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Abstract— With the rising importance of large-scale net-
work control, the problem of actuator placement has received
increasing attention. Our goal in this paper is to find a set of ac-
tuators minimizing the metric that measures the average energy
consumption of the control inputs while ensuring structural
controllability of the network. As this problem is intractable,
the greedy algorithm can be used to obtain an approximate
solution. To provide a performance guarantee for this approach,
we first define a new notion of submodularity ratio and show
that the metric under consideration enjoys the notion of weak
submodularity corresponding to this ratio. We then reformulate
the structural controllability constraint as a matroid constraint.
This shows that the problem under study can be characterized
by the optimization of a weakly submodular function under a
matroid constraint. For the greedy algorithm applied to this
class of optimization problems, we derive a novel performance
guarantee. Finally, we show that the matroid feasibility check
for the greedy algorithm can be cast as a maximum matching
problem in a certain auxiliary bipartite graph related to the
network graph.

I. INTRODUCTION

Actuator placement is the problem of finding a subset from
a finite set of possible placements for actuators to optimize
a desired network performance metric. With the increased
importance of large-scale network control problems, such as
those arising in power grids and transportation systems, there
has been a surge of interest to study the problem of actuator
placement. Past works have discussed several controllability-
based performance metrics and derived properties of the
resulting optimization problems [1]–[3].

The problem of actuator placement is in general NP-
hard [4]. Hence, earlier studies have adopted the greedy
algorithm to derive an approximate solution [5]. Under a
submodular metric and a cardinality constraint on the number
of actuators, the greedy algorithm is shown to enjoy a
provable suboptimality guarantee [6]. However, some metrics
do not exhibit submodularity including the metric in this
work, that is, the average energy required to reach any
arbitrary direction of the state space [7], [8]. To alleviate
this issue, the notion of submodularity has been extended to
weak submodularity using the notion of submodularity ratio
quantifying how close a function is to being submodular [9],
[10]. Given this ratio, it is possible to derive a performance
guarantee for the greedy algorithm applied to a larger class
of performance metrics [7].
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Nonetheless, the guarantees above are restricted to opti-
mization problems subject to simple cardinality constraints.
Given a cardinality constraint, the resulting actuator set
might not render the system controllable. To address this
issue, we need to include controllability as a constraint
in the optimization problem. However, to the best of our
knowledge, there is no approach to ensure feasibility of the
iterates of the greedy algorithm applied to this problem, nor
to quantify its performance guarantee. On the other hand,
structural controllability constraints have been well-studied.
This controllability concept exploits only the graphical in-
terconnection structure of the dynamical system [11], [12].
Structurally controllable systems are those controllable after
a slight perturbation of the system parameters corresponding
to the fixed set of edges in the underlying network graph.
The authors in [13] have studied a leader selection problem to
obtain a structurally controllable system while minimizing a
submodular objective function. The structural controllability
constraint arising in the leader selection problem is proven to
be equivalent to a so-called matroid constraint [13]. However,
the leader selection problem is different from the actuator
placement problem. The former selects a set of leader nodes
whose states can arbitrarily be dictated to steer the remaining
states to desired positions, while the latter does not permit
the states to be dictated arbitrarily; instead, it selects a set
of actuators which can influence all the states through the
dynamics. To this end, our first goal is to show that the
actuator placement problem under structural controllability
constraint can also be cast as a matroid optimization.

To obtain a performance guarantee for the greedy al-
gorithm applied to a matroid optimization problem, [14]
has considered submodular objective functions. As an ex-
tension, [15] has considered weakly submodular objective
functions. This setting captures the actuator placement prob-
lems under structural controllability constraints. However,
the performance guarantees in [15] are restricted to the
residual random greedy algorithm. To the best of our knowl-
edge, there is no guarantee obtained for the greedy algo-
rithm applied to a matroid optimization if the objective is
weakly submodular. Therefore, our second goal is to obtain
a performance guarantee for the greedy algorithm applied to
this problem.

Our contributions are as follows. First, we show that the
actuator placement problem optimizing a nonsubmodular
controllability metric under structural controllability con-
straints can be cast as a matroid optimization, see Theo-
rem 1. Second, by introducing and utilizing a new notion of
submodularity ratio, we bound the worst-case performance



of the greedy algorithm applied to the class of optimization
problems with weakly submodular objective functions and
matroid constraints, see Theorem 2. This enables us to bound
the greedy algorithm’s performance on the actuator place-
ment problem under structural controllability constraints.
Finally, we show that the matroid feasibility check for the
greedy algorithm is equivalent to a maximum matching
problem in a bipartite graph related to the network graph, see
Theorem 3. This result extends work on the feasibility check
for leader selection problems, where the existing algorithm
proposed in [13] could only ensure a correct result for the
case where the minimum required cardinality for structural
controllability was considered.

The remainder of this paper is organized as follows. In
Section II, we introduce the problem. In Section III, we study
the properties of the network objective function and refor-
mulate the structural controllability constraints as a matroid.
Section IV obtains a performance guarantee for the greedy
algorithm. In Section V, we discuss the implementation of
the algorithm and include case studies.

