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Abstract—We propose a framework for integrating optimal
power flow (OPF) with state estimation (SE) in-the-loop for
distribution networks. Our approach combines a primal-dual
gradient-based OPF solver with a SE feedback loop based
on a limited set of sensors for system monitoring, instead of
assuming exact knowledge of all states. The estimation algorithm
reduces uncertainty on unmeasured grid states based on a
few appropriate online state measurements and noisy “pseudo-
measurements”. We analyze the convergence of the proposed
algorithm and quantify the statistical estimation errors based
on a weighted least squares (WLS) estimator. The numerical
results on a 4521-node network demonstrate that this approach
can scale to extremely large networks and provide robustness to
both large pseudo measurement variability and inherent sensor
measurement noise.

Index Terms—optimal power flow, state estimation, feedback
control, large-scale networks, voltage regulation, distribution
networks and power systems.

I. INTRODUCTION

The increasing penetration of distributed energy resources
(DERs) has provided more flexibility to better explore the
benefits of advanced smart grid technologies in distribution
networks. As the heterogeneous control strategies of grid-
connected elements dominate distribution networks, many of
the customers will become active and motivated end-users
to optimize their own power usage via optimal power flow
(OPF) methods [1]–[5]. This requires the power system con-
trol scheme to have real-time knowledge about the structure
and state of the distribution network (e.g., operation states,
netload variation, device dynamics, network topology, etc.),
and to provide the corresponding real-time responses (e.g.,
optimal control inputs. set-points of DERs, etc.) for safe and
efficient operation. However, the current distribution network
control paradigm cannot satisfy the above requirement due
to an under-developed information feedback mechanism, and
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high expense of real-time system states measurement. Future
distribution systems will require more sophisticated and tightly
integrated control, optimization, and estimation methods for
these issues.

Most OPF methods for distribution networks in the literature
assume complete availability of network states to implement
various optimal control strategies [6]–[17]. However, in prac-
tice network states must be estimated with a monitoring
system from noisy measurements, which itself is a chal-
lenging problem due to the increasingly complex, extremely
large-scale, and nonlinear time-varying nature of emerging
networks. To solve these issues, the recently proposed OPF
frameworks [18]–[21] leverage measurement feedback-based
online optimization method to loop the physical measurement
information back to OPF controllers, which adapt the OPF
decisions to real-time data to mitigate the effects of inherent
disturbances and modelling errors. It is unrealistic to have real-
time physical measurements of system states at every corner
of distribution networks due to heavy communication burdens,
end-user privacy concerns, and high costs.

In this paper, we propose a more general framework than
the existing OPF approaches, which tightly integrates state
estimation (SE) techniques [22]–[26] into online OPF control
algorithms for distribution networks. This OPF with SE in-
the-loop framework allows us to utilize a limited set of sensor
measurements together with a power system state estimator
instead of exact knowledge of network states. The power
system state estimator, which may include data from the
Supervisory Control and Data Acquisition (SCADA) system,
phasor measurement units (PMUs), topology processor and
pseudo measurements1, provides the best available informa-
tion about network states [22], [23], [25], [27]–[29] and in-
turn enables implementation and enhances the performance
of OPF controllers. Our approach allows OPF decisions to
adapt in real-time time-varying stochastic DERs and loads,
and compensates for disturbances and modelling errors, since
SE results utilize measurement data from the actual nonlinear
system dynamics.

A preliminary version of this work appeared in [30], and
here we significantly expand the work in several directions.
The main contributions are as follows:

1Due to the lack of real time measurement and stochasticity nature of power
netloads in distribution system state estimation, the nodal power injections
are measured by their nominal load-pattern (i.e., the real value plus zero-
mean random deviations), so-called pseudo-measurement, whose information
is derived from the past records of load behaviors [26].

ar
X

iv
:2

00
5.

00
34

5v
1 

 [
m

at
h.

O
C

] 
 2

9 
A

pr
 2

02
0



2

1) We formulate a general convex OPF problem subject
to power flow equations and network-wise coupling
constraints. To integrate OPF with SE in-the-loop, we
propose a primal-dual gradient-based OPF algorithm with
state estimation feedback. Instead of requiring full knowl-
edge of all system states, the controller utilizes at every
gradient step real-time monitoring information from state
estimation results to inform control decisions. Whereas
OPF and SE problems for distribution networks have
been widely studied individually, none of the existing
literature explores the connection and bridge the gap
between them. Here we are closing the loop between OPF
and state estimation in large-scale distribution networks,
which guarantees full availability of state estimates [16],
[31]. This allows us to react to real-time information of
system states with limited number of deployed sensors.
In principle, the framework allows a variety of state
estimation methodologies and control strategies in distri-
bution networks. Here, we illustrate the approach through
a voltage regulation problem with voltage magnitude
estimation in-the-loop.

