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Actuator Placement under Structural Controllability
using Forward and Reverse Greedy Algorithms

Baiwei Guo∗, Orcun Karaca∗, Tyler Summers, Maryam Kamgarpour

Abstract—Actuator placement is an active field of research
which has received significant attention for its applications in
complex dynamical networks. In this paper, we study the problem
of finding a set of actuator placements minimizing the metric
that measures the average energy consumed for state transfer
by the controller, while satisfying a structural controllability
requirement and a cardinality constraint on the number of
actuators allowed. As no computationally efficient methods are
known to solve such combinatorial set function optimization
problems, two greedy algorithms, forward and reverse, are
proposed to obtain approximate solutions. We first show that
the constraint sets these algorithms explore can be characterized
by matroids. We then obtain performance guarantees for the
forward and reverse greedy algorithms applied to the general
class of matroid optimization problems by exploiting properties
of the objective function such as the submodularity ratio and
the curvature. Finally, we propose feasibility check methods for
both algorithms based on maximum flow problems on certain
auxiliary graphs originating from the network graph. Our results
are verified with case studies over large networks.

I. INTRODUCTION

MANY large-scale complex dynamical networks, such as
those arising in power grids [1], biological networks [2]

and industrial systems [3] necessitate a resilient and efficient
operation under dynamic and uncertain environments. Hence,
there has been a surge of interest to study controller design
in such large-scale networks [4]–[13]. A fundamental design
problem is that of actuator placement in which the goal is to
select a subset from a finite set of possible placements for
actuators to optimize a desired network performance metric.

Variants of the actuator placement problem have been
shown to be NP-hard in general, see [7], [9], [14]. Thus,
it is desirable to obtain scalable algorithms with provable
suboptimality bounds. Earlier studies have adopted the forward
greedy algorithm. This algorithm extends the actuator set with
the most beneficial actuator iteratively to derive an approxi-
mate solution [1]. Under a submodular network performance
metric and a cardinality constraint on the number of actuators,
the forward greedy algorithm is shown to enjoy a provable
performance guarantee [15]. However, some metrics do not
exhibit submodularity including the metric in this work, that
is, the average energy required to reach any arbitrary direction
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of the state space [16]. To alleviate this issue, submodularity
has been extended to weak submodularity using the notion of
submodularity ratio, quantifying how close a function is to
being submodular [17], [18]. Given this ratio, it is possible
to derive a performance guarantee for the forward greedy
algorithm applied to a larger class of performance metrics [16].

Nonetheless, the guarantees above are restricted to problems
subject to simple cardinality constraints. Given a cardinality
constraint, the resulting actuator set might not be capable
of moving the system over the entire state space, that is,
might not render the system controllable. To address this
issue, we need to include controllability as a constraint.
However, to the best of our knowledge, there is no approach
to quantify the forward greedy algorithm’s performance with
a nonsubmodular metric and a controllability constraint, nor
to ensure feasibility of the iterates of the greedy algorithm in
such problems. On the other hand, structural controllability
constraints have been well-studied. This controllability con-
cept exploits only the graphical interconnection structure of
the dynamical system [5], [19]–[22]. Structurally controllable
systems are those controllable after a slight perturbation of the
system parameters corresponding to the fixed set of edges in
the underlying network graph. The authors in [23] have studied
a leader selection problem to obtain a structurally controllable
system while minimizing a submodular objective function.
The structural controllability constraint arising in the leader
selection problem is proven to give rise to a matroid constraint
enabling the application of the forward greedy algorithm [23].
However, the leader selection problem is different from the
actuator placement problem. The former selects a set of leader
nodes whose states can arbitrarily be dictated to steer the
remaining nodes to desired states, while the latter does not
permit the states to be dictated arbitrarily; instead, it selects a
set of actuators which can influence all of the states through
the dynamics. Hence, this paper pays special attention to
formulating the structural controllability constraints of the
actuator placement problem as a matroid constraint by proving
the equivalence of this concept in both the leader selection
problems and the actuator placement problems.

Given a matroid, [24] derives a performance guarantee for
the forward greedy algorithm when optimizing a submodular
objective. However, past work has not successfully derived
performance guarantees for optimizing weakly submodular
objective functions, such as the aforementioned average energy
consumption metric, subject to a matroid. The first goal is to
obtain a guarantee for this setting. In Appendix A, we discuss
relevant existing guarantees from [15], [18], [24]–[28].

An inherent drawback of the forward greedy algorithm is
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that any performance guarantee has to involve the objective
function evaluated at the empty set as the reference value,
since the actuator set expands starting from the empty set.
This reference value is in general large for the average energy
consumption metric, or even infinite [16], and it plays a great
role towards the tightness of the guarantee. In addition, many
works have reported the lack of ability of the forward greedy to
correct errors made in earlier steps [29], [30]. An alternative is
to adopt the reverse greedy, which excludes the least beneficial
actuator iteratively starting from the full set. In this case, any
potential performance guarantee would instead involve the
objective function evaluated at the full set, which is in general
small for the performance metric considered in this work.

Among the applications of the reverse greedy algorithm,
[31] studied the special setting of metric k-median problem
and this algorithm is shown to have a better performance than
the forward greedy algorithm. The work of [32] provides
a guarantee for minimizing a supermodular decreasing
function under cardinality constraints by exploiting a notion
of function steepness, while [33] extends this analysis to
account for comatroid constraints.1 Our paper in [34] provides
a counterexample to the performance guarantee obtained
in [33], and explains where the mistake originates from in
their proof. Nevertheless, none of the problem settings can
generalize the problem of actuator placement considered in
this work. This is because, in addition to involving matroid
constraints, via a reformulation, the objective function of
our problem will be shown to exhibit weak supermodularity,
which will be characterized by the notion of curvature [18],
[28]. To the best of our knowledge, there is no performance
guarantee for the reverse greedy algorithm applicable to
optimizing weakly submodular and weakly supermodular
objective functions (defined by submodularity ratio and
curvature, respectively) subject to matroid constraints.

Our main contributions are as follows.
(i) We show that the minimization of the average energy

consumption metric under structural controllability constraints
can be reformulated as the maximization of a strictly increas-
ing weakly submodular function subject to matroid constraints,
see Lemma 2, Proposition 1, and Problem (5).

(ii) We obtain a performance guarantee for the forward
greedy algorithm applied to this general class of matroid
optimization problems, see Theorem 1.2

(iii) We show that the actuator placement problem has an-
other reformulation as the minimization of a strictly increasing,
weakly submodular, and weakly supermodular function subject
to matroid constraints and a cardinality lower bound, see
Lemma 3, Proposition 3, and Problem (11). This reformulation
allows us to implement the reverse greedy algorithm.

(iv) For the reverse greedy algorithm, we obtain a perfor-
mance guarantee employing both notions, see Theorem 2.

(v) The average energy consumption metric is well-defined
only if we introduce a metric-modifying parameter [14]. To

1Comatroid is the complementary notion of a matroid, see [33].
2Theorems 1 and 2 could be of independent interest for researchers working

on greedy algorithms. Preliminary results concerning the forward greedy—
(i) and (ii) above—were presented in a conference paper in [35]. This paper
significantly extends that work by contributions (iii) to (vii), and utilizes the
newly introduced greedy notions of the curvature and the submodularity ratio.

this end, we design an algorithm with a provable performance
to pick such parameters, see Proposition 6 and Algorithm 3.

(vi) For both algorithms, we show that the matroid feasibil-
ity checks for the actuator placement can be done efficiently
by translating them into maximum flow problems over certain
auxiliary graphs, see Propositions 7, 8. These results extend [5]
which associates structural controllability with the existence
of a perfect matching. We also provide a counterexample to
a feasibility check in [23] for the leader selection problem.

Finally, we provide numerical case studies with models
based on randomly generated networks and a large power
grid. As an additional insight, we demonstrate that the forward
greedy algorithm tends to pick higher degree actuators when
compared to the optimal and the reverse greedy solutions.

In the remainder, Section II introduces the problem formu-
lation and preliminaries. Sections III and IV apply the forward
and the reverse greedy algorithms, respectively, and obtain
guarantees. Section V proposes a method to pick a metric-
modifying parameter and feasibility check methods for greedy
algorithms. Numerical studies are presented in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem formulation

Consider a linear system with state vector x ∈ Rn. To
each state variable xi ∈ R, we associate a node vi ∈ V :=
{v1, . . . , vn}. A control input ui ∈ R can be exerted at each
node vi. Given a set S ⊂ V chosen as the actuator set, the
system dynamics can be written as

ẋ = Ax+B(S)u. (1)

Above, B(S) = diag(1(S)) ∈ Rn×n, where 1(S) denotes a
vector of size n whose ith entry is 1 if vi belongs to S and
0 otherwise. Let G = (V,E) denote a directed graph relating
to system (1) with nodes V and edges E, where the edge
(vj , vi) ∈ E if (A)ij 6= 0. Similar to several previous studies
on structural controllability, e.g., [10], [23], throughout the
paper, we assume that G is strongly connected, which will be
discussed in Section V-B.

The pair (A,B(S)) is called controllable if for all x0, x1 ∈
Rn and T > 0 there exists a control input u : [0, T ] →
Rn that steers the system from x0 at t = 0 to x1 at
t = T . For linear time-invariant systems, controllability can
be verified by the rank of the controllability matrix P =[
B(S) AB(S) · · · An−1B(S)

]
∈ Rn×n2

. However, the
entries in A are generally not exactly known but only ap-
proximately determined with small errors using system iden-
tification techniques. Moreover, when dealing with large-scale
networked systems, it is often the case that we can only rely on
the topology but not on the particular weights [11]. Motivated
by these particularities, we consider structural controllability.

Definition 1: (A,B) and (Â, B̂) with A,B, Â, B̂ ∈ Rn×n
are said to have the same structure if matrices [A B] and
[Â B̂] have zeros at the same entries. Given S ⊂ V , (A,B(S))
is structurally controllable if there exists a controllable pair
(Â, B̂) having the same structure as (A,B(S)).