II. PROBLEM FORMULATION

A. System Model
Consider a linear system with state vector x ∈ Rn. To each

state variable xi ∈ R, we associate a node vi. A control input
ui ∈ R can be exerted at each node vi ∈ V := {v1, . . . , vn}.
Given a set S ⊂ V chosen as the actuator set, dynamics can
be written as

ẋ = Ax+B(S)u. (1)

Above, B(S) := diag(1(S)), where 1(S) denotes a vector
of size n whose ith element is 1 if vi belongs to S and
0 otherwise. We let G = (V,E) denote a directed graph
with nodes V and edges E, where the edge (vj , vi) ∈ E
if (A)ij 6= 0. Similar to the previous studies on structural
controllability [3], [13], we assume that the graph G is
strongly connected.

B. Problem Statement
The pair (A,B(S)) is called controllable if the states x

can be steered arbitrarily in Rn in any given finite time.
Controllability can be verified by the rank of the control-
lability matrix P =

[
B(S) AB(S) . . . An−1B(S)

]
∈

Rn×n2

. If (A,B(S)) is not controllable, it might still be
possible to slightly perturb the entries in A and B(S) to
ensure controllability [11]. Considering that the entries in
A are generally not exactly known but only approximately
determined with small errors, we need a robust controllability
notion. To this end, we bring in structural controllability.

Definition 1: (A,B) and (Â, B̂) with A,B, Â, B̂ ∈ Rn×n
are said to have the same structure if matrices [A B] and
[Â B̂] have fixed zeros at the same entries. Given S ⊂
V , (A,B(S)) is structurally controllable if there exists
a controllable pair (Â, B̂) having the same structure as
(A,B(S)). The set S is a capable actuator set if (A,B(S))
is structurally controllable.

Even if a system is controllable, an unacceptably large
amount of energy might be needed to reach a desired state.

Hence, it is crucial to minimize this energy consumption. The
minimum energy required to steer the system from zero at
t = 0 to x0 ∈ Rn at t = T is given by x>0 W

−1
T (S)x0, where

WT (S) =
∫ T
0
eAτB(S)B>(S)eA

>τdτ is the controllability
Gramian. To obtain an expression independent of the initial
state x0, we can calculate the average energy required over
the unit sphere, ||x0||2 = 1, as tr(W−1T (S)). This expression
is well-defined only when the set S renders the system
controllable. Inspired by [16], we introduce a small positive
number ε ∈ R+ and propose the following metric

F (S) = tr((WT (S) + εI)−1), ∀S ⊂ V. (2)

To make a system easier to control, we seek a set S ⊂ V
minimizing the metric above. Since in a large-scale network,
the number of actuators allowed is in general limited, we
consider a cardinality bound of K ∈ N on the number of
actuators allowed. Additionally, we need a controllability
constraint to ensure that the actuator set is capable. There-
fore, our main problem is formulated as

min
S

F (S)

s.t. |S| ≤ K and S is a capable actuator set.
(3)

For the remainder, assume that K is large enough to ensure
feasibility. To the best of our knowledge, no computationally
feasible method of finding the optimal solution to Prob-
lem (3) has ever been proposed. A heuristic method, called
the greedy algorithm, has been broadly adopted to derive an
approximate solution. This algorithm starts from the empty
set and iteratively adds the element with the largest marginal
gain. In the following, our goal is to derive a performance
guarantee for the greedy algorithm applied to this problem.

III. CHARACTERIZATION OF PROBLEM STRUCTURE

For the maximization of submodular functions under a ma-
troid constraint, the greedy algorithm achieves a performance
guarantee of 1/2 [14]. However, the work in [7] shows that
the set function −F is not submodular. Moreover, there is
no work characterizing the constraints found in Problem (3).
In the following, we show that a) one can analyze the
submodularity ratio of the function −F and b) the constraints
in Problem (3) form a matroid via a reformulation.

A. Properties of the Objective

A set function f : 2V → R is (strictly) increasing if
f(S1) ≤(<)f(S2) for any S1 $ S2 ⊂ V . Similarly, we say
that f is (strictly) decreasing if −f is (strictly) increasing.
Intuitively, with more input nodes, system (1) would be easier
to control, and thus the metric F in (2) would be smaller.
This intuition can be readily verified as follows.

Lemma 1: The metric F in (2) is strictly decreasing.
Proof: For any S ⊂ V and any ω ∈ V \ S,

let H(z) = (WT (S) + zWT ({ω}) + εI)−1. Notice that
tr(H(1)) = tr((WT (S∪{ω}) + εI)−1) = F (S∪{ω}), since
WT (S)+WT ({ω}) = WT (S∪{ω}). Via the matrix inverse
formula [17], if H(z) is invertible ∀z ∈ (0, 1), then tr(H(z))



is continuous and differentiable, and we have

d(tr(H(z)))

dz
= −tr(H(z)WT ({ω})H(z)) < 0.