2) We leverage linear approximations of the AC power
flow equations, to facilitate scalable and computationally
efficient OPF problems for SE feedback integration [18]–
[20]. The voltage profile estimation uses a weighted least
squares (WLS) estimator. Convergence of the proposed
gradient-based algorithm with state estimation feedback
is analytically established. Additionally, we quantify the
statistical estimation errors of the WLS estimator. This
provides a measure of quality of the SE feedback asso-
ciated with a particular allocation of sensors across the
network.

3) The effectiveness, scalability, flexibility and robustness
of the proposed algorithm are demonstrated on a 4521-
node multi-phase unbalanced distribution network with
1043 (aggregated) netloads. With only 3.6% voltage mea-
surement deployment, the integrated OPF controller with
SE feedback effectively regulates network voltage. The
distributed algorithm in [32] using linearized distribution
flow (LinDistFlow) enables scaling to extremely large
networks. The numerical results also indicate that the
proposed OPF controller with SE feedback has excellent
performance and robustness to the inherent measurement
noise and estimation errors.

II. OPTIMAL POWER FLOW WITH STATE ESTIMATION
IN-THE-LOOP

In this section, we propose an OPF solver with state esti-
mation feedback. We first pose a general problem to highlight
the overall approach, and in subsequent sections we detail the
model, objectives, constraints and state estimator for a certain
control and monitoring purpose.

Consider the OPF problem for distribution networks

min
p,q

∑
i∈N

Ci(pi, qi) + C0(p,q), (1a)

s.t. g(r(p,q)) ≤ 0, (1b)
(pi, qi) ∈ Zi,∀i ∈ N , (1c)

where C0(p,q) is a cost function capturing system objectives
(e.g., cost of deviation of total power injections into the
substation from nominal values), the local objective function
Ci(pi, qi) captures the generation costs, ramping costs, active
power losses, renewable curtailment penalty, auxiliary service
expenses and reactive compensation (comprising a weighted
sum thereof) at node i ∈ N . We then define a state vector
r(p,q) ∈ RM denoting (combined) electrical quantities of
interests (e.g., voltage magnitude, current injections, power
injection at the substation, etc.), which depends on nodal
power injections p := [p1, . . . , pN ]ᵀ and q := [q1, . . . , qN ]ᵀ

through AC power flow equations2. The constraint function
g : RM → RNg models network constraints, including
voltage magnitude, voltage angle, current injection and line
flows. The nodal power injections are constrained to convex
and compact feasible sets Zi.

Problem (1) is typically solved assuming that all system
states are available. However, in practice, there is generally
a lack of reliable measurement devices and communication
infrastructure in distribution networks, rendering these con-
ventional OPF approaches impractical. Therefore, the main
challenges for solving (1) in practice involve how to best
integrate estimates of current system states r and understand-
ing tradeoffs between SE performance and sensor deploy-
ment quality and OPF controller performance. We will tackle
these by integrating a state estimation feedback loop with
a limited number of sensor measurements. This allows the
OPF controller to respond to real-time information and update
control decisions despite “blind spots” in the grid. The overall
approach is illustrated in Fig. 1.

Fig. 1. The concept of solving optimal power flow with state estimation
in-the-loop.

In our general framework, the SE techniques may determine
the system states using any or all of SCADA measurements,
phasor measurement units (PMUs) measurements, pseudo-
measurements and topology information to reduce estimation
uncertainty. How to fuse different sources of information into
OPF formulations remains largely an open question under

2The AC power flow relations may represent either full nonlinear power
flow, SOCP relaxations, SDP relaxations, or various linearization. The general
approach of OPF with SE in-the-loop can be adapted to various (approximate)
power flow mappings. In the rest of this paper, we use a linearized power flow
model to illustrate the effectiveness of the proposed framework.
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exploration. We aim to indicate that there are many possibili-
ties and research direction to potentially improve control and
optimization in distribution networks through tight integration
with SE. The increasing penetration of renewable energy
resources and distributed generators enable the distribution
networks with smart features, such as demand response and
distributed automation. This allows the networks turn to a
more active and complex system with fast dynamics. An
efficient, real-time monitoring of distribution networks should
be looped into OPF controllers. In the rest of this paper, we
take the voltage regulation problem with voltage estimation as
an illustrative example, which is based on a few PMU voltage
measurements and netload pseudo measurements.