As it turns out, structural controllability is a generic
property, that is, the pair (A,B(S)) is structurally controllable
if and only if almost all of the pairs with the same structure
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are controllable [21]. This implies that whenever (A,B(S))
is not controllable but structurally controllable, it is possible
to slightly perturb the entries to ensure controllability [19].
Observe that structural controllability depends on the positions
of the nonzero entries. Later, this will allow us to determine
this property by the graph G relating to the system.

Even if a system is controllable, an unacceptably large
amount of energy might be needed to reach a desired state.
Specifically, the work in [6] shows that if the number of
actuators is kept constant, then certain controllable systems
are practically uncontrollable since the energy consumption
grows at least exponentially with the number of states n.
Hence, it is crucial to minimize this energy consumption. The
minimum energy required to steer the system from zero at
t = 0 to x ∈ Rn at t = T is given by x>W−1

T (S)x, where
WT (S) =

∫ T
0
eAτB(S)B>(S)eA

>τdτ is the controllability
Gramian. To obtain an expression independent of the initial
state x, calculate the average energy required over the unit
sphere, ||x||2 = 1, as F (S) := tr(W−1

T (S)). This expression
is well-defined only when the set S renders the system
controllable. Inspired by [14], we introduce a small positive
number ε ∈ R+ to handle uncontrollable actuator sets and
propose the metric Fε : 2V → R+,

Fε(S) = tr((WT (S) + εI)−1), ∀S ⊂ V. (2)

In Section V-A, we discuss the choice of ε.
To make a system easier to control, we seek a set S ⊂ V

minimizing the metric above. Since in a large-scale network,
the number of actuators allowed is in general limited, we
consider a cardinality bound of K ∈ N on the actuators.
Additionally, we require that the actuators render the system
structurally controllable. Our main problem is formulated as

min
S⊂V

Fε(S)

s.t. |S| ≤ K, (A,B(S)) is structurally controllable.
(3)

Assume K is large enough to ensure feasibility. In Section
V-B, we discuss how to determine the smallest K. Problem
(3) is a combinatorial optimization, and to the best of our
knowledge, no computationally feasible solution method
has ever been proposed. Existing works have either studied
additive/modular objectives [8], [11], [36], [37] (e.g., actuator
installation costs, minimizing K directly), or included only
cardinality constraints [1], [16]. Notice that neither our
objective is additive nor we have only cardinality constraints.
Later, we will adopt efficient heuristics to derive solutions.

B. Preliminaries

We first introduce widely adopted notions for the properties
of set functions and set constraints.

1) Properties of set functions: Given a ground set V and
a set function f : 2V → R, we say f is (strictly) increasing
if f(S1) ≤(<)f(S2) for any S1 $ S2 ⊂ V . If −f is (strictly)
increasing, we say f is (strictly) decreasing. For an increasing
set function, the marginal gain from the addition of a certain
element v ∈ V to a set S ⊂ V varies for different S. For
many set functions in practical problems the marginal gain
diminishes as S expands, see the examples in [38], [39].

Submodularity describes this property and submodularity ratio
describes how far a nonsubmodular function is from being
submodular. For the following, denote the marginal gains by
ρU (S) := f(S ∪ U)− f(S), ∀S,U ⊂ V. For notational sim-
plicity, we use v and {v} interchangeably for singleton sets.

Definition 2: For an increasing function f : 2V → R, the
submodularity ratio is the largest γ ∈ R+ such that γρv(S ∪
U) ≤ ρv(S), ∀S,U ⊂ V, ∀v ∈ V \(S∪U). It can be verified
that γ ∈ [0, 1]. A set function f with submodularity ratio γ is
called γ-submodular. A γ-submodular set function is said to
be submodular if γ = 1 and weakly submodular if 0 < γ < 1.

In Appendix B, we connect Definition 2 with another exist-
ing notion of submodularity ratio and discuss the necessity of
introducing this notion as per Definition 2 for the guarantee
derived for the forward greedy algorithm in Section III.

Other than submodularity, another widely-used notion is
supermodularity, that is, the marginal gain from the addition
of v /∈ S to the set S increases as S expands. By introducing
supermodularity and the curvature, that is, how far a non-
supermodular function is from being supermodular, we obtain
a more precise description on how the marginal gains change.

Definition 3: For an increasing function f : 2V → R, the
curvature is the smallest α ∈ R+ such that ρv(S ∪ U) ≥
(1 − α)ρv(S), ∀S,U ⊂ V, ∀v ∈ V \ (S ∪ U). It can be
verified that α ∈ [0, 1]. Function f with curvature α is called
α-supermodular. An α-supermodular function is supermodular
if α = 0 and weakly supermodular if 0 < α < 1.

To see how submodularity ratio and curvature are related,
notice that for an increasing set function f the submodularity
ratio γ and the curvature α satisfy

γ= min
S,U,

v∈V \(S∪U)

ρv(S)

ρv(S∪U)
≤ max

S,U,
v∈V \(S∪U)

ρv(S)

ρv(S∪U)
=

1

1−α
. (4)

2) Properties of set constraints: Many combinatorial opti-
mization problems from the literature are subject to constraints
that are more complex than simple cardinality constraints,
see the examples in [40], [41]. Among those, we introduce
matroids since they will generalize reformulations of the
constraints found in Problem (3), and they allow performance
guarantees for greedy algorithms [42].

Definition 4: A matroid M is an ordered pair (V,F)
consisting of a ground set V and a collection F of subsets
of V which satisfies (i) ∅ ∈ F , (ii) if S, S′ ∈ F and S′ ⊂ S,
then S′ ∈ F , (iii) if S1,S2 ∈ F and |S1| < |S2|, there exists
v ∈ S2 \ S1 such that v ∪ S1 ∈ F . Every set in F is called
independent, and maximum independent sets refer to those
with the largest cardinality.

To adopt the reverse greedy algorithm, an additional concept
will be required, that is, the dual of a matroid.

Definition 5: Given a matroid (V,F), let F∗ =
{U | ∃ a maximum independent set M ∈ F such that U ⊂
V \M}. The pair (V,F∗) is the dual of the matroid (V,F).

We characterize its structure in the following lemma.
Lemma 1: The pair (V,F∗), the dual of a matroid (V,F),

is also a matroid.
Proof: Suppose {Mi}qi=1 is the collection of all maximum

independent sets in matroid (V,F). From [43, Ch. 2] we
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have that {V \Mi}qi=1 defines a collection of all maximum
independent sets for another matroid denoted by (V, F̃). In
the following, we prove that F∗ = F̃ . For any U ∈ F∗,
there exists M , a maximum independent set in F , such
that U ⊂ V \ M . Since V \ M ∈ F̃ and (V, F̃) is a
matroid, the set U also belongs to F̃ from property (ii) in
Definition 4. Conversely, if U ∈ F̃ , according to property (iii)
in Definition 4, U is a subset of some maximum independent
set in F̃ . Consequently, there exists a maximum independent
set M ∈ F such that U ⊂ V \ M. Thus, U ∈ F∗. This
concludes that F∗ = F̃ and thus (V,F∗) is also a matroid.

[43, Ch. 2] defines the dual concept as (V, F̃), and the
proof above verifies that (V,F∗) we have in Definition 5 is
an equivalent reformulation. This reformulation will help us
present the proof of Proposition 3 in a more clear way.

III. FORWARD GREEDY ALGORITHM

In the following, we reformulate Problem (3) as the max-
imization of a strictly increasing weakly submodular function
subject to matroid constraints. We then obtain a guarantee for
a forward greedy algorithm over matroid constraints.

A. Properties of the objective

Intuitively, with more input nodes, system (1) would be
easier to control and thus the metric Fε in (2) would be smaller.
This intuition can be readily verified as follows.

Lemma 2: The metric Fε = tr((WT (S) + εI)−1) satisfies
the following statements: (i) Fε is strictly decreasing, (ii) −Fε
is weakly submodular with submodularity ratio γfε.

The proof is relegated to Appendix C. Together with the fact
that the structural controllability is preserved under actuator
set expansion, Lemma 2 implies that the optimal solution to
Problem (3) should contain exactly K nodes.

B. Reformulation of the constraint set

In combinatorial optimization problems with only cardinal-
ity constraints, the forward greedy algorithm starts from the
empty set and at tth iteration, adds the most marginally benefi-
cial node vft to the actuator set. It terminates when the cardinal-
ity of the actuator set is K. When applied to Problem (3), this
method might return an actuator set under which the system
is not structurally controllable. To this end, we need to restrict
the greedy iterates St = {vf1, . . . , vft}, for t = 1, . . . ,K, such
that the set SK returned by the forward greedy algorithm is
guaranteed to satisfy structural controllability.

Since the optimal solution to Problem (3) contains exactly
K nodes, we define CK = {S ⊂ V | |S| = K and the system
is structurally controllable under S} and rewrite Problem (3)
as the minimization of Fε over the set collection CK . In the
procedure of the forward greedy algorithm, the set St has to be
a subset of some set in CK , since otherwise the greedy solution
SK would not belong to CK . Thus, define C̃K = {Ω | ∃S ∈
CK such that Ω ⊂ S} and reformulate (3) as

max
S⊂V

−Fε(S) s.t. S ∈ C̃K . (5)

The strict monotonicity of −Fε ensures that the optimal
solution to Problem (5) coincides with that of Problem (3).

As such, we consider solving Problem (5) as an equivalent
characterization of Problem (3).

Next, we show that the feasible region of Problem (5) char-
acterizes a matroid, which will allow us to derive performance
guarantees for the greedy solution SK .

Proposition 1: M = (V, C̃K) is a matroid.
To prove this, we establish the equivalence between

structural controllability of (A,B(S)) in Problem (3) and
structural controllability of the system with the set S chosen
as a leader set in a corresponding leader selection problem.
We then invoke a result from [23] proving the matroid
structure of the structural controllability constraints in leader
selection problems. For the details and additional discussions,
we kindly refer to the proof in Appendix D. This equivalence
result will later be utilized in Sections V-B and V-C to bring
in results from the leader selection literature.