This inequality holds since H(z) is invertible and symmetric,
and WT ({ω}) is positive semidefinite. Invoking the mean-
value theorem, we have tr(H(1))− tr(H(0)) < 0.

To introduce the notion of submodularity ratio, define the
marginal gains as

ρU (S) := f(S ∪ U)− f(S), ∀S,U ⊂ V.

Definition 2: For an increasing function f : 2V → R,
submodularity ratio is the largest γ ∈ R+ such that

γρω(S ∪ U) ≤ ρω(S), ∀S,U, {ω} ⊂ V. (4)

A set function f with submodularity ratio γ is called γ-
submodular. A γ-submodular set function is said to be
submodular if γ = 1 and weakly submodular if 0 < γ < 1.

For any increasing set function, γ ∈ [0, 1]. Since the metric
F is decreasing, we instead consider the submodularity ratio
γ of −F . Due to the strict monotonicity of the metric F ,
we have γ > 0. Thus, −F is weakly submodular. In the
appendix, we connect Definition 2 with other existing notions
of submodularity ratio, and discuss the need to introduce this
notion as per Definition 2.

B. Reformulation of the Constraint Set

Since F is strictly decreasing, the optimal solution to
Problem (3), denoted as S∗, satisfies |S∗| = K. As a
result, we can define CK = {S ⊂ V | |S| = K and
S is a capable actuator set} and rewrite Problem (3) as the
minimization of F over the set CK . The greedy algorithm
starts from the empty set and iteratively expands this set by
adding an element, which maximizes the marginal gain. Let
St denote the actuator set obtained at the tth iteration. This
set St has to be a subset of some set in CK . Otherwise, the
greedy solution SK would not belong to CK . Thus, define
C̃K = {Ω | ∃ S ∈ CK such that Ω ⊂ S} and reformulate
Problem (3) as

min
S

F (S) s.t. S ∈ C̃K . (5)

The strict monotonicity of F again ensures that the optimal
solution of Problem (5) coincides with that of (3). As such,
for the rest of the paper, we consider solving Problem (5) as
an equivalent characterization of Problem (3).

Next, we show that the feasible region of Problem (5) has
a matroid structure and this helps us bound the worst-case
performance of the greedy algorithm. To this end, we first
bring in the definition of a matroid.

Definition 3: A matroid M is a pair (V,F) consisting of
a ground set V and a collection F of subsets of V which
satisfies (i) ∅ ∈ F , (ii) if S ∈ F and S′ ⊂ S, then S′ ∈ F ,
(iii) if S1,S2 ∈ F and |S1| < |S2|, there exists ω ∈ S2 \ S1

such that {ω}∪S1 ∈ F . Every set in F is called independent.
Theorem 1: M = (V, C̃K) is a matroid.

Proof: To prove this theorem, we show that given an
actuator set S, structural controllability of (A,B(S)) can

equivalently be formulated as structural controllability of the
system with the set S chosen as a leader set. Then, we
use a result from [13] showing the matroid structure of the
structural controllability constraints in leader selection prob-
lems. This result builds on [12], which shows the equivalence
between structural controllability and existence of a perfect
matching in an auxiliary bipartite graph whenever the graph
G is strongly connected.

Define N = V \S and partition the state vector x into xS
and xN . The dynamics can equivalently be written as[

ẋN
ẋS

]
=

[
ANN ANS
ASN ASS

] [
xN
xS

]
+

[
0 0
0 I|S|

]
u, (6)

where I|S| ∈ R|S|×|S| is the identity matrix.
In the leader selecting problem studied in [18], if the set S

is chosen as a leader set, it is assumed that the values of xS
are directly dictated and are not influenced by the dynamics
of xN . Under this assumption, by treating xS as the input,
the dynamics of xN are given by ẋN = ANNxN +ANSxS .
Then, the leader set S achieves structural controllability if
(ANN , ANS) is structurally controllable, which would allow
the values of xN to be steered to desired positions. Note
that it is not clear whether we would achieve structural
controllability when this set is chosen as the set of actuators
in our original actuator placement problem.

From Definition 1, the set S is a capable actuator set if and
only if there exists a pair (Â, B̂) with the same structure as
(A,B(S)) such that the controllability matrix P ∈ Rn×n2

,

P =

[
0 0 0 ÂNS 0 ÂNN ÂNS + ÂNSÂSS · · ·
0 I|S| 0 ÂSS 0 ÂSN ÂNS + Â2

SS · · ·

]
,

has full rank. Next, we claim that P has full rank if and only
if the following matrix P̃1 ∈ R|N |×n2

has full rank,

P̃1 =
[
0 0 0 ÂNS · · · 0 Âj−1NN ÂNS · · ·

]
.

To see this, notice that P has full rank if and only if the
submatrix P1 ∈ R|N |×n2

containing the first |N | rows of P
has full rank. One can then show that there exists an upper
triangular matrix U ∈ Rn2×n2

with unit diagonal entries
such that P̃1 = P1U . Since U is invertible, P̃1 and P1 have
the same rank.