III. GRADIENT-BASED OPF SOLVER WITH STATE
ESTIMATION FEEDBACK

A. System Modelling

Consider a distribution network denoted by a directed and
connected graph G(N0, E), where N0 := N ∪ {0} is a
set of all “buses” or “nodes” with substation node 0 and
N := {1, . . . , N}, and E ⊂ N × N is a set of “links”
or “lines” for all (i, j) ∈ E . Let Vi := |Vi|ej∠Vi ∈ C
and Ii := |Ii|ej∠Ii ∈ C denote the phasor for the line-
to-ground voltage and the current injection at node i ∈ N .
The absolute values |Vi| and |Ii| denote the signal root-mean-
square values and ∠Vi and ∠Ii corresponding to the phase
angles with respect to the global reference. We collect these
variables into complex vectors v := [V1, V2, . . . , VN ]ᵀ ∈ CN

and i := [I1, I2, . . . , IN ]ᵀ ∈ CN . We denote the complex
admittance of line (i, j) ∈ E by yij ∈ C. The admittance
matrix Y ∈ CN×N is given by

Yij =


∑
l∼i yil + yii if i = j

−yij (i, j) ∈ E
0 (i, j) /∈ E

, (2)

where l ∼ i indicates connection between node l and node i,
and yii is the self admittance of node i to the ground.

Node 0 is modelled as a slack bus. The other nodes are
modelled as PQ buses for which the injected complex power
is specified. The admittance matrix can be partitioned as[

I0
i

]
=

[
y00 ȳᵀ

ȳ Y

] [
V0
v

]
.

The net complex power injection then reads:

s = diag(v)
(
Y∗(v)∗ + ȳ∗(V0)∗

)
, (3)

where superscript (·)∗ indicates the element-wise conjugate of
complex vector v.

To facilitate computational efficiency using convex opti-
mization, here we leverage a linearization of (3) as follows:

r = Ap + Bq + r0,

where the parameters A, B and r0 can be attained from
various linearization methods, e.g., [33]–[36]. Recall that
r ∈ RM represents certain electrical quantities of interests
(e.g., voltage magnitude, current injections, power injection at
the substation, etc.).

B. OPF Formulation and Primal-Dual Gradient Algorithm

In this section, we introduce a general OPF problem and
the pertinent gradient algorithm with idealized measurement
feedback3 from nonlinear power flow to reduce modelling er-
rors. The feasible operating regions Zi depend on the terminal
properties of various dispatchable devices, e.g., inverter-based
distributed generators, energy storage systems or small-scale
diesel generators. We make the following assumptions.

Assumption 1. The feasible regions Zi for power nodal
injections are restricted to box constraints.

Assumption 2 (Slater’s condition). There exists a strictly
feasible point within the operation region (p,q) ∈ Z , where
Z := Z1 × . . .×ZN , so that

g(r(p,q)) < 0.

Assumption 3. A set of local objective functions
Ci(pi, qi),∀i ∈ N are continuous differentiable and strongly
convex as functions of (pi, qi), and their first order derivative
are bounded within their operation regions indicated as
(pi, qi) ∈ Zi,∀i ∈ N ; The system-wise objective function
C0(p,q) is continuously differentiable and convex with its
first-order derivative bounded. Furthermore, the constraint
function g is continuously differentiable and convex with
bounded derivatives on its domain.

The regularized Lagrangian L for (1) is

L =
∑
i∈N

Ci(pi, qi) + C0(p,q) + µᵀg(r(p,q))− η

2
‖µ‖22,(4)

where µ is the dual variable vector associated with the general
inequality constraints and we keep the feasible regions µ ≥ 0
and (p,q) ∈ Z implicit. To facilitate proof of convergence,
the Lagrangian (4) includes a Tikhonov regularization term
−η2‖µ‖

2
2 with a prescribed small parameter η that introduces

bounded discrepancy [37]. Then to solve (1) we come to the
saddle-point problem

max
µ∈R+

min
(p,q)∈Z

L (p,q,µ) , (5)

which leads to an iterative primal-dual gradient algorithm to
reach the unique saddle-point of (5)

rk = Apk + Bqk + r0, (6a)
pk+1 =

[
pk − ε∇pL|pk,qk,µk

]
Z , (6b)

qk+1 =
[
qk − ε∇qL|pk,qk,µk

]
Z , (6c)

µk+1 =
[
µk + ε∇µL|rk,µk

]
R+

, (6d)

where ε ∈ R++ is a constant stepsize to be determined, and
the operators [·]Z and [·]R+

project onto the feasible set Z :=
×i∈NZi and nonnegative orthant, respectively. The updates
(6) are represented compactly by the mapping

Φ : {pk,qk,µk} 7→

ε∇pL|pk,qk,µk

ε∇qL|pk,qk,µk

−ε∇µL|rk,µk

 ,
3The “idealized” refers to the full measurement of vector r without noise.
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so that (6) can be written as

xk+1 =
[
xk − εΦ(xk)

]
R+×Z

, (7)

where xk := [(pk)ᵀ, (qk)ᵀ, (µk)ᵀ]ᵀ. Under Assumption 3, it
can be shown [32] that Φ is strongly monotone and Lipschitz
continuous, i.e., it satisfies for all feasible points x1 and x2

and for some constants M > 0 and L > 0

(Φ(x1)− Φ(x2))
ᵀ

(x1 − x2) ≥M‖x1 − x2‖22, (8)

‖Φ(x1)− Φ(x2)‖22 ≤ L2‖x1 − x2‖22. (9)

We now have the following result from [30].