We now restrict the iterates of the forward greedy algorithm
to lie in the set collection C̃K . As a remark, given St ∈ C̃K for
t < K, by Definition 4, we can always find a node v ∈ V \St
such that St ∪ v ∈ C̃K , as long as CK 6= ∅. Therefore, it is
guaranteed that at iteration K we obtain an actuator set in CK .

C. Performance guarantee

In the previous section, we showed that the objective func-
tion −Fε is γfε-submodular in Lemma 2 and the feasible region
C̃K characterizes a matroid in Proposition 1. Thus, Problem (5)
falls into the following class of optimization problems:

max
S⊂V

f(S), strictly increasing and γ-submodular

s.t. S ∈ F , where M = (V,F) is a matroid,
(6)

where the cardinality of any maximum independent set in F
is K. Let S∗ denote its optimal solution.

The forward greedy over a matroid was first introduced in
[24] for submodular objectives. This algorithm is presented in
Algorithm 1. At the tth iteration, we check the feasibility of
the node with the largest marginal gain in V \ St−1. If the
actuator set obtained by adding this node to St−1 does not
belong to F , we exclude the node from consideration. Among
the remaining ones, we check the feasibility of the node with
the largest marginal gain until a feasible node vft is found.
Then St = {vft} ∪ St−1 is the actuator set returned by the tth

iteration. The final actuator set is Sf := SK . The feasibility
check ensures that St ∈ F and hence Sf belongs to F .

We use U t ⊂ V for 0 ≤ t ≤ K − 1 to denote all the nodes
having been considered by the feasibility check before vft+1.
We define the marginal gains as ρt = f(St+1)− f(St).

Using the matroid structure and the submodularity ratio, we
can state our first main result as follows.

Theorem 1: If Algorithm 1 is applied to Problem (6), then

f(Sf)− f(∅)
f(S∗)− f(∅)

≥ γ3

γ3 + 1
. (7)

The proof is relegated to Appendix E. The idea of the
proof extends the work in [24], which derives a performance
guarantee for matroid optimization featuring a submodular
objective. When γ = 1, the guarantee in (7) coincides with
that of [24], derived for a submodular f . As a remark, for
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Algorithm 1 Forward Greedy Algorithm over Matroid
Input: set function f , ground set V and matroid (V,F)
Output: actuator set Sf

function FORWARDOVERMATROID(f, V,F)
S0 = ∅, U0 = ∅, t = 1
while U t−1 6= V and |St−1| < K do

i∗(t) = arg maxi∈V \Ut−1 ρi(S
t−1)

if St−1 ∪ {i∗(t)} /∈ F then
U t−1 ← U t−1 ∪ {i∗(t)}

else
ρt−1 ← ρi∗(t)(S

t−1) and vft = i∗(t)
St ← St−1 ∪ {vft} and U t ← U t−1 ∪ {vft}
t← t+ 1

end if
end while
Sf ← St−1

end function

Problem (6), another performance guarantee is offered by [26]
but in expectation for a randomized algorithm. We refer to
Appendix B for a comparison of these two guarantees.3

Given any function f , it is difficult to derive its
submodularity ratio because the computation in Definition 2
involves Ω(2n) inequalities. In the proof of Theorem 1, only
a subset of these inequalities are utilized. Via this observation,
the following corollary proposes a computationally more
efficient approach.

Corollary 1: Let γfg be the largest γ̂ that satisfies (a)
f(S ∪ Sf) − f(Sf) ≤ γ̂−1

∑
j∈S\Sf ρj(S

f) for any S with
|S| = K, (b) ρj(Sf) ≤ γ̂−1ρj(S

t−1),∀t ≤ K, ∀j ∈ V , (c)
f(Si2+1)−f(Si2) ≤ γ̂−1(f(Si1∪{vfi2+1})−f(Si1)), for any
i1 < i2. Then, γfg is called the greedy submodularity ratio for
the forward greedy algorithm, with γfg ≥ γ, and

f(Sf)− f(∅)
f(S∗)− f(∅)

≥ (γfg)3

(γfg)3 + 1
. (8)

The greedy submodularity ratio can be obtained after the
forward greedy algorithm is completed by analyzing O(

(
n
K

)
)

inequalities. Since γfg ≥ γ, the performance guarantee in (8)
is better than (7). Notice that γfg changes with the constraint
set of the problem since the inequalities defining γfg would
then be different. In contrast, submodularity ratio γ depends
only on the objective function.

Next, we substitute f = −Fε and F = C̃K into the
performance guarantee (8) of the general setting (6).

Corollary 2: Suppose we apply Algorithm 1 to Problem (5).
Denote the actuator set returned as Sf

ε and the greedy submod-
ularity ratio of −Fε as γfgε . Then, Sf

ε satisfies

Fε(∅)− Fε(Sf
ε)

Fε(∅)− Fε(S∗)
≥ (γfgε )3

(γfgε )3 + 1
. (9)

Since the forward greedy algorithm starts expanding from
the empty set, performance guarantees can only assess f(Sf)
by considering f(∅) as the reference. If f(∅) = 0, the
performance guarantee (8) is reduced to f(Sf)/f(S∗) ≥

3The works in [25] and [18] utilize also the curvature to derive performance
guarantees for the forward greedy applied to cardinality constrained problems.
Exploiting this notion for matroid constraints is part of our ongoing work.

γ3/(1 + γ3). In this case, we only lose a fraction of the
optimal objective by adopting the forward greedy algorithm.
However, for our actuator placement problem Fε(∅) = nε−1,
and the performance guarantee (9) is equivalent to

Fε(S
f
ε) ≤

1

(γfgε )3 + 1
Fε(∅) +

(γfgε )3

(γfgε )3 + 1
Fε(S

∗). (10)

Since ε is a small positive number and n is in general large,
the guarantee above can be loose.4 In the next section, we
consider a variant of the greedy algorithm that comes along
with a performance guarantee that does not depend on Fε(∅).

IV. REVERSE GREEDY ALGORITHM

To derive an alternative guarantee, we consider the reverse
greedy algorithm (also called the stingy or greedy descent).
This algorithm starts from the full set, and at each iteration,
excludes the node with the least marginal gain from the
actuator set of the previous iteration until a solution is reached.
Such an approach allows to have the reference as Fε(V ),
which is significantly smaller than Fε(∅) in practice.

A. Properties of the objective

For the reverse greedy algorithm, we reformulate our metric
as F r

ε (R) := Fε(V \R), for all R ⊂ V . The following lemma
characterizes the properties of this function.

Lemma 3: The set function F r
ε is strictly increasing, weakly

submodular with submodularity ratio γrε > 0 and weakly
supermodular with curvature αr

ε < 1.
Proof: Regarding the strict monotonicity, suppose S1 $

S2. Since Fε is strictly decreasing and V \ S2 $ V \ S1,
Fε(V \ S2) > Fε(V \ S1), which implies F r

ε (S2) > F r
ε (S1).

Due to strict monotonicity of F r
ε , it follows readily from the

equalities shown in (4) that the submodularity ratio is strictly
greater than 0 and the curvature is strictly less than 1. Thus, F r

ε

is weakly submodular with γrε > 0 and weakly supermodular
with αr

ε < 1.
Recall that the submodularity ratio of −Fε is γfε. Now

denote its curvature as αf
ε, which can easily be shown to satisfy

αf
ε < 1. The following connects (γfε, α

f
ε) and (γrε, α

r
ε).

Proposition 2: γrε = 1− αf
ε and αr

ε = 1− γfε.
The proof is relegated to Appendix F. The proposition above

provides an insight into how the submodularity ratio and the
curvature of F r

ε relates to those of −Fε.

B. Reformulation of the constraint set

The reverse greedy algorithm has to return an exclusion
set Rr such that the resulting actuator set V \Rr contains K
nodes, and renders the system structurally controllable, that
is, V \Rr ∈ CK . We collect all such exclusion sets and form
RK = {R |V \R ∈ CK}. Suppose after the tth node exclusion
of the reverse greedy algorithm, all the nodes excluded form
a set Rt = {r1, . . . , rt}, where ri ∈ V for all i. The set Rt

has to be a subset of some set in RK for any t = 1, . . . , N ,
where N := n −K, since otherwise when N exclusions are

4If there exists an initial actuator set Sini 6= ∅ rendering the system
controllable, we can potentially mitigate this issue, since the reference of the
guarantee would then be given by Fε(Sini). Clearly, such applications also
allow to set ε = 0, and drop structural controllability constraints.
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completed, the resulting actuator set would not belong to CK .
Thus, define R̃K := {Q | ∃R ∈ RK such that Q ⊂ R}, and
reformulate Problem (3) as

min
R⊂V

F r
ε (R) s.t. R ∈ R̃K and |R| = N. (11)

The strict monotonicity of F r
ε (R) again ensures that the

optimal solution to Problem (11) coincides with that of Prob-
lem (3). Note that cardinality constraint in (11) can equiva-
lently be replaced with an inequality constraint |R| ≥ N .

Next, we show that R̃K characterizes a matroid.
Proposition 3: Mr = (V, R̃K) is a matroid.

Proof: We prove that (V, R̃K) is the dual of (V, C̃K), that
is, R̃K = C̃∗K . Note that we can then invoke Lemma 1 showing
that the dual of a matroid is also a matroid. For any Q ∈ R̃K ,
according to the definition of R̃K , there exists R ∈ RK such
that Q ⊂ R. We have S = V \ R ∈ CK for R ∈ RK . Since
|S| = K, S is a maximum independent set in C̃K . Considering
Q ⊂ V \S, we conclude Q ∈ C̃∗K . Conversely, for any Q ∈ C̃∗K ,
there exists a maximum independent set S ∈ C̃K such that
Q ⊂ V \S. From the definition of C̃K , we know that S ∈ CK .
Thus, we obtain Q ∈ R̃K . This concludes the equivalence of
R̃K and C̃∗K .

Similar to the discussions in Section III, by restricting
the iterates of the reverse greedy algorithm to lie in the set
collection R̃K , we obtain a final exclusion set in RK with car-
dinality N . This implies that the final actuator set lies in CK .

