probability distribution space. A
larger ε indicates less reliance on the specific train-
ing dataset Ξ̂ that describes the real unknown data-
generating distribution, which results in more conser-
vative decisions. The superior out-of-sample perfor-
mance is achieved by this adjustable Wasserstein met-
ric, as demonstrated in Section 5.

• Risk aversion ρ trades off the operational risk and
the nominal operational efficiency. The proposed
stochastic OWF offers the system operators alterna-
tive strategies to run the water distribution networks
under different risk levels. The decisions under var-
ious ρ achieve various risk levels. Meanwhile, the
out-of-sample performance under fixed risk aversion
is controlled by the adjustable Wasserstein radius.

• CVaR risk level β indicates the risk level of con-
straints (23a)–(23d), which trades off constraint viola-
tion magnitudes with nominal operational efficiency.

We fix the risk level parameter β of CVaR to highlight
the effects of ε and ρ in the next section. It would also be
interesting to explore the additional effects of changing
β; however, we leave this discussion for future work.

Remark 7 (Successive Linearization for Stochastic
OWF (26)). The data-based distributionally robust
stochastic optimal water flow (26) at tth time interval
is solved via successive linearization algorithm discussed
in Section 2. Since all coefficients and affine constraints

{A,B,E, F,aβik.b
β
ik} are derived from Laplacian-based

network format (11), at each successive linearization
iteration for certain time interval, we repeatedly ob-

tain {A,B,E, F,aβik.b
β
ik} in problem (26) based on the

linearized updated {L, Q̄} until the linearized errors con-
verge, and move to the next time period. A flowchart
of proposed data-based distributionally robust stochastic
OWF is demonstrated in Fig. 1.

5 Case Studies

We now demonstrate the effectiveness of the proposed
framework with numerical experiments. We use a net-
works model derived from a portion of the Barcelona
drinking water network [17]. There are 2 reservoirs, 4
water demands, 3 tanks, 2 pumps, 4 valves, and 20 junc-
tions, the physical properties of nodes and links are given
in Tables 3 and 4, respectively. The nominal water de-
mand pattern over 24 hours shown in Fig. 3(a) is derived
from EPANET (a standard software package for analy-
sis of drinking water distribution systems) [33]. Four de-
mands are located at nodes 8, 15, 16, and 17. Realization
of demand forecasting errors are generated by evaluat-
ing the so-called persistence forecast on the EPANET
demand data, which predicts the water demand at the
next time step to be equal to that at the previous time
step. The time-of-use (TOU) electricity price is given in
Fig. 3(b).

We placed three tanks at Node 23, Node 24 and Node
25 to accommodate the water demand uncertainties as-
sociated with the downstream nodes. The lower and up-
per tank level in feet are restricted to hmin

i = 525 and
hmax
i = 530,∀i ∈ T . Due to the inherent variability of

water demands, tank level constraint violations may oc-
cur. Given the forecasting error data of water demand,
the numerical tests are focused on reducing potential
constraint violation via proposed distributionally robust
framework (26), and minimizing the operational cost un-
der certain risk aversion as well. To have a clear and
straightforward presentation, only the lower level con-
straints of three tanks are modelled in distributionally
robust fashion (26e)–(26g). Other constraints are han-
dled via sample average approximation (SAA) [26,5] or
deterministic approach, though it is easy reformulate
other constraints with distributional robustness.

No bound is enforced on water demand forecast errors,
which implies the parameters (i.e., z and F) of polytope
supported set in (26e)–(26f) are set to zero. The varia-
tion of forecast errors increases with the prediction hori-
zon. The number of forecast error samples in the train-
ing data set Ξ̂Nt is Ns = 100. The simulation takes 60
seconds or less to solve DRO OWF with finite horizon
Ht = 4 (hours) using MOSEK Solver [28] via the MAT-
LAB interface with CVX [10] on a laptop with 16GM of
memory and a 2.8GHz Intel Core i7.
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Fig. 2. Barcelona drinking water network includes 25-node,
3 tanks and 2 reservoirs.

Table 3
Node Setting of the Barcelona Water Distribution Network

Node Type

Base

Demand

(GPM)

Node Type

Base

Demand

(GPM)

1 Junction 0 2 Junction 0

3 Junction 0 4 Junction 0

5 Junction 0 6 Junction 0

7 Junction 0 8 Junction 100

9 Junction 0 10 Junction 0

11 Junction 0 12 Junction 0

13 Junction 0 14 Junction 0

15 Junction 100 16 Junction 100

17 Junction 100 18 Junction 0

19 Junction 0 20 Junction 0

21 Reservoir 0 22 Reservoir 0

23 Tank 0 24 Tank 0

25 Tank 0

1 5 10 15 20 24
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0.5

1

1.5

(a) Water Demand Pattern

1 5 10 15 20 24
0

0.2

0.4

0.6

0.8

1

(b) Time-of-Use Price

Fig. 3. Time-varying input profiles including water demand
pattern and TOU electricity price. The actual water con-
sumption at each node depends on the based demand setting
shown in Table 3. The pump cost function is parameterized
in proportional to TOU electricity price.