Theorem 1. Consider the primal-dual gradient algorithm (6)
for the optimization problem (1) based on the regularized
Lagrangian (4). If the step size ε satisfies

0 < ε < 2M/L2, (10)

algorithm (6) converges to the unique saddle point of (4).

The optimization problem (1) and gradient algorithm (6) are
based on a linearized power flow to guarantee its convexity and
prove convergence to the saddle point. However, linearization
errors cause the solution of (6) to be suboptimal or even infea-
sible for the system with nonlinear power flow. To address this
issue, feedback-based online optimization methods [18], [19],
[38] have been leveraged to reduce the effects of modelling
error. In particular, by replacing (6a) with following nonlinear
power flow

rk = f(pk,qk), (11)

that obtained from the physical system, these measured values
rk can be used, instead of an approximate model, to update
dual variables in (6d). Convergence to a bounded range of the
optimum can be analytically shown for such implementations,
and this also facilitates a real-time implementation that can
track the time-varying grid conditions [19], [20].

However, one crucial issue of such feedback-based algo-
rithm has been largely overlooked: in practice, there are too
few monitoring devices in distribution systems to measure all
components of r, and therefore it is not possible to directly
implement feedback-based algorithms to solve the problem
(1). Our preliminary results [30] demonstrated that limited
knowledge of system states can lead the OPF controller to
cause constraint violations.

To enable an implementation of feedback-based OPF al-
gorithms in distribution networks, and also to improve perfor-
mance of algorithms that make use of “pseudo-measurements”,
we integrate a state estimation algorithm based on a sparse set
of available measurements, before performing the dual variable
update (6d). This allows us to utilize improved information on
the network state to make decisions, specifically improving
information at “blind spots” of the grid where there are
no direct measurements. Fig. 2 illustrates the proposed OPF
framework with state estimation in-the-loop.

Fig. 2. The diagram of the proposed optimal power flow problem with SE
in-the-loop.

C. State Estimation In-the-Loop

We consider the grid measurement model

yk = h(rk) + ξk, (12)

where rk ∈ RM is the system state at time k, yk ∈ RL

is a measurement vector received at time k comprising raw
noisy measurements from sensors and pseudo-measurements
(which include real and reactive power injections, real and
reactive power flow, and voltage magnitude and angles), and
h : RM → RL is a measurement function. The vector
ξk ∈ RL models measurement error, assumed iid according
to a Gaussian distribution N(0,Σ),Σ ∈ RL×L. The pseudo-
measurements are modeled as sensor measurements corrupted
by high-variance Gaussian noise based on historical data (e.g.,
customer billing data and typical load profile) that provide
rough information about variations in the state of the grid [31].

To estimate grid states from the available measurements, we
consider the WLS estimator [16], [31], [39]:

r̂k = argmin
rk

1

2

(
yk − h(rk)

)ᵀ
W
(
yk − h(rk)

)
, (13)

where the weight matrix is defined as W = Σ−1. The actual
state rk = f(pk,qk) is uniquely determined by the network
power flow. Existence and uniqueness of a solution to (13)
require certain properties of the measurement function.

Definition 1 (Full Observability4 [24], [40]). The system state
is called fully observable if rk = 0 is the only solution for
h(rk) = 0, which allows a unique solution to (13).

Assumption 4. We assume that the distribution system state
with measurements (12) is fully observable.

Since distribution networks typically have only a sparse
set of real-time measurements from deployed sensors, we
require enough pseudo-measurements to ensure full observ-
ability. It is always possible to include enough pseudo-
measurements to ensure full observability and satisfy Assump-
tion 4. The effectiveness combining real measurements and
pseudo-measurements has been observed in [39], [41].

Fig. 2 and Algorithm 1 illustrate and describe the proposed
OPF controller with the state-estimation feedback loop. Note
that the step 2 in Algorithm 1 is not implemented in the pro-
posed OPF controller, but instead is a realization of the power

4This definition should be distinguished from observability of linear dynam-
ical systems. Here, we limit the definition of observability to power system
static state estimation problems [26] throughout this manuscript.
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Algorithm 1 (OPF with SE In-the-Loop)
Require: netload initialization (p0,q0) and µk

1: for k = 0 : K do
2: rk ← nonlinear power flow (pk,qk)
3: receive system measurement yk

4: SE of all electrical quantities of interest r̂k

5: pk+1 =
[
pk − ε∇pL(pk,qk,µk)

]
Z

6: qk+1 =
[
qk − ε∇qL(pk,qk,µk)

]
Z

7: µk+1 =
[
µk + ε∇µL(r̂k,µk)

]
R+

8: end for

system state’s physical response rk resulting from gradient
updates on nodal power injections (pk,qk). We utilize SE in-
the-loop to compute a state estimate r̂k, which then contributes
to the update of dual variables µk+1 in step 7. Our numerical
experiments in Section IV compare this approach with the
direct use of noisy measurements and pseudo-measurements
without an estimation scheme.