C. Performance guarantee

In the previous section, we showed that the objective func-
tion F r

ε is γrε-submodular and αr
ε-supermodular in Lemma 3,

and the feasible region of R̃K characterizes a matroid in
Proposition 3. Thus, Problem (11) falls into the following class
of optimization problems:

min
R⊂V

f(R), strictly increasing, γ-submodular,

and α-supermodular
s.t. R ∈ F , M = (V,F) is a matroid,|R| ≥ N,

(12)

where the cardinality of maximum independent sets in F is
N .5 Let R∗ denote its optimal solution. Clearly, R∗ is the set
complement of S∗, that is, R∗ = V \ S∗.

Define set function fo such that fo(R) = f(V \ R) for
all R. In Problem (11), fo corresponds to Fε. Observe that
the forward greedy algorithm applied to the minimization of
the function f is equivalent to the reverse greedy algorithm
applied to the minimization of the function fo. This algorithm
is presented in Algorithm 2. Different from Algorithm 1, at
each iteration, Algorithm 2 implements the feasibility check
on the node with the least marginal gain.

For Algorithm 2, the following definitions are in order. We
define ρj(R) := f(R ∪ j) − f(R), ρt := f(Rt) − f(Rt−1)
and rt := Rt \ Rt−1. The set U t denotes the set of nodes
having been considered by the feasibility check before rt+1.
The final exclusion set is Rr := RN , and it lies in RK .

5The performance guarantee we derive in this section will be valid as long
as the cardinality of maximum independent sets in F are larger than or equal
to N , since this would ensure the feasibility of the problem.

Algorithm 2 Reverse Greedy Algorithm over Matroid
Input: set function fo, ground set V , matroid (V,F)
Output: exclusion set Rr

function REVERSEOVERMATROID(fo, V,F)
R0 = ∅, U0 = ∅, t = 1
while U t−1 6= V and |Rt−1| < N do

j∗(t) = arg minj∈V \Ut−1 ρj(R
t−1)

if Rt−1 ∪ j∗(t) /∈ F then
U t−1 ← U t−1 ∪ j∗(t)

else
ρt ← ρj∗(t)(R

t−1) and rt = j∗(t)
Rt ← Rt−1 ∪ j∗(t) and U t ← U t−1 ∪ j∗(t)
t← t+ 1

end if
end while
Rr ← Rt−1

end function

A special case of Problem (12) was previously shown to be
hard to approximate. Specifically, for the problem of minimiz-
ing a submodular increasing function over only a cardinality
lower bound, the work in [44] shows that there is no bicriteria
approximation performing better than o(

√
n/logn), where n

is the cardinality of the ground set.6 Next, we extend this result
by providing novel counterexamples showing that a strictly
positive submodularity ratio and a curvature bounded away
from 1 is indispensable to obtain any meaningful performance
guarantee for Problem (12). The proofs of Propositions 4 and 5
are provided online in [45].

Proposition 4: In Problem (12), one cannot derive any upper
bound on (f(Rr)−f(∅))/(f(R∗)−f(∅)) if no strictly positive
lower bound on γ is known.

Proposition 5: In Problem (12), one cannot derive any upper
bound less than N on (f(Rr)− f(∅))/(f(R∗)− f(∅)), if no
upper bound less than 1 is known for α.

The propositions above conclude that we have to utilize both
the submodularity ratio and the curvature. Our second main
result is shown in the following theorem.

Theorem 2: If Algorithm 2 is applied to (12), then

f(Rr)− f(∅)
f(R∗)− f(∅)

≤ γ

1− γ
(
(2N + 1)

1−γ
γ(1−α) − 1

)
. (13)

The proof extends the linear programming proofs utilized
by [25], which considers the maximization of increasing
submodular functions over matroid constraints, and by [18],
which considers the maximization of increasing, nonsubmodu-
lar nonsupermodular functions over cardinality constraints. In
contrast, our proof applies to the minimization of increasing,
nonsubmodular nonsupermodular functions over matroids.

The main idea of the proof is to provide a series of
inequalities that upperbound ρt by f(R∗) − f(∅), for each
iteration t. This way, f(Rr) − f(∅) =

∑N
t=1 ρt has an upper

bound expressed by f(R∗). For the following lemma, we recall
that Rt := {r1, . . . , rt} is the set obtained by the greedy
algorithm after the exclusion of rt.

6Bicriteria approximation refers to approximating both the constraint re-
quirement and the optimal objective. We refer to [44] for the exact description.



7

Lemma 4: For any t ∈ {0, . . . , N − 1}, ρt satisfies

f(R∗)− f(∅) ≥(1− 1

γ
)

∑
i:ri∈Rt\R∗

ρi +
∑

i:ri∈Rt∩R∗
ρi

+ (1− α)(N − t)ρt+1.

(14)

Proof: Suppose R∗ = {r∗1 , . . . , r∗N}. Rewrite f(R∗∪Rt)
as two telescoping sums f(R∗∪Rt) = f(R∗)+

∑t
i=1 ρri(R

∗∪
Ri−1), and f(R∗∪Rt) = f(Rt)+

∑N
k=1 ρr∗k({r∗1 , . . . , r∗k−1}∪

Rt), which is directly obtained from the definition of ρr. For
any i such that ri ∈ R∗ ∩ Rt, we have ρri(R

∗ ∪ Ri−1) = 0.
Using this, and the fact that both telescoping sums above are
equal to f(R∗ ∪Rt), we obtain

f(R∗) +
∑

i:ri∈Rt\R∗
ρri(R

∗ ∪Ri−1) = f(R∗ ∪Rt)

= f(Rt) +

N∑
k=1

ρr∗k({r∗1 , . . . , r∗k−1} ∪Rt).
(15)

Invoking the definitions of submodularity ratio and curvature,
for each i such that ri ∈ Rt \R∗, we have

ρri(R
∗ ∪Ri−1) ≤ 1

γ
ρi, (16)

and for any k ∈ {1, . . . , N},

ρr∗k({r∗1 , . . . , r∗k−1} ∪Rt) ≥ (1− α)ρr∗k(Rt). (17)

By the definition of a matroid, there exists Rtc =
{r∗c1 , . . . , r

∗
cN−t} ⊂ R∗ \ Rt such that Rtc ∪ Rt ∈ F .

Consequently, for any 1 ≤ i ≤ N − t, we have Rt ∪ r∗ci ∈ F .
Thus, adding r∗ci to Rt has to be feasible in the matroid. If
ρr∗ci

(Rt) < ρrt+1(Rt) = ρt+1, r∗ci could be added to Rt

to form Rt+1 instead of rt+1. This yields a contradiction,
implying that the inequality ρr∗ci

(Rt) ≥ ρrt+1
(Rt) = ρt+1

holds for any i. Hence, we obtain

N∑
k=1

ρr∗k(Rt) ≥
∑
r∗k∈Rtc

ρr∗k(Rt) ≥ (N − t)ρt+1. (18)

Next, by substituting (16), (17) and (18) into (15), we obtain

f(R∗)−f(∅)+
∑
i:

ri∈Rt\R∗

ρi
γ
≥

t∑
i=1

ρi+(1−α)(N−t)ρt+1. (19)

By grouping the terms in (19), we obtain (14).
Next, we can construct a linear program where the solution

provides an upper bound for f(Rr)−f(∅)
f(R∗)−f(∅) .

Proof of Theorem 2: Let xi = ρi/(f(R∗) − f(∅)), we
have (f(Rr) − f(∅))/(f(R∗) − f(∅)) =

∑N
i=1 xi. Note that

xi ≥ 0 for all i. Suppose R∗∩Rr = {ri1 , ri2 , . . .}. To give an
upper bound for this ratio, we exploit the inequalities (14) and
build the following linear programming problem to compute

the largest possible sum,
∑N
i=1 xi,

Z(N,γ,α)=max

N∑
i=1

xi, s.t. xi≥0 and

(1−α)N

−(1−γ)/γ (1−α)
×(N−1)

...
...

. . .

−(1−γ)/γ −(1−γ)/γ ... (1−α)
×(N−i1+1)

−(1−γ)/γ −(1−γ)/γ ... 1
. . .

...
... ...

...
...

−(1−γ)/γ −(1−γ)/γ ... 1 ... (1−α)




x1

x2

...
xi1

...
xN

≤


1
1

...
1
1

...
1

.

(20)
To get an upper bound for

∑N
i=1 xi, we consider the following

relaxed problem where the unit entries in (20) are replaced by
−(1− γ)/γ,

Z̄(N,γ,α)=max

N∑
i=1

xi, s.t. xi≥0 and (1−α)N
−(1−γ)/γ (1−α)(N−1)

...
...

. . .
−(1−γ)/γ −(1−γ)/γ ... (1−α)


x1

x2

...
xN

≤
1

1

...
1

. (21)

Since we require that xi ≥ 0 for any i, any feasible so-
lution to (21) is also feasible to (20). Thus, Z̄(N, γ, α) ≥
Z(N, γ, α) for any N , γ and α. We claim that the optimum
x∗ of Problem (21) makes all the inequality constraints tight.
This is easily seen by rewriting the inequalities as xt ≤

1
(1−α)(N−t+1) (1 + 1−γ

γ

∑t−1
i=1 xi), t = 1, . . . , N. Notice that

for submodular functions, we have γ = 1. Using the claim
above and considering the fact that x−1 < ln(x + 1/2) −
ln(x−1/2) for any x ≥ 1, we can directly obtain the following
guarantee

(f(Rr)−f(∅))
(f(R∗)−f(∅))

≤
N∑
i=1

x∗i =

N∑
i=1

1

i(1−α)
≤ ln(2N+1)

1−α
. (22)

Next, we focus our efforts on the case in which 0 < γ < 1
and 0 ≤ α < 1. We obtain

Z̄(N, γ, α) =
1

b

N∏
i=1

(
1 +

b

(N − i+ 1)(1− α)

)
− 1

b
, (23)

where b = (1−γ)/γ. Considering Z̄(N, γ, α) ≥ Z(N, γ, α) ≥
(f(Rr)− f(∅))/(f(R∗)− f(∅)) and

Z̄(N,γ,α)=b−1exp
( N∑
i=1

ln
(

1+
b

(N−i+1)(1−α)

))
−b−1

≤b−1exp
(

b

(1−α)

N∑
i=1

1

(N−i+1)

)
−b−1

≤b−1exp
(

b

(1−α)

(
ln(N+

1

2
)−ln

1

2

))
−b−1

=b−1(2N+1)
b

(1−α)−b−1.
(24)

The first equality rewrites the multiplication in Z̄ into an
exponential sum. The inequalities follow from the fact that
ln(1 +x) < x for any x > 0 and x−1 < ln(x+ 1/2)− ln(x−
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TABLE I
COMPARISON BETWEEN PERFORMANCE GUARANTEES Z̄ AND Zu

(N, γ, α) Z̄ Zu

(20,0.9,0.1) 4.87 5.25

(100,0.9,0.1) 7.87 8.32

(20,0.99,0.1) 4.07 4.21

1/2) for any x ≥ 1. By substituting b = (1− γ)/γ back into
the last term in (24), we get (13).