Fig. 4 visualizes the fundamental tradeoff between the
conservativeness of constraint violation and the water
network operational costs during 24 hour operation un-
der various risk aversion ρ and Wasserstein radius ε. As
we increase the Wasserstein radius ε, the pump cost will
increase as well, but leads to more conservative pumps
schedule and lower risk of tank constraint violation. A
larger ε results in less constraint violation based on the
inherent sampling errors, and in turn guarantee the a

0 0.05 0.1 0.15

1.5

2

2.5
10

7

Fig. 4. Tradeoffs between conservativeness of optimal deci-
sions and pump operational costs under various Wasserstein
radius ε and risk aversion ρ.
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524
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1 5 10 15 20 24
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1 5 10 15 20 24

524
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Fig. 5. Optimal state trajectories of three tanks (i.e., Node
23, Node 24, and Node 25) for varying Wasserstein radii ε.
The dash lines indicate the upper and lower bounds on tank
head. The initial tank level for all three tanks is 525.1 feet.
The risk aversion is set to ρ = 2.8 × 104.

stronger robustness performance, which will ensure good
out-of-sample performance. In addition, with increasing
risk aversion ρ, the CVaR of constraint violation is em-
phasized, which comes to a higher operational costs and
lower constraint violation.

Fig. 5 and Fig. 6 show the water level of tanks hTK
T

and the optimal nominal pump schedule eT over T −
24 hours under varying Wasserstein radius ε. The tank
head trajectories and pump schedule are re-optimized
at each timestep via the closed-loop MPC controller
based on the data-based uncertainty representation (i.e.,
a Wasserstein ball of distributions of water demand fore-
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Table 4
Link Setting of the Barcelona Water Distribution Network (Chezy-Manning)

Link Type
From

Node

To

Node

Pipe

Length

(feet)

Pipe

Diameter

(feet)

Pipe

Rough

-ness

Link Type
From

Node

To

Node

Pipe

Length

(feet)

Pipe

Diamter

(feet)

Pipe

Rough

-ness

1 Pipe 2 3 2000 12 0.03 2 Pipe 3 4 1000 12 0.03

3 Pipe 12 15 3000 12 0.03 4 Pipe 13 16 4000 12 0.03

5 Pipe 14 17 5000 12 0.03 6 Pipe 11 18 1000 12 0.03

7 Pipe 18 5 1000 12 0.03 8 Pipe 23 18 1000 12 0.03

9 Pipe 9 19 1000 12 0.03 10 Pipe 19 10 1000 12 0.03

11 Pipe 24 19 1000 12 0.03 12 Pipe 7 20 1000 12 0.03

13 Pipe 20 3 1000 12 0.03 14 Pipe 20 8 3000 12 0.03

15 Pipe 25 20 1000 6 0.03 16 Pump 21 1 - - -

17 Pump 22 6 - - - 18 PRV 6 7 - - -

19 PRV 1 9 - - - 20 PRV 1 2 - - -

21 PRV 1 11 - - - 22 Pipe 4 12 3000 12 0.03

23 Pipe 5 13 3000 12 0.03 24 Pipe 10 14 3000 12 0.03

1 5 10 15 20 24

200

400

600

1 5 10 15 20 24

200

400

600

Fig. 6. Comparison of optimal pump schedule for various
value of Wasserstein radius ε = 0.04, 0.08, 0.16 under certain
risk aversion ρ = 2.8 × 104.

cast errors). To prevent the tank level decrease lower
then 525 feet, the pumps need to transport more water
to tanks for accommodating the water demand uncer-
tainties. As the results, the pump are more active during
the time-slots with higher electricity costs, which leads
a significant increase of operational costs. This leads to
a safer tank level profiles, as shown in Fig. 5. When ε is
small, the water consumption mostly come from tanks
to maintain an economic operation, which cause the con-
straint violation (e.g., Tank 23 when ε = 0.04). As we
increase ε leading to a more conservative decision, all
pumps sacrifice the operational efficiency and provide
more water to increase the tank level and support the
water demands. The tank lower level constraints are sat-
isfied due to the better robustness to water demand fore-
cast errors.