D. Convergence Analysis

The computations and updates in steps 5-7 of Algorithm 1
are written more explicitly as

r̂k = argmin
rk

1

2

(
yk − h(rk)

)ᵀ
W
(
yk − h(rk)

)
, (14a)

pk+1 =
[
pk − ε

(
∇pC(pk,qk) +∇pC0(pk,qk) + Aᵀµk

)]
Z ,

(14b)
qk+1 =

[
qk − ε

(
∇qC(pk,qk) +∇qC0(pk,qk) + Bᵀµk

)]
Z ,

(14c)
µk+1 =

[
µk + ε

(
g(r̂k)− ηµk

)]
R+

,

(14d)
This iteration (14) is performed until convergence.

As the state estimation in distribution networks has been
widely discussed for different applications [27], the existing
literature shows that these type of methods lead to an accurate
and computationally efficient approximation under nominal
operating condition. We also define other two mappings: the
SE in-the-loop operator Φ(xk), where the gradient updates
based on SE results r̂k from (13) to update the dual variables

Φ : {pk,qk,µk} 7→

ε∇pL|pk,qk,µk

ε∇qL|pk,qk,µk

−ε∇µL|r̂k,µk

 .
Since the sensor measurement yk inherit from the nonlinear
physical system response (11), we use the nonlinear power
flow mapping Φ̃(xk) to capture these difference,

Φ̃ : {pk,qk,µk} 7→

 ε∇pL|pk,qk,µk

ε∇qL|pk,qk,µk

−ε∇µL|rk=f(pk,qk),µk

 .
Assumption 5. There is a uniform bound on the squared error
of the gradient update due to state estimation, i.e., there exists
α > 0 such that

E
[
‖Φ(xk)− Φ(xk)‖22

]
= σ2

k ≤ α, ∀xk. (15)

Assumption 6. There is a uniform bound on the norm of the
squared distance between update with SE in-the-loop and the
update that uses the actual nonlinear power flow in (11), i.e.,
there exists ρ > 0 such that

‖Φ(xk)− Φ̃(xk)‖22 ≤ ρ, ∀xk. (16)

Definition 2. The estimation error variance from SE in-the-
loop of the saddle point of (5) is defined as

σ2
∗ := E

[
‖Φ(x∗)− Φ(x∗)‖22

]
.

Theorem 2. Suppose the step size ε satisfies the condition
(10) from Theorem 1. Under Assumptions 5-6, the sequence
{xk} generated by Algorithm 1 satisfies

lim
k→∞

supE
[
‖xk − x∗‖22

]
=
ε2
(
ρ+ 2σ2

∗ + α
)

2εM − ε2L2
, (17)

where x∗ = [(p∗)ᵀ, (q∗)ᵀ, (µ∗)ᵀ]ᵀ is saddle point of L in (5).

Proof. See proof in the Appendix.

The condition (17) from Theorem 2 provides an upper
bound on the expected squared distance between the sequence
{xk| xk := [(pk)ᵀ, (qk)ᵀ, (µk)ᵀ]ᵀ, k ≤ K,K → ∞}
generated by our proposed OPF with SE feedback algorithm
(14) and the saddle point x∗ of (5). This analytical bound
indicates that our proposed approach has robust performance
to estimation errors and measurement noise.
1) Inherent measurement noise: The online measurements by
PMUs are typically within 1% ∼ 2% of actual values. The
pseudo measurements of active and reactive power can be
regarded as a rough initialization (with up to 50% variations
in comparison to actual values). These errors can be reduced
through the estimation phase in (13), which improves decisions
from the OPF controller with SE feedback (14a), improving
robustness to measurement noise and power variability;
2) Linearization approximation errors: The OPF-phase (and
some of state estimators) in the proposed algorithm utilize the
linearized power flow to promote computational efficiency in
gradient calculation. The discrepancy between linearized and
nonlinear power flow is quantified in (16) by ρ, when set-
points (pk,qk) are realized by the nonlinear network power
flow.

E. Estimation Error Analysis

In this subsection, we analytically quantify the errors of the
SE algorithm under a linearized measurement model. A linear
measurement model is given by

yk = Hrk + ξk,

where H ∈ RL×M is a measurement matrix that could be
obtained by linearizing the nonlinear measurement function
around a particular nominal operating condition.