Then, we further claim that P̃1 has full rank if and only
if the following matrix P̄1 has full rank

P̄1 =
[
ÂNS ÂNN ÂNS · · · Â

|N |−1
NN ÂNS

]
.

Considering |S| > 0 and thus |N | − 1 ≤ n− 2, for any i >
|N | − 1, ÂiNN ÂNS is in the span of the matrices ÂjNN ÂNS ,
j = {0, 1, . . . , |N |−1} by Cayley-Hamilton theorem. Hence,
P̄1 has the same rank as P̃1. This proves the claim.

In summary, P has full rank if and only if P̄1 has full rank.
By the definition of P̄1, P̄1 being full rank is equivalent to
controllability of (ÂNN , ÂNS). Hence, structural controlla-
bility of (A,B(S)) is equivalent to structural controllability
of (ANN , ANS).

Now, define LK = {S | |S| = K and (ANN , ANS) is
structurally controllable} and conclude that LK = CK . The



Algorithm 1 Greedy Algorithm on Matroid Optimization
Input: set function f , ground set V and matroid (V,F)
Output: actuator set SG

function GREEDYONMATROID(f, V,F)
S0 = ∅, U0 = ∅, t = 1
while U t−1 6= V do

i∗(t) = arg maxi∈V \Ut−1 ρi(S
t−1)

if St−1 ∪ {i∗(t)} /∈ F then
U t−1 ← U t−1 ∪ {i∗(t)}

else
ρt−1 ← ρi∗(t)(S

t−1) and vG
t = i∗(t)

St ← St−1 ∪ {vG
t } and U t ← U t−1 ∪ {vG

t }
t← t+ 1

end if
end while
SG ← St−1

end function

set collection LK consists of all the K cardinality leader sets
achieving structural controllability. From [13, Thm. 4], we
have that the pair (V, L̃K), where L̃K := {Ω | ∃ S ∈ LK
such that Ω ⊂ S}, is a matroid if the graph G is strongly
connected. Therefore, the pair (V, C̃K) is also a matroid.

The proof above establishes the equivalence between
finding a capable actuator set in our original problem and
finding a leader set achieving structural controllability in a
corresponding leader selection problem.

IV. PERFORMANCE GUARANTEE

By considering f = −F as the objective, Problem (5) falls
into the following class of optimization problems:

max
S⊂V

f(S), increasing and γ-submodular

s.t. S ∈ F , where M = (V,F) is a matroid,
(7)

where the cardinality of the largest set in F is K. Our goal is
to derive a performance guarantee for the greedy algorithm
applied to Problem (7).

The greedy algorithm is presented in Algorithm 1. Let
St denote the actuator set returned by the tth iteration. At
the tth iteration, we check the feasibility of the node with
the largest marginal gain in V \ St−1. If the actuator set
obtained by adding this node to St−1 does not belong to
C̃K , we exclude the node from consideration. Among the
remaining ones, we check the feasibility of the node with
the largest marginal gain until a feasible node vG

t is found.
Then St = {vG

t }∪St−1 is the actuator set returned by the tth

iteration. The final actuator set is SG := SK . The feasibility
check ensures that St ∈ F . Hence, SG belongs to F .

We define U−1 = ∅, UK = V , and also use U t ⊂ V for
0 ≤ t ≤ K−1 to denote all the nodes having been considered
by the feasibility check before vG

t+1. We define the marginal
gains of the greedy algorithm as ρt = f(St+1)− f(St).

Our main result is as follows.
Theorem 2: If Algorithm 1 is applied to Problem (7), then

f(SG)− f(∅)
f(S∗)− f(∅)

≥ γ3

γ3 + 1
. (8)

The idea of the proof extends the work in [14], which
derives a performance guarantee for matroid optimization
featuring a submodular objective.

To assess the suboptimality of the actuator set SG, we
need to find an upper bound for f(S∗)− f(SG). We denote
S∗ = {v∗1 , . . . , v∗K} and notice

f(S∗)− f(SG) ≤ f(S∗ ∪ SG)− f(SG)

=

K∑
k=1

ρv∗k({v∗1 , . . . , v∗k−1} ∪ SG)

≤ γ−1
∑

j∈S∗\SG

ρj(S
G), (9)

where the first inequality is due to the monotonicity of f and
the equality follows from a telescoping sum. The last inequal-
ity is from Definition 2. To further bound

∑
j∈S∗\SG ρj(S

G),
we have the following lemmas. For these lemmas, define

st = |S∗ ∩ (U t+1 \ U t)|.

Lemma 2: It holds that∑
j∈S∗\SG

ρj(S
G) ≤ γ−1

K∑
t=1

ρt−1st−1. (10)

Proof: From Definition 2, we have

ρj(S
G) ≤ γ−1ρj(St−1), ∀t ≤ K, ∀j ∈ V. (11)

Since U t1 ⊂ U t2 for any t1 < t2, notice that

V = UK =

K⋃
t=0

(U t \ U t−1).