Let Zu(N, γ, α) = γ
1−γ

(
(2N + 1)

1−γ
γ(1−α) − 1

)
. Table I

illustrates how well the upper bound Zu approximates the
original guarantee Z̄, stated in (23). For the supermodular case
α = 0, we obtain the guarantee γ

1−γ
(
(2N+1)

1−γ
γ −1

)
. Via the

upperbound in (22), for the submodular case γ = 1, we obtain
ln(2N+1)

1−α . As a remark, we can verify that the guarantee in (23)
is not tight. Suppose f is modular, that is, both supermodular
and submodular. Then, we have (f(Rr)−f(∅))

(f(R∗)−f(∅)) ≤ ln(2N + 1).
However, modularity of f implies that the greedy algorithm
returns the optimal solution [42]. One reason for this looseness
is that, to ensure the tightness of the relaxation from (20)
to (21), we must have R∗ ∩ Rt = ∅, which then contradicts
the modularity of the objective function. To the best of
our knowledge, Theorem 2 provides the first performance
guarantee for the reverse greedy algorithm for this setting
involving the submodularity ratio and the curvature.7

Similar to our analysis in Section III, we propose com-
putationally more efficient approaches to deriving both the
submodularity ratio and the curvature.

Corollary 3: Let γrg be the largest γ̂ that satisfies ρrt(R ∪
Rt−1) ≤ γ̂−1ρt, for all t ≤ N , and R with |R| = N . Let αrg

be the smallest α̂ that satisfies ρr(R∪Rt) ≥ (1− α̂)ρr∗k(Rt),
for all t ≤ N , R with |R| = N − 1. Then, γrg is called the
greedy submodularity ratio for the reverse greedy algorithm,
with γrg ≥ γ, and αrg is called the greedy curvature for the
reverse greedy algorithm, with αrg ≤ α. The performance
guarantee is given by

f(Rr)− f(∅)
f(R∗)− f(∅)

≤ Zu(N, γrg, αrg). (25)

The greedy submodularity ratio above can be obtained after
the reverse greedy algorithm is completed by analyzing N

(
n
N

)
inequalities, whereas the greedy curvature can be obtained by
analyzing N

(
n

N−1

)
inequalities. Since γrg ≥ γ and αrg ≤ α,

it can easily be verified that Zu(N, γrg, αrg) ≤ Zu(N, γ, α).

We substitute f = F r
ε and F = R̃K to conclude the

following.
Corollary 4: Suppose we apply Algorithm 2 to Prob-

lem (11). Denote the exclusion set returned as Rr
ε and the

greedy submodularity ratio of F r
ε as γrgε and the greedy

7 [28, Thm 7] offers a guarantee for the forward greedy algorithm applied
to minimizing increasing functions over a matroid as in Problem (12). This
is given by 1/(1 − c), where c quantifies how far a function is from being
modular. This novel notion is a significantly stronger requirement than having
both the submodularity ratio and the curvature simultaneously, see [28, (6)].
Hence, it is not possible to compare it with our guarantee other than the case
of a modular objective. In that case, setting c = 0 confirms the optimality
of the greedy algorithm. Note that computing this novel notion requires an
exhaustive enumeration and it does not allow any greedy computation, which
can limit its applications.

Algorithm 3 Finding ε with provable performance
Input: approximation factor ξ, initial value ε0
Output: parameter ε

function PROPEREP(ξ, ε0)
i = 0
while εi ≥ ξλ1(Sεi) do

let εi+1 ← 1
2ξλ1(Sεi) and i← i+ 1

end while
end function

curvature of F r
ε as αrg

ε . Then, Rr
ε satisfies

Fε(V \Rr
ε)−Fε(V )

Fε(S∗)−Fε(V )
≤Zrg

u , or equivalently,

Fε(V \Rr
ε)≤Zrg

u Fε(S
∗)+(1−Zrg

u )Fε(V ),

(26)

where Zrg
u := Zu(N, γrg, αrg).

In contrast to the forward greedy guarantee, Fε(∅) does not
appear in the guarantee above, which is generally large. On the
other hand, the guarantee above scales with the problem size,
specifically, with N = n−K. In the numerics, we show that
both greedy algorithms achieve comparable performance in
our problem, and at the same time much better performance
than what the theoretical guarantees suggest. In practice, it
could be useful to implement both greedy algorithms (which
can be done efficiently with polynomial time complexity) and
choose the best out of the two.

V. IMPLEMENTATION ASPECTS

Two issues have to be addressed to implement Algorithms 1
and 2 for the actuator placement problem. First, we have
to select a metric-modifying parameter ε. Second, we need
feasibility check methods for the set collections C̃K and R̃K .

A. An algorithm for picking a metric-modifying parameter ε
The performance guarantees (10) and (26) relate to Fε

instead of the original metric F . On the one hand, if ε is
large, a performance guarantee on Fε may not be applicable as
a performance guarantee on F since Fε(Sε) < F (Sε). On the
other hand, if ε is small, the matrix WT (S)+εI may be close to
singularity. Such ill-conditioned matrices can occur especially
at the early stages of the forward greedy algorithm. Denote the
actuator set returned by a greedy algorithm applied to Fε as
Sε. This could be the solution returned by either Algorithm 1
or Algorithm 2. Given an approximation factor ξ > 0 as a
design parameter, we propose an algorithm to pick ε such that
F (Sε) < (1+ξ)Fε(Sε). This inequality implies that guarantees
in (10) and (26) translate into guarantees for the metric F . The
method is presented in Algorithm 3. Denote the eigenvalues of
the controllability Gramian WT (S) as λ1(S) ≤ . . . ≤ λn(S).

Proposition 6: Suppose given any ε > 0, WT (Sε) is
invertible. Then, for any approximation factor ξ > 0 and
any initial value ε0 > 0, Algorithm 3 returns (ε, Sε) pair that
satisfies F (Sε) < (1 + ξ)Fε(Sε).

Proof: If the controllability Gramian WT (Sε) is invert-
ible, then we have that λ1(Sε) > 0. Since there are finitely
many combinations of actuators, the set {λ1(Sε)|∀ε > 0} has
a positive lower bound, denoted as λ0. In the iterations of
Algorithm 3, it holds that εi+1 <

1
2εi, because εi > ξλ1(Sεi)
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and εi+1 = 1
2ξλ1(Sεi). Hence, there exists some j such

that εj < ξλ0 ≤ ξλ1(Sεj ). Then, we obtain F (Sεj ) =∑n
i=1

1
λi(Sεj ) <

∑n
i=1

1+ξ
λi(Sεj )+εj

= (1 + ξ)Fεj (Sεj ). This
inequality concludes the proof.

For the proof above, we assumed that given any ε > 0,
the controllability Gramian WT (Sε) is invertible. This is a
strong assumption since, as previously mentioned, structural
controllability does not imply controllability. In the numerics,
we always ended up with a controllable system with any of
the greedy algorithms. This can be explained either by the
objective of the problem which is to minimize the average
energy consumption or the choice of a large cardinality K.

We now provide the resulting performance guarantees.
Corollary 5: Given the factor ξ, suppose we apply Algo-

rithm 3 to pick ε. From Corollaries 2 and 4, we have

F (Sf
ε) < (1 + ξ)

[ 1

(γfgε )3 + 1
F (∅) +

(γfgε )3

(γfgε )3 + 1
F (S∗)

]
,

F (V \Rr
ε) < (1 + ξ) [Zrg

u F (S∗) + (1− Zrg
u )Fε(V )] ,

where S∗ is the optimal solution to (3).

B. Feasibility check over C̃K
When applied to Problem (5), the forward greedy algorithm

has to ensure that the actuator set returned by each iteration lies
in C̃K . The work of [5], [46] proposes a method to determine
whether a given set S with |S| = K belongs to CK . This result
is not directly applicable to answer whether an actuator set S
with |S| < K returned by a greedy iteration belongs to C̃K . In
the following, we extend the work of [5], [46] for a feasibility
check over C̃K by constructing auxiliary bipartite graphs
associating this check with the cardinality of a maximum
matching and by formulating a maximum flow problem.

We introduce the concept of matchings and bipartite graphs.
An undirected graph is called bipartite and denoted as
(V 1, V 2,E) if its vertices are partitioned into V 1 and V 2 while
any edge in E connects a vertex in V 1 to another in V 2. A
matching m is a subset of E if no two edges in m share a
vertex in common. Given a subset L of V 1 ∪ V 2, we say L
is covered by m if any v ∈ L is connected to an edge in
m. Matching m is maximum if it has the largest cardinality
among all the matchings and is perfect if V 2 is covered.