For the linear WLS problem

min
rk

1

2

(
yk −Hrk

)ᵀ
W
(
yk −Hrk

)
,
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Fig. 3. A 11,000-node distribution network. This testbed is constructed by
connecting an IEEE 8,500-node distribution network and an EPRI Ckt7 test
feeder at PCC. The primary side of this modified feeder is modelled in detail,
while the loads on secondary side are merged into distribution transformers.
This lumps the 11,000-node testbed into a 4521-node distribution network.

the closed-form analytical solution is given by r̂k =
(HᵀWH)

−1
HᵀWyk. When the matrix HᵀWH is non-

singular (which occurs when W is positive definite and H
is full column rank), then the estimate can be expressed as

r̂k = (HᵀWH)
−1
HᵀWHrk + (HᵀWH)

−1
HᵀWξk

= rk + (HᵀWH)
−1
HᵀWξk.

The WLS estimator is unbiased (since E
[
r̂k
]

= rk due to
the noise being zero mean), and the variance is given by
Var
[
r̂kj
]

=
∑n
i=1 Γjiσ

2
i , where Γji denotes the ji-th element

of the Γ = (HᵀWH)
−1
HᵀW , and σ2

i is the ith diagonal of
the measurement covariance matrix Σ. Confidence intervals
for components of the state estimate r̂k can be constructed as

r̂kj ± c
√

Var
(
r̂kj
)

= r̂kj ± c

√√√√ n∑
i=1

Γjiσ2
i ,

where c can be chosen based on the prescribed confidence
level. In addition to the bound in Theorem 2, the confidence
intervals provide a numerical performance metric on the sever-
ity of estimation errors within the OPF control loop. In the next
section, we will use this analysis to quantify estimation errors
from voltage measurements and netoad pseudo-measurements.

IV. NUMERICAL RESULTS

In this section, we use a modified three-phase unbalanced
11,000-node distribution network shown in Fig. 3 to demon-
strate the effectiveness and scalability of the proposed OPF
solver with SE in-the-loop. We model the primary loads of
this system in detail and merge the secondary loads into distri-
bution transformers, which lumps the system into a 4521-node
distribution network. This extremely large system is divided
into 5 clusters and then we utilized a spatially distributed

(a) normal bound (b) tighter bound

Fig. 4. Voltage profile of OPF controller with SE in-the-loop. The black dash
line indicates the lower voltage bound, i.e., 0.95 p.u.. After we utilize a tighter
bound [0.96, 1.05] to compensates the inherent errors of SE in-the-loop, the
voltage profile on the right then meets the constraint.

optimization algorithm for computational affordability. The
details of multi-phase power flow modelling and the feasibility
of distributed algorithm were discussed in our companion
paper [32]. Here, we focus on closing a loop between OPF
and SE to solve a general OPF problem. We explore a
tradeoff between sensing and communication effectiveness and
performance of OPF controllers in an extremely large network.

We consider a voltage regulation problem where the state
is voltage magnitude. In particular, we define the state as the
voltage magnitude vector r := |v| := [|v1|, . . . , |vN |]ᵀ ∈ RN

++

and consider

OPF-V: min
p,q,|v|

∑
i∈N

Ci(pi, qi) + C0(p,q),

s.t. |v| = Ap + Bq + |v0|,
v ≤ |v| ≤ v̄,

(pi, qi) ∈ Zi,∀i ∈ N .

The inequality constraints capture the lower and upper bounds
(v, v̄) of voltage magnitudes. In particular, we take linear
approximation for AC power flow to express |v| as a linear
function of power injection (p,q). The coefficient matrics
(A,B) of the linearized voltages and normalized vector |v0|
can be attained from numerous linearization methods, e.g.,
[33], [35], [42]. The gradient-based OPF controller (14) uti-
lizes the online voltage magnitude measurement and voltage
estimation to make the system converge.

The default voltage profile of system in Fig. 3 without any
control5 is given by OpenDSS [43] shown in blue dots in
Fig. 4. The voltage limits v̄ and v are set to 1.05 and 0.95
p.u. This particular network has a significant under-voltage
situation. To have a clear picture of voltage level for OPF
controller, most of the literature assumes that we have full
knowledge of the real-time voltage information, which requires
an unrealistic sensor deployment, extreme communication, and
huge investment. To tradeoff these two issues and facilitate
a practical OPF controller for acceptable performance, we
randomly deploy voltage magnitude measurements at 3.6%
of the nodes with measurement noise subject to Gaussian dis-
tribution with zero mean and 1% standard deviation. We also

5We disable all rule-based control of voltage regulators, local capacitors
and low-voltage transformers, etc., and then only solve the nonlinear power
flow.
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have the load pseudo-measurements for all nodal injections
(i.e., active and reactive power) with significant noise (e.g.,
zero mean and 50% standard deviation of real values), which
will guarantee the full observability of SE in-the-loop. The
voltage information of the whole network will be fed back
to OPF controller based on the voltage estimation results.
The simulation is conducted on a desktop with AMD Ryzen
7 2700X Eight-Core Processor CPU@3.7GHz, 64GM RAM,
Python 3.7 and Windows 10.