Considering U t1 \ U t1−1 and U t2 \ U t2−1 are disjoint, we
know that these sets constitute a partition of V . Since there is
no subset of U0 belonging to F , we have S∗∩U0 = ∅. Using
the partition of V , we can partition S∗ as: S∗ =

⋃K
t=1(S∗ ∩

(U t \ U t−1)). Combining this with (11), we have∑
j∈S∗\SG

ρj(S
G) ≤

∑
j∈S∗

ρj(S
G)

=

K∑
t=1

∑
j∈S∗∩(Ut\Ut−1)

1

γ
ρj(S

t−1).

(12)

Notice that all the nodes in U t−1 have been considered
by the feasibility check before vG

t . Since the greedy algo-
rithm first checks the elements in V \ U t−1 with larger
marginal gains when added to U t−1, we have that ρt−1 =
maxj∈V \Ut−1 ρj(S

t−1). Considering V \U t−1 = ∪Ki=t(U i \
U i−1), for any t′ ≥ t,

ρt−1 ≥ ρj(St−1),∀j ∈ U t
′
\ U t

′−1. (13)

Thus, for any j ∈ S∗∩(U t\U t−1), we have ρj(St−1) ≤ ρt−1
and ∑

j∈S∗∩(Ut\Ut−1)

ρj(S
t−1) ≤ ρt−1st−1. (14)

Now combining (12) and (14), it is straightforward that



∑
j∈S∗\SG ρj(S

G) ≤
∑K
t=1 γ

−1ρt−1st−1.

Lemma 3: For any t ∈ {1, . . . ,K}, we have
t∑
i=1

si−1 ≤ t. (15)

This has been proven by [14] for γ = 1. Since the
proof exploits the matroid structure, the above lemma holds
also when γ 6= 1. The proof is included for the sake of
completeness.

Proof: We claim that any independent subset of U t has
a cardinality at most t. Otherwise, due to F being a matroid,
there exists j ∈ U t \ St such that St ∪ {j} is independent.
Since j ∈ U t and U t = ∪ti=0(U i \U i−1) is a partition, there
exists t′ ≤ t such that j ∈ U t′ \ U t′−1. Since St

′ ∪ {j} ⊂
St ∪ {j}, St′ ∪ {j} is independent. By the mechanism of
the greedy algorithm, we know j passes the feasibility check
ahead of vG

t′+1, which contradicts the fact that j is discarded.
Then, notice that S∗ ∩ U t is an independent subset of U t.
Hence, its cardinality is no more than t according to the
above claim. The partition U t = ∪ti=0(U i \ U i−1) gives us
that

∑t
i=1 si−1 = |S∗ ∩ U t| ≤ t.

We use (15) to obtain an upper bound to the right-hand
side of (10) and consequently to derive an upper bound of
f(S∗)−f(SG). The following explains these steps in detail.

Proof: (Proof of Theorem 2) First, we consider the
case in which ρi, i = 0, . . . ,K − 1, are distinct. We define
t1 such that ρt1−1 is the largest among ρ0, ρ1, . . . , ρK−1 and
t2 such that ρt2−1 is the largest among ρt1 , ρt1+1, . . . , ρK−1.
Following the same pattern we have t1, t2, . . . , tp, where
tp = K. Since si ≥ 0 is bounded by (15), to give an upper
bound to the right-hand side of (10), we construct a linear
program as follows,

max
s0,s1,...,sK−1

K∑
i=1

ρi−1si−1

s.t.

t∑
i=1

si−1 ≤ t, t = 1, 2, . . . ,K,

st−1 ≥ 0, t = 1, 2, . . . ,K.

(16)

Let s∗i−1, i = 1, 2, . . . ,K, denote the optimal solution.
We claim s∗t1−1 = t1. Otherwise, s∗t1−1 < t1 and due to
(15) two situations might happen, a)

∑t1
i=1 s

∗
i−1 = t1 or b)∑t1

i=1 s
∗
i−1 < t1.

For case a), we obtain
∑t1−1
i=1 s∗i−1 > 0. It follows that

there exists l < t1 such that s∗l−1 > 0. Then, we decrease
s∗l−1 by δ > 0 and increase s∗t1−1 also by δ. The value of δ
is small enough so that s∗l−1 > 0. This operation decreases∑t
i=1 s

∗
i−1 for l ≤ t ≤ t1− 1 and keeps the sum unchanged

for any other t, so the constraints of (16) are not violated.
Also considering that ρ∗t1−1 > ρ∗l−1, after these changes, the
objective function is strictly greater than the value obtained
at the original optimum. Thus, case a) is impossible.

For case b), we collect all the integers l > t1 satisfying
s∗l−1 > 0. Assume they are lq > · · · > l1 > t1. We have q ≥
1. Otherwise, s∗l−1 = 0 for any l > t1 and we can increase

s∗t1−1 by a small amount to obtain a greater value of the
objective function without violating the constraints. Knowing
that s∗l1−1 > 0 and following the same reasoning provided in
the discussion for the case a), we increase s∗t1−1 and decrease
s∗l1−1 with the same amount. This way, an objective value is
obtained larger than that evaluated at the original optimum.
Thus, case b) is impossible.