Given the graph G = (V,E) describing system (1), we
first build the following auxiliary bipartite graph to determine
whether an actuator set renders the system structurally control-
lable. Node sets V ′ = {v′1, . . . , v′n} and V ′′ = {v′′1 , . . . , v′′n}
are built as two copies of V = {v1, . . . , vn}. For any set
S ⊂ V , two subsets S′ ⊂ V ′ and S′′ ⊂ V ′′ denote two
copies of the set S. For the bipartite graph, we then have
V 1 = V ∪ S′′ and V 2 = V ′. Next, we define the edge sets.
The set E consists of undirected edges connecting vi with v′j
if (vi, vj) ∈ E, whereas the edge set E1 consists of undirected

8The graph G and the set S pair satisfies the accessibility condition if
for every node in G there is at least one directed path reaching that node
from some node in S [46] [10, Def. 2]. When G is strongly connected, this
condition is attained irrespective of the nodes chosen in S [10]. We can invoke
[46, Thm 2] because of the equivalence of structural controllability in leader
selection and actuator placement we established in the proof of Proposition 1.

edges connecting v′k with v′′k if vk ∈ S. The bipartite graph is
then defined by Hb(S) = (V ∪ S′′, V ′,E ∪ E1).

If the graph G and the set S pair satisfies the accessibility
condition8 (which is implied by the strong connectivity as-
sumption on G), the set S achieves structural controllability
if and only if there exists a perfect matching in Hb(S),
see [46, Thm 2]. This equivalence directly follows from
Hall’s marriage theorem, which shows that there exists a
perfect matching in Hb(S) if and only if, for any U ⊂ V ′,
the nodes in U have at least |U | unique in-neighbors [10].
Intuitively, to control any node, we would influence the states
of its in-neighbors in the graph. Then, to steer the nodes in
U arbitrarily, this theorem implies that we should have at
least |U | in-neighbors. Otherwise, suppose two nodes share
only a single in-neighbor. Then, these nodes would always
be receiving a proportional influence, making it impossible
to steer the system states arbitrarily. Using this result, [23]
develops a feasibility check for leader selection. This method
states that S lies in C̃K if and only if there is a maximum
matching for the bipartite graph Hb(∅) with all the nodes in
the set S′ ⊂ V ′ unmatched. However, this statement is true
only if we consider the minimum required cardinality for the
structural controllability of the system, see the proof of [23,
Lemma 3]. Later in this section, we provide a counterexample
where the feasibility check of [23] does not work.

We now provide our feasibility check in the following.
Proposition 7: Given the graph G, the cardinality limit K

and an actuator set S with |S| = k ≤ K, we have S ∈ C̃K if
and only if |m̄(S)| ≥ n−K + k, where m̄(S) is a maximum
matching in Hb(S).

Proof: “⇒”: If S ∈ C̃K , there exists Q ∈ CK such that
S ⊂ Q. We now invoke the equivalence result from [46,
Thm 2]. This implies the following. By finding a maximum
matching m in Hb(Q) that completely covers Q′′ and then
excluding from m the edges incident with Q′′ \ S′′, we can
obtain a matching in Hb(S) containing n−K + k edges.

“⇐”: We pick any maximum matching inHb(S) and denote
it as m∗. Suppose P ′ is the largest subset in V ′ whose elements
are all missed by m∗, we know |P ′| ≤ K − k. Denote the
edge subset EP ⊂ E as the set that contains all undirected
edges adjacent to v′k for any k such that vk ∈ P . Clearly, EP
covers P ′ and m∗ ∪ EP covers V ′. Since matching m∗ and
matching EP have no common vertices, m∗ ∪ EP is a perfect
matching in Hb(S ∪ P ), which means with the actuator set
S∪P the system is structurally controllable. Also considering
|S ∪ P | ≤ K, and S ∪ P ∈ C̃K , we obtain S ∈ C̃K .

As a remark, [46, Thm 2] associates the existence of a
perfect matching in Hb(S) with a membership of S to CK ,
whereas our result extends this previous result by associating
the cardinality of a maximum matching in Hb(S) with a
membership of S to C̃K . Since we invoke [46, Thm 2], our
proposition also requires the accessibility condition. However,
note that it is already satisfied by the strong connectivity of G.
The proposition above also provides us with a systematic
approach to calculate the smallest K required for a nonempty
C̃K , since we have ∅ ∈ C̃K if and only if |m̄(∅)| ≥ n − K
holds. This method for finding the smallest K coincides with
the ones proposed in [8, Thm 4], [36, Thm 3].
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Fig. 1. Graph for the 4-node system

Fig. 2. Auxiliary bipartite graphs Hb(∅) and Hb({v3, v4})

Example 1: Consider a system described by 4 nodes and
the dynamic equations (1) where

A =

[
0 −0.5 −0.8 −0.6
1 0 0 0
1 0 0 0
1 0 0 0

]
.

G = (V,E) corresponding to this system is in Figure 1. For
the metric in (2), let T = 2 and ε = 10−9.

Consider the actuator placement on this system. We first
study the minimum required cardinality for structural con-
trollability. In the auxiliary bipartite graph Hb(∅) shown in
Figure 2, any maximum matching consists of 2 edges, that
is, |m̄(∅)| = 2. By Proposition 7, ∅ ∈ C̃K if and only
if m̄(∅) ≥ 4 − K + 0, that is, K ≥ 2. Therefore, we
need at least 2 actuators to render the system structurally
controllable. Suppose K = 2. The solution of the forward
greedy is {v3, v4}. We depict the auxiliary bipartite graph
Hb({v3, v4}) in Figure 2 to check whether this actuator
set is feasible. Maximum matching contains 4 edges, thus
m̄({v3, v4}) = 4 ≥ 4− 2 + 2 = n−K + k. By Proposition 7,
{v3, v4} belongs to C̃2.

We now provide a counterexample based on the example
above to show that the feasibility check method in [23]
excludes feasible nodes from the consideration of the forward
greedy algorithm. Suppose K = 3. The feasibility check
method in [23] indicates that {v1} /∈ C̃3, because v′1 is not
missed by any maximum matching in Hb(∅). However, since
{v3, v4} is structurally controllable, so is {v1, v3, v4}. Then,
{v1} ⊂ {v1, v3, v4} implies that {v1} ∈ C̃3.

For our feasibility check, we still need a method to obtain a
maximum matching in Hb(S). It is well-established that this
can equivalently be done by solving a maximum flow prob-
lem [47]. We refer to Appendix G for details on formulating
a maximum flow problem to obtain a maximum matching in
Hb(S). There are several algorithms for solving maximum
flow problems. For instance, the Edmonds-Karp algorithm
that we adopt in the numerical studies requires O(pq2) steps,
where p and q respectively denote node cardinality and edge
cardinality in the flow graph generated based on Hb(S) [48].
For example, in Hb(∅), p = 2n+2 and q = 2n+ |E|. Thus, at
each forward greedy iteration, we can examine in polynomial
time whether v ∪ St belongs to C̃K by finding the cardinality
of the maximum matching in Hb(v ∪ Sk).

C. Feasibility check over R̃K
The reverse greedy algorithm has to determine whether

R ∈ R̃K , or equivalently, whether any subset of the set V \R
belongs to CK . Invoking the equivalence result of [46, Thm 2],
we can conclude that there exists a subset of V \R belonging to
CK if and only if there exists a perfect matching in Hb(V \R)
that covers at most K elements of V ′′ \R′′. This holds, since
if every perfect matching in Hb(V \ R) covers K + 1 or
more nodes in V ′′ \ R′′, it would not be possible to find K
actuators from V \R satisfying structural controllability.

Recall that a maximum matching can be computed via the
maximum flow algorithm. Analogous to the previous section,
we need a feasibility check method for R̃K by the means of
the flow theory. We refer to Appendix G for the preliminaries
regarding flows in graphs. We first build an auxiliary graph,
denoted by Hr(S), containing all the nodes in Hb(S). We
let s and t be the sink and source of the flow, respectively.
In addition, we add node s′′ to Hr(S), which will enable
encoding the cardinality limit on V ′′ \ R′′. The edge set in
Hr(S) is the union of three sets, Efb , Efs and Eft , all of which
are directed. The edge set Efb is a copy of E ∪ E1, originally
from Hb(S), but directed from V ∪ S′′ to V ′ in Hr(S). The
edge set Efs consists of edges from s to all the nodes in V
and from s′′ to all the nodes in S′′ along with edge of from s
to s′′. Finally, the edge set Eft is composed of edges from all
the nodes in V ′ to t. All the edges have unit capacity except
the edge from s to s′′ which has a capacity of K. Utilizing
the graph Hr(S), we have the following proposition.

Proposition 8: Given the cardinality limit K and an exclu-
sion set R, we have R ∈ R̃K if and only if there exists a
flow g in (Hr(V \R), c, s, t) with val(g) = n.

Proof: From the definition of R̃K , R ∈ R̃K is equivalent
to the existence of S ⊂ V \ R such that S ∈ CK . Via [46,
Thm 2], we know that these two conditions are equivalent to
the existence a perfect matching in Hb(V \R) that covers at
most K elements of V ′′ \ R′′. For the following, we prove
that this equivalent condition holds if and only if there exists
a flow g in (Hr(V \R), c, s, t) with val(g) = n.

“⇒”: Given the perfect matching m∗, we use ñ to denote
the number of the elements in V ′′ that are adjacent to m∗.
Clearly, ñ ≤ K. For the following, we build the flow g as a
function of the edges in Hr(V \R). Suppose mf is a subset
of Efb that corresponds with m∗ in E∪E1. We let g(e) = 1 if e
belongs to mf , g((s, v)) = 1 for any v ∈ V incident with mf ,
g((s′′, v′′)) = 1 for any v′′ ∈ V ′′ incident with mf , g(et) = 1
for any et ∈ Eft and finally g((s, s′′)) = ñ. It is easy to check
g is in fact a flow in (Hr(V \R), c, s, t) with val(g) = n.

“⇐”: Let Em = {ef ∈ Efb | g(ef ) = 1}. Then, define
m∗ = {e ∈ E ∪ E1 | ∃ef ∈ Em where ef is a copy of e}.
It follows from val(g) = n that m∗ is a perfect matching in
Hb(V \R). Since the capacity limits are satisfied by the flow
g, there are no more than K elements in V ′′ \R′′ covered by
the perfect matching m∗.