Fig. 4 visualizes the voltage profile regulated by the OPF
controller with SE in-the-loop. In order to prevent voltage from
failing below 0.95 p.u., the netloads must be curtailed based on
the SE feedback information. The voltage of most nodes (i.e.,
orange dots) have been bounded within [0.95, 1.05]. There are
few voltages just located across the lower bound with slight
variations. This is due to the feedback signal containing the
voltage estimation errors. To understand the severity of these
estimation errors due to sensor noise and large variation of
pseudo measurement, we use the analysis in Section III-E to
quantify the statistical estimation error numerically. Fig. 5 and
Fig. 6 visualize the average and maximum errors of voltage
estimation, and the comparison with analytically calculated
confidence intervals over each OPF gradient step. Most of av-
erage errors over 1000 OPF iterations are bounded by the 99%
confidence interval. Based on the numerical analysis in Fig. 5,
we conclude that having SE in-the-loop will significantly
reduce errors due to inherent measurement noise compared
to direct use of raw measurements. Also, the proposed SE in-
the-loop can mitigates the effects of measurement errors on
OPF controller performance.

To resolve the feedback estimation errors and further im-
prove the performance of OPF controllers, we give a tighter
lower bound (i.e., [0.96, 1.05]) based on the statistical analysis
of SE errors. As a result shown in Fig. 7, the network curtails
more netloads to achieve a more conservative voltage profile,
which leads to a higher operational cost. We emphasize that
there is always a tradeoff between: 1) cost of the measurement
system (e.g., number of deployed sensors, communication
infrastructure) and 2) OPF controller performance (e.g., ro-
bustness, feasibility and optimality). In general, our proposed
approach provides utilities and system operators a framework
to systematically design OPF controllers under a limited set
of sensor measurements.

Overall, we conclude that the proposed OPF controller with
SE feedback is able to systemically reduce estimation error of
voltages at unmeasured nodes, successfully achieve voltage
regulation, and improve robustness to measurement and esti-
mation errors. The benefits of closing the loop between OPF
controllers and state estimators can be clearly observed from
the perspectives of effectiveness, robustness and efficiency.

V. CONCLUSIONS AND OUTLOOKS

In this paper, we proposed a general optimal power flow
controller with state estimation feedback to facilitate the oper-
ation of modern distribution networks. The controller depends
explicitly on the state estimation results derived from system
measurements. In contrast to existing works, our method

Fig. 5. Comparison of estimation errors between SE in-the-loop and the use of
raw voltage measurements. The running average of average/maximum errors
show that the SE in-the-loop yields less error than using raw measurements.

Fig. 6. Comparison of the average estimation errors with different confidence
intervals over 1000 OPF iterations.

Fig. 7. Total cost with SE in-the-loop over 1000 OPF iterations.
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utilizes a feedback loop to the OPF controller to estimate the
system voltages from a limited number of sensors rather than
making strong assumptions on full observability or requiring
full state measurements. The performance of our design is
analyzed and numerically demonstrated. The numerical results
demonstrate the effectiveness, scalability, and robustness of the
proposed OPF controller with SE in-the-loop.

Our results on OPF problem launched an initial step towards
closing a loop between control and state estimation in power
systems. There are several lines of future works that can extend
the present results in various ways to more fully explore the
benefits, and discover the limitations of having SE in-the-loop
for OPF controllers. Future work includes
• performance evaluation of various OPF formulations with

different SE techniques in-the-loop;
• optimal sensor placement with SE in-the-loop for better

OPF performance;
• OPF & SE in-the-loop co-design considering the estima-

tion errors for a more efficient communication structure
in a real network.
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APPENDIX

Recall xk := [(pk)ᵀ, (qk)ᵀ, (µk)ᵀ]ᵀ and the primal-dual
gradient mapping as

Φ : {pk,qk,µk} 7→

ε∇pLη|pk,qk,µk

ε∇qLη|pk,qk,µk

−ε∇µL|rk,µk

 ,
which is utilized to compute the gradient iterations of (6)

xk+1 =
[
xk − εΦ(xk)

]
R+×Z

,

where the dual variables are updated based on linearized power
flow model (6a). We also define other two mappings: the SE
in-the-loop operator Φ(xk), where the gradient updates based
on SE results r̂k from (13) to update the dual variables

Φ : {pk,qk,µk} 7→

ε∇pL|pk,qk,µk

ε∇qL|pk,qk,µk

−ε∇µL|r̂k,µk

 .
Since the sensor measurement yk inherit from the nonlinear
physical system response (11), we use the nonlinear power
flow mapping Φ̃(xk) to capture these difference,