In conclusion, s∗t1−1 = t1 and (16) is equivalent to

max
st1 ,...,sK−1

K∑
i=t1+1

ρi−1si−1

s.t.

t∑
i=t1+1

si−1 ≤ t− t1, t = t1 + 1, . . . ,K,

st−1 ≥ 0, t = t1 + 1, . . . ,K.

(17)

We determine s∗t2−1 in the same way as we determine s∗t1−1
in (16). By repeating the above procedure we obtain the
solution to (16) as

s∗i−1 =


t1, if i = t1,

tj − tj−1, if i = tj and j 6= 1,

0, otherwise.
(18)

Now, if ρi, i = 0, . . . ,K−1 are not distinct, that is, there
exist i1 < i2 < · · · < iq such that ρi1 = ρi2 = · · · = ρiq ,
we can let s∗i1 = s∗i2 = · · · = s∗iq−1

= 0 and obtain the same
solution as (18).

Next, notice that

ρi2 = f(Si2+1)− f(Si2)

≤ γ−1(f(Si1 ∪ {vG
i2+1})− f(Si1))

≤ γ−1ρi1 ,
(19)

where the first inequality comes from the definition of
submodularity ratio, while the second is due to (13). Sub-
stituting the optimal solution into the objective function and
considering (19), we have

K∑
i=1

ρi−1s
∗
i−1 = t1ρt1−1 + · · ·+ (tp − tp−1)ρtp−1

≤ γ−1
p∑
k=1

tk∑
i=tk−1+1

ρi−1

= γ−1
K∑
i=1

ρi−1

= γ−1(f(SG)− F (∅)).

(20)

Combining (9), (10) and (20), we have

f(S∗)− f(SG) ≤ γ−1
∑

j∈S∗\SG

ρj(S
G)

≤ γ−2
K∑
i=1

ρi−1s
∗
i−1

≤ γ−3
(
f(SG)− f(∅)

)
.



By rewriting the above inequality, we have

f(SG)− f(∅)
f(S∗)− f(∅)

≥ γ3

γ3 + 1
.

When γ = 1, the guarantee in (8) coincides with that
of [14], derived for a submodular f . We refer to the appendix
for a comparison with the guarantee given by [15] for the
residual random greedy algorithm. Since in the proof, only
(9), (11) and (19) utilize γ, we denote the maximum γ
satisfying these three inequalities as γG. We call γG the
greedy submodularity ratio since it can be derived only after
the greedy algorithm is completed. If γ is replaced by γG,
the performance guarantee in (8) would still hold. Clearly,
this gives a better performance guarantee because γG ≥
γ. One can calculate γG after obtaining SG by analyzing
the three inequalities, which involves analyzing O(

(
n
K

)
)

inequalities. On the other hand, computing the submodularity
ratio involves O(2n) inequalities. Notice that γG changes
with the constraint set of the problem since the inequalities
defining γG would be different. In contrast, submodularity
ratio γ depends only on the objective function.

By substituting f = −F and γG, the greedy submodularity
ratio of −F , into the performance guarantee (8), we obtain

F (∅)− F (SG)

F (∅)− F (S∗)
≥ γ3G
γ3G + 1

. (21)

Since we have F (∅) = nε−1, and ε is generally small, the
guarantee above can be loose. We show this in the numerics.

V. IMPLEMENTATION AND NUMERICAL RESULTS

A. Feasibility check over C̃K
When applied to Problem (5), the greedy algorithm has

to ensure that the actuator set returned by each iteration lies
in C̃K . The work of [12] proposes a method to determine
whether a given set S with |S| = K belongs to CK . As will
be explained later in theory and examples, this result is not
directly applicable to answer whether an actuator set S with
|S| < K returned by a greedy iteration belongs to C̃K . In
the following, we extend the work of [12] for a feasibility
check over C̃K by constructing auxiliary bipartite graphs
associating structural controllability with the existence of a
perfect matching.

We introduce the concept of matchings and bipartite
graphs. An undirected graph is called bipartite and denoted
as (V 1, V 2,E) if its vertices are partitioned into V 1 and V 2

while any edge in E connects a vertex in V 1 to another in V 2.
A matching m is a subset of E if no two edges in m share
a vertex in common. Given a subset L of V 1 ∪ V 2, we say
L is covered by m if any v ∈ L is connected to an edge in
m. Matching m is maximum if it has the largest cardinality
among all the matchings and is perfect if V 2 is covered.

Given the graph G = (V,E) describing system (1), we
first build an auxiliary bipartite graph to determine whether
a given actuator set S is capable. V ′ = {v′1, . . . , v′n} is built
as a copy of V = {v1, . . . , vn} and S′ ⊂ V ′ denotes the

copy of S. For the auxiliary edges, the edge set E includes
an undirected edge connecting vi to v′j if (vi, vj) ∈ E. The
edge set ES ⊂ E consists of edges incident to v′k for any k
such that vk ∈ S. Using these sets, we build the bipartite
graph defined by a function that maps from S to subgraphs
of (V, V ′,E), specifically, Hb(S) = (V, V ′ \ S′,E \ ES).