Example 2: We apply the reverse greedy algorithm to the
system studied in Example 1 with K = 2. The first node
excluded is v1. To see that v1 ∈ R̃2, we depict Hr(V \ v1)
in Figure 3. The maximum flow has a value of 4. Invoking
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Fig. 3. Auxiliary graph Hr(V \ v1)

Proposition 8, we conclude that v1 belongs to R̃2.
Similar to Section V-B, we adopt Edmonds-Karp algorithm

to solve the maximum flow problem in the numerical studies.
The algorithm requires O(pq2) steps where p and q are
respectively the node cardinality and the edge cardinality of
the flow graph Hr(V \R). For example, in Hr(V ), p = 3n+3
and q = 3n+|E|+1, where E is the edge set of Hr(V ). Thus,
at each reverse greedy iteration, we can examine in polynomial
time whether v ∪Rt belongs to R̃K .

Remark: Greedy algorithms can also be applied when
strong connectivity assumption on G is relaxed. Suppose G is
not strongly connected but it can be decomposed as ∪li=1Gi,
where Gi is strongly connected for any i. In this case, if we
suppose at least one actuator is already chosen and assigned
for each subgraph Gi, we would attain the accessibility
condition discussed in Footnote 8. It is then possible to invoke
[46, Thm 2] for the equivalence between perfect matching
and structural controllability. This would make it possible to
extend the proofs of Propositions 7 and 8 for the case when we
are assigning additional actuators in such graphs. We kindly
refer the readers to [10], [46] for a detailed discussion on this
condition. Similar to our paper, many works in the literature,
such as [10], [23], assume that G is strongly connected such
that the accessibility condition is automatically attained.

VI. NUMERICAL RESULTS

In this section, we apply the greedy algorithms to problems
based on randomly generated networks and a large power grid.
All problems are solved on a computer equipped with 8 GB
RAM and a 2.7 GHz dual-core Intel i5 processor.

A. Experiment on a 23-node network

We study a system model based on an undirected un-
weighted graph given in Figure 4 generated via Octave Net-
works Toolbox [49]. Different degrees are assigned to each
vertex such that we can compare the sets Sf

ε and Sr
ε := V \Rr

ε

in terms of node connectivity. Specifically, vertex i has a
degree of i if i < 12 and a degree of 24− i if i ≥ 12. If there
is an edge between vertex i and j, we set (A)ij = (A)ji = 1,
otherwise the corresponding entries are 0.

Let T = 1 and K = 8. We then apply Algorithm 3 to obtain
a proper parameter ε for the forward greedy algorithm. We set
ξ = 2 and ε0 = 10−3 arbitrarily. The actuator set returned
in the first iteration is denoted by Sf

ε0 . The minimum eigen-
value corresponding to WT (Sf

ε0) is λ1(Sf
ε0) = 1.9 × 10−4.

Since ε0 > 2λ1(Sf
ε0), we continue with the second iteration.

Let ε1 = λ1(Sf
ε0) = 1.9 × 10−4, we now have Sf

ε1 =
{4, 6, 8, 10, 13, 16, 20, 21} and λ1(Sf

ε1) = 2.0×10−4 > ξ−1ε1.

Fig. 4. Greedy selection versus the optimal selection

Thus, we can terminate the algorithm and pick εf = ε1 for
the forward greedy algorithm. Using the same procedure, we
obtain εr = 1.4×10−4 for the reverse greedy algorithm. In this
case, the solution is Sr

εr = V \Rr
εr = {1, 2, 3, 5, 10, 17, 19, 22}.

To assess the optimality of the sets Sf
εf

and Sr
εr , we generate

the optimal solution S∗ = {1, 3, 16, 18, 19, 20, 22, 23} by
enumerating all feasible solutions. The average energy con-
sumptions for all actuator sets are given by F (Sf

εf
) = 9226.5,

F (Sr
εr) = 12126.2, and F (S∗) = 6052.7. For this example,

the forward greedy algorithm returns a better solution than the
reverse greedy algorithm. Later, in randomized examples we
see that this is not generally the case.

Next, we analyze the performance guarantees in (10) and
(26) under the sets Sf

εf
and Sr

εr . For the forward greedy
algorithm, we computed Fεf (S

f
εf

) = 6188.2 = 0.66F (Sf
εf

).
The greedy submodularity ratio for the forward greedy algo-
rithm is computed as γfgεf = 1. Then, we obtain F (Sf

εf
) =

1.5Fεf (S
f
εf

) ≤ 0.75Fεf (∅) + 0.75Fεf (S
∗) = 9.2 × 104 +

0.75Fεf (S
∗). In this example, the appearance of Fεf (∅) in

the performance guarantee undermines its tightness. On the
other hand, for the reverse greedy algorithm, the greedy
submodularity ratio of the objective function F r

εr is computed
as γrgεr < 0.01. This value is negligibly small making the
performance guarantee in (26) loose.

B. Node connectivity analysis on the sets Sf
εf

and Sr
εr

To gain additional insights into solution dependence on
node connectivity, we now compare the greedy solutions with
the optimal solutions in terms of the degrees of the selected
actuators. In the previous study, the forward greedy algorithm
selects the actuator set Sf

εf
in the order of 16, 13, 5, 8, 6,

20, 10, 21. In this sequence, the first four nodes feature high
degrees. This is because the high degree nodes generally result
in larger marginal gains at the earlier stages of the forward
greedy algorithm. Let dΣ(S) denote the sum of the degrees
of all the nodes in set S. Observe that dΣ(Sf

εf
) = 54, whereas

dΣ(Sr
εr) = 35 and dΣ(S∗) = 30. This demonstrates that the

reverse greedy algorithm does not have a tendency to pick
high degree nodes. We illustrate these sets in Figure 4.

To show that this observation is not restricted to this specific
example, we build 20 random graphs with 23 nodes using
Octave [49]. These graphs are built as follows. For i = 1, 4, 7,
node i, node i + 1 and node i + 2 have randomized degrees
between i and i+ 2. Node 10 and node 11 have randomized
degrees between 10 and 11. Node 12 has exactly 12 neighbors.
For i > 12, Node i has a degree number the same as that of
Node 24− i. For each algorithm run, a proper parameter ε is
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TABLE II
DEGREE SUM COMPARISONS OF DIFFERENT SOLUTIONS

Netw. dΣ(Sf) dΣ(V \Rr) dΣ(S∗o ) Netw. dΣ(Sf) dΣ(V \Rr) dΣ(S∗o )
1 43 46 46 11 41 38 42
2 47 47 49 12 60 44 53
3 48 34 41 13 50 47 47
4 49 35 43 14 55 49 41
5 45 43 32 15 53 41 43
6 58 39 41 16 56 43 46
7 44 45 49 17 48 52 70
8 52 25 44 18 57 48 54
9 55 37 45 19 76 60 50

10 61 38 59 20 57 43 44

TABLE III
METRIC COMPARISONS OF DIFFERENT SOLUTIONS

Netw. F (Sf) F (V \Rr) F (S∗o ) Netw. F (Sf) F (V \Rr) F (S∗o )
1 66252 13493 11327 11 11981 14993 7300
2 11527 10035 8461 12 9950 9388 9358
3 15398 17371 8461 13 32212 6684 9364
4 13679 15690 7593 14 9683 10681 6804
5 14835 14430 8406 15 11235 8540 7188
6 18207 15176 7870 16 14114 12004 6795
7 8980 12650 10515 17 8658 9163 8416
8 22600 26324 6638 18 8717 10587 6838
9 10633 10483 9690 19 13760 9818 9336

10 9676 13079 6173 20 10044 13169 9264

picked via Algorithm 3.
Comparisons of different actuator sets can be found in

Tables II and III. The set S∗o refers to the best solution out
of 1 × 104 random selections of cardinality K = 8, while
it is not computationally feasible to obtain the exact optimal
solution for each case. Table II shows that the forward greedy
generally yields an actuator set with a high degree sum when
compared to the other solutions. Finally, Table III shows
that in several cases the set returned by the forward greedy
results in significantly worse value in the objective than the
other two solutions. Generally, both greedy algorithms achieve
comparable performance, and at the same time much better
performance than what the theoretical guarantees suggest (as
in Section VI-A). Thus, it could be useful to implement both
polynomial-time algorithms, and choose the best solution.

The total computation time for 20 forward greedy algorithm
runs is 8205.0 seconds, whereas the time for 20 reverse greedy
algorithm runs is 665.0 seconds. It turns out that for this
problem the reverse greedy algorithm requires fewer queries to
the computationally expensive feasibility check problem when
compared to the forward greedy algorithm.

C. Power electronic actuator placement for 118-bus system
We illustrate our results by placing power electronic

actuators that can modulate power injections in the IEEE
118-bus test system, provided in [50]. Similar to [1, §4.B],
each bus is assumed to follow the linearized swing equations,
that is, Miθ̈i + Diθ̇i = Pi −

∑
j aij(θi − θj) for all

i ∈ {1, . . . , 118}, where Pi is the net power injection and aij
is characterized by the line parameters. We kindly refer to [51]
for the modeling details. If bus i is not in our actuator set, we
have Pi = 0. Buses without generators are assumed to have
no inertia (even when they have loads connected), and they
have a one-dimensional state, since Mi = 0 (inertia). Buses
with generators have inertias, and they are instead associated
with a two-dimensional state vector that includes both
θi and θ̇i. We highlight that each state corresponds to a new
node in our system graph G, which in some sense represents
an extended version of the original 118-bus power network.

TABLE IV
METRIC COMPARISONS FOR THE IEEE 118-BUS TEST SYSTEM

K F (Sf) F (V \Rr) F (S∗o )
50 6.96× 107 3.01× 107 4.48× 109

70 1.94× 105 1.25× 105 4.43× 106

Our goal is to choose K = 50, 70 buses out of 118 buses
to inject power to minimize the average energy consumption
given by (2) (T = 1), while ensuring structural controllability.
We take into account the fact that it is not possible to actuate
some of the nodes of our system graph G by excluding them
from the actuator sets and the feasibility check methods. These
nodes correspond to θi originating from buses with inertia,
since the dynamics dθi/dt = θ̇i cannot be actuated.