Φ̃ : {pk,qk,µk} 7→

 ε∇pL|pk,qk,µk

ε∇qL|pk,qk,µk

−ε∇µL|rk=f(pk,qk),µk

 ,
then we have these assumptions, properties and definition
A1. There is a uniform bound on the squared error of the

gradient update due to state estimation, i.e., there exists
α > 0 such that

E
[
‖Φ(xk)− Φ(xk)‖22

]
= σ2

k ≤ α, ∀xk. (19)

A2. There is a uniform bound on the norm of the squared
distance between update with SE in-the-loop and the
update that uses the actual nonlinear power flow in (11),
i.e., there exists ρ > 0 such that

‖Φ(xk)− Φ̃(xk)‖22 ≤ ρ, ∀xk. (20)

In addition, the following properties can be observed based on
our problem formulation,
B1. It can be shown [32] that Φ is strongly monotone and

Lipschitz continuous, i.e., it satisfies for all feasible points
x1 and x2 and for some constants M > 0 and L > 0

(Φ(x1)− Φ(x2))
ᵀ

(x1 − x2) ≥M‖x1 − x2‖22, (21)

‖Φ(x1)− Φ(x2)‖22 ≤ L2‖x1 − x2‖22. (22)

D1. The estimation error variance from SE in-the-loop of the
saddle point of (5) is defined as

σ2
∗ := E

[
‖Φ(x∗)− Φ(x∗)‖22

]
.

Proof of Theorem 2

Proof. Now we are ready to show convergence of OPF con-
troller with SE in-the-loop. We have

E
[
‖xk+1 − x∗‖22

]
≤ E

[
‖xk − εΦ̃(xk)− x∗ + εΦ(x∗)‖22

]
= E

[
‖xk − εΦ̃(xk) + εΦ(xk)− εΦ(xk)− x∗ + εΦ(x∗)

+ εΦ(x∗)− εΦ(x∗)‖22
]

≤ E
[
‖xk − εΦ(xk)− x∗ + εΦ(x∗)‖22 + ε2‖Φ̃(xk)− Φ(xk)‖22

+ ε2‖Φ(x∗)− Φ(x∗)‖22
]

= E
[
‖xk − εΦ(xk) + εΦ(xk)− εΦ(xk)− x∗ + εΦ(x∗)

+ εΦ(x∗)− εΦ(x∗)‖22 + ε2‖Φ̃(xk)− Φ(xk)‖22
+ ε2‖Φ(x∗)− Φ(x∗)‖22

]
≤ E

[
‖xk − εΦ(xk)− x∗ + εΦ(x∗)‖22

]
+ E

[
ε2‖Φ(xk)− Φ(xk)‖22 + 2ε2‖Φ(x∗)− Φ(x∗)‖22

]
+ ε2‖Φ̃(xk)− Φ̄(xk)‖22

≤ E
[
‖xk − εΦ(xk)− x∗ + εΦ(x∗)‖22

]
+ ε2

(
ρ+ σ2

k + 2σ2
∗
)

≤ E
[
‖xk − x∗‖22

]
+ E

[
‖εΦ(xk)− εΦ(x∗)‖22

]
− 2ε

(
Φ(xk)− Φ(x∗)

)ᵀ (
xk − x∗

)
+ ε2

(
ρ+ σ2

k + 2σ2
∗
)

≤
(
ε2L2 − 2εM + 1

)
E
[
‖xk − x∗‖22

]
+ ε2

(
ρ+ σ2

k + 2σ2
∗
)
,

(23)
where the first inequality is due to non-expansiveness pro-
jection, the next two inequalities depend on the triangle
inequality, the fourth inequality comes from (19),(20). The
last two inequalities are due to the strong monotonicity (21)
and Lipschitz continuity (22) of operator Φ. Now, we let
∆ = ε2L2 − 2εM + 1 and recursively implement the last
inequality in (23) backwards to the initial step, then we have

E
[
‖xK − x∗‖22

]
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≤ ∆K‖x0 − x∗‖22 + ε2
(
ρ+ 2σ2

∗
)(1−∆K

1−∆

)
+ ε2

K−1∑
k=0

∆K−1−kσ2
k (24a)

< ∆K‖x0 − x∗‖22 + ε2
(
ρ+ 2σ2

∗
)(1−∆K

1−∆

)
+ ε2

1−∆K

1−∆
α. (24b)

By applying the SE estimation variance bound in Assumption
5, (24a) is relaxed to (24b). Then we have the step size chosen
as ε < 2M

L from Theorem 1, which leads to 0 < ∆ < 1. As
K →∞, ∆K on the right-hand-side in (24b) will vanish. For
such ∆ and any initial condition x0 ∈ R, when K →∞, the
expectation of this discrepancy with be bounded by

lim
K→∞

supE
[
‖xK − x∗‖22

]
=
ε2
(
ρ+ 2σ2

∗ + α
)

2εM − ε2L2
,

which concludes the proof.
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