If the graph G is strongly connected, the set S achieves
structural controllability if and only if there exists a perfect
matching in Hb(S), see [19, Thm. 2]. Using this result, [13]
develops a recursive feasibility check algorithm for leader
selection problems with structural controllability constraints.
This method states that the set S lies in C̃K if and only
if there is a maximum matching for the bipartite graph
Hb(∅) with all the nodes in the set S′ ⊂ V ′ unmatched.
However, this statement is true only if we consider the
minimum required cardinality for structural controllability
of the system, see the proof of [13, Lem. 3]. In Section V-B,
we provide a counterexample where the feasibility check in
[13] may not work.

We are now ready to provide our feasibility check.
Theorem 3: Given the strongly connected graph G, the

cardinality limit K and an actuator set S with |S| = k ≤ K,
S ∈ C̃K if and only if |m̄(S)| ≥ n −K, where m̄(S) is a
maximum matching in Hb(S).

Proof: “⇒”: If S ∈ C̃K , there exist Q ∈ CK such that
S ⊂ Q. This implies that there exists a perfect matching
m in Hb(Q) [19]. By the definition of perfect matching,
|m| = n −K. Since Hb(Q) is a subgraph of Hb(S), m is
also a matching in Hb(S). Thus |m̄(S)| ≥ |m| = n−K.

“⇐”: We pick a maximum matching in Hb(S) and denote
it as m̄. Suppose in Hb(S), P ′ = {v′i1 , . . . , v

′
id
} is the largest

subset of V ′ \ S′ missed by m̄. Since in V ′ \ S′ there are
at least n−K vertices covered by m̄, we have d ≤ K − k.
Let Q = P ∪ S, where P = {vi1 , . . . , vid}. Matching m̄ is
perfect inHb(Q) because no vertex in V ′\(P ′∪S′) is missed
by m̄. Hence, Q makes the system structurally controllable.
Also considering |Q| ≤ |J | + |S| ≤ K, we have Q ∈ C̃K .
Since S ⊂ Q, we also have S ∈ C̃K .

For our feasibility check, we still need a method to obtain a
maximum matching in Hb(S). It is well-established that this
can equivalently be done by solving a maximum flow prob-
lem [20]. There are several algorithms for solving maximum
flow problems. For instance, the Edmonds-Karp algorithm
that we adopt in the numerical studies requires O(pq2) steps,
where p and q respectively denote node cardinality and edge
cardinality in the flow graph generated based on Hb(S) [21].
For example, in Hb(∅), p = 2n+ 2 and q = 2n+ |E|. Thus,
at each greedy iteration, we can examine in polynomial time
whether {ω} ∪ St belongs to C̃K by finding the cardinality
of the maximum matching in Hb({ω} ∪ Sk).

B. Example on a 4-Node Network

Consider a system described by 4 nodes and the dynamic
equations (1) where

A =

[
0 −0.5 −0.8 −0.6
1 0 0 0
1 0 0 0
1 0 0 0

]
.
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Fig. 1. Original graph (V,E) and the auxiliary graph Hb({v3, v4})

Fig. 2. The auxiliary graph Hb(∅)

The graph G = (V,E) corresponding to this system is
provided in Figure 1. To calculate the metric F (S) in (2),
we let T = 2 and ε = 10−9.

Suppose at most two input nodes are allowed, that is, K =
2. The greedy algorithm first examines v3, because F ({v3})
is the smallest among F ({vi}), i = 1, 2, 3, 4. Notice that in
Hb({v3}) there exists a matching consisting of two edges.
Since n − K = 2, we know from Theorem 3 that {v3}
belongs to C̃K . Hence, the first node selected is v3. Even if
F ({v1}) were the smallest, v1 would not pass the feasibility
check, because any maximum matching in Hb({v1}) only
contains one edge. Thus, m̄({v1}) < n − K. This implies
that v1 does not belong to any capable actuator set with 2
elements. Then, the second node selected is v4. Thus, SG =
{v3, v4}. We illustrate the bipartite graph Hb({v3, v4}) in
Fig. 1. It can be seen that there exists a perfect matching.
Consequently, SG is indeed a capable actuator set.

We now provide a counterexample based on the example
above to show that the feasibility check method in [13]
excludes feasible nodes from the consideration of the greedy
algorithm. In this example, the minimum required cardinality
for structural controllability is K = 2 since any maximum
matching in Hb(∅) misses 2 nodes in V ′, see Fig. 2. Now,
assume K = 3. The feasibility check method in [13]
indicates that {v1} /∈ C̃K , because {v′1} is not missed by
any maximum matching in Hb(∅). However, since {v3, v4}
is structurally controllable, so is {v1, v3, v4}. Then, {v1} ⊂
{v1, v3, v4} implies that {v1} ∈ C̃K .