To demonstrate the effectiveness of the proposed frame-
work (26), we also introduce the EPANET built-in
traditional Rule-based Control (RBC) scheme, which
has been widely employed for various water engineering
problems. The RBC scheme shares the same control
constraints in (26), limits the water heads of three tanks
(i.e., Tanks 23, 24 and 25) within a prescribed safe
range (i.e., [525, 530] ft) via binary ON or OFF status
of pumps (i.e., Pumps 16 and 17). The time step to con-
trol pumps is set to one hour, which implies the pumps
check the water levels of tanks every hour and then
perform control actions. Note that Tanks 23 and 24 can
only be controlled by Pump 16 while Tank 25 can be
managed by Pumps 16 and 17 simultaneously. Note that
the water levels of Tank 23 and Tank 25 possibly direct
Pump 16 to the completely conflict control actions (i.e.,
ON or OFF) if we do not explicitly prioritize these two
tanks. Therefore, we assign the level signal from Tank
23 is the priority for Pump 16 to take control actions if
a conflict happens.

Fig. 7 illustrates the water levels of three tanks based on
the RBC scheme via Monte Carlo simulations. We ran-
domly generate 100 scenarios of water demand forecast
errors, which follow the Gaussian distribution with zero
mean and 20% standard deviation of nominal water de-
mand shown in Fig. 3(a). It readily seen that the RBC
mechanism fails to realize the water demand forecast er-
rors, and can not successfully manage the tank heads
located at a prescribed safe bound. In general, it is very
hard to parameterize the RBC control scheme for low
risk constraint violation guarantee under the large de-
mand variation, which is due to its decentralized control
structure. The benefit of closed-loop multi-period dis-
tributionally robust optimal water flow based on model
predictive control scheme can be clearly seen via the
comparison to the RBC control framework.

In summary, we conclude that our proposed data-based
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distributionally robust OWF framework can explicitly
incorporate water demand uncertainties, and success-
fully control the tradeoff between operational efficiency,
risk of constraint violation and out-of-sample perfor-
mance.

1 5 10 15 20 24

524

526

528

530

532

1 5 10 15 20 24

524

526

528

530

532

1 5 10 15 20 24

522

524

526

528

530

532

Fig. 7. State trajectories of tank head (i.e., Tank 23, Tank
24, and Tank 25) after performing RBC via Monte Carlo
simulation including 100 demand scenarios. The dash lines
indicate the upper and lower bounds on tank head.

6 Conclusion and Outlook

We propose a data-based distributionally stochastic ro-
bust optimal water flow based on limited information
from water demand forecasts. The framework creates
and then leverages a successive linearization of hydraulic
coupling for an efficient computation of multi-period
feedback control policies, which are robust to inherent
sampling errors in the training dataset. We explore the
tractability of proposed multi-period OWF problem via
the Wasserstein-based distributional information of am-
biguity set centered at the empirical distribution. The
effectiveness and flexibility has been demonstrated on a
25-node water distribution network for the optimal wa-
ter pump schedule and tank head management under
water demand uncertainties. The numerical results indi-
cate that our proposed framework has superior out-of-
sample performance then existing control frameworks,
and allows flexible parameterization to systematically
exploit the operating strategies of water pumps to ex-
plicitly tradeoff the operational efficiency and constraint
violations due to large water demand variations.

Future work includes

• exploring the flexibility and feasibility of the proposed
data-based multi-period optimal water flow under
more general network topologies;

• developing a data-based distributionally robust con-
trol framework for optimal water contamination con-
trol;

• including operational status of actuators as control-
lable variables for a distributionally robust stochastic
hybrid MPC OWF framework.

Appendix

Here we provide the constant matrices {A,B,E, F}
shown in (16) in terms of the network coefficients in the
Laplacian-based linearization (11). Recall the tank level
dynamics (16a)

x(t+ 1) = Āx(t) + B̄uu(t) + B̄vv(t),

where Ā is the nTK-dimension identity matrix and the
last two terms on the right side are re-organized in terms
of the network incident matrix Bᵀ

f , the coefficient of

tanks ATK
i and time interval ∆t

[
B̄u B̄v

] [u(t)

v(t)

]
=


∆t
ATK

1

· · · 0

...
. . .

...

0 · · · ∆t
ATK
nTK

 [Bᵀ
f ]{T }

︸ ︷︷ ︸[
B̄u B̄v

]

[
u(t)

v(t)

]
.

The operator [·]{T } selects the ith-row of matrix Bᵀ
f ,

where all node i are collected in the set T . Similarly, for
mass balance d(t) = Ēuu(t) + Ēvv(t) we have

[
Ēu Ēv

] [u(t)

v(t)

]
= Bᵀ

f

[
u(t)

v(t)

]
.

Finally, recall the mass conservation in DAE model (16c)

F̄xx(t) + F̄ll(t) = F̄uu(t) + F̄vv
P(t) + F̄φφ(t) + F0,

and re-write the above equation as follows

[
F̄x F̄l

]︸ ︷︷ ︸
L

[
x(t)

l(t)

]
︸ ︷︷ ︸
h(t)

=
[
F̄u F̄v F̄φ

]︸ ︷︷ ︸
Bᵀ
f

 u(t)

vP(t)

φ(t)


︸ ︷︷ ︸

∆q(t)

+ F0︸︷︷︸
Q̄(t)

.
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