C. Experiment on a 23-Node Network

We study a system model based on an undirected un-
weighted graph given in Fig. 3 generated via Octave [22].
To gain insight into how the sets SG and S∗ depend on the
node connectivity, we assign different degrees to each vertex.
Specifically, vertex i has a degree of i if i < 13 and a degree
of 24− i if i ≥ 12. To calculate the objective function F (S)
in (2), we let ε = 1.9× 10−4 and T = 1.

1

2

3

4

5
6

7
8

9
10

11

1213

14
15

16

17

18

19

20

21

22

23

Optimum
Greedy

Fig. 3. Greedy selection versus the optimal

Illustrated in Fig. 3, the greedy selection includes some
nodes with high degrees that are discarded by the optimal
selection. The objective values are F (SG) = 6193.5 versus
F (S∗) = 4914.9. The greedy algorithm picks the nodes in
the order of 16, 13, 4, 8, 6, 20, 10, 21 while S∗ = {1, 3, 16,
18, 19, 20, 22, 23}. At earlier stages the greedy algorithm
tends to pick high-degree nodes that are not in S∗. This
is because the high-degree nodes generally result in larger
marginal gains at earlier stages of the greedy algorithm when
compared to the low-degree nodes since, intuitively, they help
influencing more nodes. The optimal solution S∗ suggests
that we can potentially improve the performance if we avoid
these high-degree nodes. This shows a disadvantage of the
greedy algorithm.

In this example, we numerically verified that γG = 1
satisfies (9), (11) and (19). Thus, γG = 1 is the greedy
submodularity ratio. By rewriting (21), the performance
guarantee is equivalent to F (SG) ≤ 1

2F (∅) + 1
2F (S∗) =

6.1 × 104 + 1
2F (S∗). In this example, the appearance of

F (∅) in the performance guarantee undermines its tightness.

VI. CONCLUSIONS

In this paper, we aimed to pick an actuator set to minimize
a controllability metric based on average energy consumption
while ensuring that the system is structurally controllable. We
showed that this problem can be reformulated as a weakly
submodular optimization problem over a matroid constraint.
Given the submodularity ratio of the objective function, we
bounded the worst-case performance of the greedy algorithm
applied to this class of problems. To implement the greedy
algorithm, we proved that the feasibility check over the
structural controllability matroid can be done via calculating
a maximum matching on a certain auxiliary bipartite graph
resulting from the network graph.

Our future work is focused on exploring how to obtain a
performance guarantee that can avoid F (∅). Inspired by the
numerics, we aim to investigate the network structures under
which our controllability metric is submodular.
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APPENDIX

DEFINITIONS OF SUBMODULARITY RATIO

Let γ1 denote the submodularity ratio of f from Defini-
tion 2. It is straightforward to see that γ = γ1 satisfies

γρU (S) ≤
∑

ω∈U\S

ρω(S),∀S,U ⊂ V. (22)
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Fig. 4. A comparison between two guarantees

However, the largest γ satisfying the above set of inequali-
ties, denoted as γ2, does not necessarily satisfy (4) given in
Definition 2. Hence, we have γ2 ≥ γ1.

There are previous studies in the literature defining the
submodularity ratio as γ2 instead of γ1 [7], [10], [15]. In
the proof of Theorem 2, as we are deriving (11), we use
the inequalities (4) from Definition 2. One can verify that
the inequalities in (22) would not allow us to derive (11).
Hence, the performance guarantee (8) does not extend to the
submodularity ratio γ2.

The work in [10] provides a performance guarantee for the
greedy algorithm applied to weakly submodular optimization
involving cardinality constraints. This guarantee improves
with increasing γ2. Since we have γ2 ≥ γ1, the guarantee
also holds if γ2 is replaced by γ1. In addition, the work of [7]
obtains a lower bound for γ2 for the metric −F in (2) based
on eigenvalue inequalities for sum and product of matrices.
One can easily verify that this lower bound is also applicable
to γ1 from Definition 2.

To the best of our knowledge, the guarantee in (8) is
the first performance guarantee for the greedy algorithm
applied to matroid optimization problems featuring weakly
submodular objective functions. The work of [15] exploited
the submodularity ratio defined by (22) and obtained a
guarantee for the residual random greedy algorithm on the
same problem. We denote the final set returned by this
algorithm as SRRG. The guarantee provided in [15] for this
class of randomized algorithms is

f(SRRG)− f(∅)
f(S∗)− f(∅)

≥ γ22
(1 + γ2)2

. (23)

Let γ denote the theoretical lower bound derived in [7] for
the metric −F in (2). This lower bound satisfies γ2 ≥ γ1 ≥
γ. Since γ is applicable to both (8) and (23), we let a1(γ) =
γ3/(1 +γ3) and a2(γ) = γ2/(1 +γ)2 denote the theoretical
guarantees associated with (8) and (23), respectively. These
two functions are plotted in Figure 4. We see that the
guarantee we derived in (8) is tighter than the one from [15],
if the lower bound satisfies γ > 0.5.

Besides these two definitions (4) and (22), there are
other notions that can characterize the incremental changes
of set functions, for instance, curvature for approximating
supermodularity. These notions are beyond the scope of the
present paper. We refer the interested readers to [23], [24].