Next, we implement the greedy algorithms. The results
are shown in Table IV, where S∗o is the best structurally
controllable solution out of 105 random selections with
cardinality K. The parameters for both greedy algorithms can
also be summarized as follows: ε = 1 × 10−10 for K = 50
and ε = 1 × 10−8 for K = 70, chosen arbitrarily. Both
greedy algorithms perform significantly better than random
selections. Note that there are 6.2 × 1033 and 3.2 × 1033

possible combinations to check for K = 50 and K = 70,
respectively. Since the optimal solution is computationally
out of reach, we will not analyse the performance guarantees
in (10) and (26) as we did in the previous sections. In both
cases K = 50 and K = 70, the reverse greedy performed
slightly better than the forward greedy algorithm. Finally, as
we expected, choosing a larger K reduces the control cost for
all three solution concepts. One can decide on K by evaluating
the overall cost reductions from the reductions in the metric
and comparing them with the actuator installation costs.

VII. CONCLUSIONS

In this paper, our goal was to pick an actuator set to
minimize a controllability metric based on average energy
consumption while ensuring that the system is structurally
controllable. To this end, we reformulated our problem as
matroid optimization problems to apply both the forward and
reverse greedy algorithms. For each algorithm, we provided
a novel performance guarantee. For the implementation of
the algorithms, we proposed feasibility check methods. In the
numerics, we studied networks that are randomly generated
based on degree lists. We observed that the forward greedy
tended to select high-degree nodes in the early stages, whereas
the overall performance of both algorithms were comparable.

Our future work involves exploiting the curvature of the
objective function to derive a better performance guarantee
for the forward greedy algorithm. We will exploit the problem
structure to explain why algorithms performs significantly
better than their performance guarantees. We aim to investigate
other structural controllability concepts from the literature.
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APPENDIX

A. Performance guarantees from the literature
Before summarizing the relevant guarantees from the liter-

ature, we highlight that if we assign each actuator with a spe-
cific control cost, we would obtain a modular objective. There
are many works that study modular objectives with or without
structural controllability type constraints [1], [11], [37]. In
case our objective is additive/modular, greedy algorithm on
a matroid is known to always return an optimal solution [42].
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Table V summarizes the performance guarantees for the
forward greedy algorithm applied to the maximization of in-
creasing set functions. As a remark, [18] defines the curvature
as we defined in Definition 3, whereas [25] considers only the
case where S = ∅ and U = V \{v} for all v ∈ V and they call
this notion the total curvature. In addition, the work of [28]
provides 1−(α/e) guarantee that holds by high probability for
maximizing increasing submodular functions with curvature
over an arbitrary matroid constraint. This result relies on linear
extensions of the objective by implementing the continuous
greedy algorithm, which is subject to potential deviations from
the guarantee due to the random rounding procedures. We refer
to [28] for other guarantees from the literature relying on vari-
ations of this algorithm. Finally, [26] relies on a randomized
forward greedy providing guarantees only in expectation, see
Appendix B. A very recent work [27] provides γ/2 guarantee
for the forward greedy algorithm applied to our setting with
the submodularity ratio in Definition 2. This result does not
rely on constructing a linear program. Instead, it relies on [27,
Lem. 1], which has a mistake in its proof. Using the notation of
[27], let Gt be the greedy solution at iteration t, X ? be the opti-
mum, and I be the feasible region of the matroid. In the proof,
the authors need to find an enumeration {x?1, . . . , x?n} = X ?
such that Gt ∪ {x?t+1} ∈ I for any t. Starting from G0 = ∅,
their inductive proof iteratively builds this enumeration by
choosing x?t+1 ∈ X ? with Gt ∪ {x?t+1} ∈ I. The proof states
“|Gt| < |X ?| implies there exist an element x?t+1 ∈ X ? such
that Gt∪{x?t+1} ∈ I (property (iii) of Definition 4)”. However,
for their inductive proof to be correct, they instead have to
prove that there exists an element x?t+1 ∈ X ? \ {x?k}tk=1 such
that Gt ∪ {x?t+1} ∈ I. We think that this statement could also
be proved. In this case, their guarantee would be better.

The guarantees above take as a reference objective evaluated
at the empty set. The second part of this work studies the
reverse greedy algorithm where the guarantees are with respect
to the objective evaluated at the full set (see (26) and (9)).

B. Definitions of submodularity ratio

Let γ1 denote the submodularity ratio of f from Defini-
tion 2. Observe that γ = γ1 satisfies

γρU (S) ≤
∑

v∈U\S

ρv(S), ∀S,U ⊂ V, (27)

which can easily be obtained by decomposing the term on the
left via telescoping sum. However, the largest γ satisfying the
above set of inequalities, denoted as γ2, does not necessarily
satisfy the inequalities in Definition 2. This is true since the
inequalities in (27) can be regarded as a relaxation of those
in Definition 2. Hence, we have γ2 ≥ γ1. There are previous
studies in the literature defining the submodularity ratio as γ2

instead of γ1 [16], [18], [26]. In the proof of Theorem 1, as we
are deriving (30), we use the inequalities from Definition 2.
One can verify that the inequalities in (27) would not allow
us to derive (30). Hence, the performance guarantee (7) does
not extend to the submodularity ratio γ2.

In addition, the work of [16] obtains a lower bound for γ2

for the metric −F in (2) based on eigenvalue inequalities for
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Fig. 5. A comparison between two guarantees

sum and product of matrices. One can easily verify that this
lower bound is also applicable to γ1 from Definition 2.

The work of [26] exploited the submodularity ratio defined
by (27) and obtained a guarantee in expectation for the residual
random (forward) greedy algorithm for matroid optimization
problems featuring weakly submodular objective functions.
We denote the final set returned by this algorithm as SRRG.
The guarantee provided in [26] for this class of randomized

algorithms is
E[f(SRRG)]−f(∅)
f(S∗)−f(∅) ≥ γ2

2

(1+γ2)2 . Let γ denote the
theoretical lower bound derived in [16] for −F in (2). This
lower bound satisfies γ2 ≥ γ1 ≥ γ. Since γ is applicable to
both (7) and the guarantee in [26], we let a1(γ) = γ3/(1+γ3)
and a2(γ) = γ2/(1 + γ)2 denote the theoretical guarantees
associated with Theorem 1 and the one in [26], respectively.
Two functions are plotted in Figure 5. The guarantee we
derived in Theorem 1 is tighter than the one from [26], if
the lower bound γ > 0.5 (it is also an ex-post guarantee).

C. Proof of Lemma 2
(i) For any S ⊂ V and any v ∈ V \ S, let H(z) =

(WT (S) + zWT ({v}) + εI)−1. Notice that tr(H(1)) =
tr((WT (S ∪ {v}) + εI)−1) = Fε(S ∪ {v}), since WT (S) =∫ T

0
eAτB(S)B>(S)eA

>τdτ is additive, that is, WT (S) +
WT ({v}) = WT (S ∪ {v}). Via the matrix inverse for-
mula [52], if H(z) is invertible ∀z ∈ (0, 1), then tr(H(z))

is continuous and differentiable, and we have d(tr(H(z)))
dz =

−tr(H(z)WT ({v})H(z)) < 0. This inequality holds since
H(z) is invertible and symmetric, and WT ({v}) is posi-
tive semidefinite. Invoking the mean-value theorem, we have
tr(H(1))− tr(H(0)) < 0.

(ii) Recall from (4) that the submodularity ratio of −Fε,
denoted as γfε, satisfies γfε = minS,U,v∈V \(S∪U)

ρv(S)
ρv(S∪U) .

Since −Fε is strictly increasing, ρv(S) > 0 and ρv(S∪U) > 0
for any v ∈ V \ (S ∪ U). Thus γfε > 0. �

D. Proof of Proposition 1
To prove this theorem, we show that given an actuator set

S, structural controllability of (A,B(S)) can equivalently be
formulated as structural controllability of the system with the
set S chosen as a leader set. Then, we use a result from [23]
showing the matroid structure of the structural controllability
constraints in leader selection problems. This result builds on
[5], which shows the equivalence between structural control-
lability and existence of a perfect matching in an auxiliary
bipartite graph whenever the graph G is strongly connected.

Define N = V \ S and partition the state vector x into xS
and xN . Our dynamics can equivalently be written as[

ẋN
ẋS

]
=

[
ANN ANS
ASN ASS

] [
xN
xS

]
+

[
0 0
0 I|S|

]
u, (28)
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where I|S| ∈ R|S|×|S| is the identity matrix.
In the leader selection problem, if the set S is chosen as

a leader set, it is assumed that the values of xS are directly
dictated and are not influenced by the dynamics of xN . Under
this assumption, by treating xS as the input, the dynamics
of xN are given by ẋN = ANNxN + ANSxS . Then, the
leader set S achieves structural controllability if (ANN , ANS)
is structurally controllable, which would allow the values of
xN to be steered to desired positions. Note that it is not clear
whether we would achieve structural controllability when this
is chosen as the set of actuators in actuator placement problem.

From Definition 1, the actuator set S makes the system
structurally controllable if and only if there exists a pair
(Â, B̂) with the same structure as (A,B(S)) such that the
controllability matrix P ∈ Rn×n2

,

P =

[
0 0 0 ÂNS 0 ÂNN ÂNS + ÂNSÂSS · · ·
0 I|S| 0 ÂSS 0 ÂSN ÂNS + Â2

SS · · ·

]
,

has full rank. Next, we claim that P has full rank if and
only if the following matrix P̃1 ∈ R|N |×n2

has full rank,
P̃1 =

[
0 0 0 ÂNS · · · 0 Âj−1

NN ÂNS · · ·
]
. To see

this, notice that P has full rank if and only if the submatrix
P1 ∈ R|N |×n2

containing the first |N | rows of P has full rank.
One can then show that there exists an upper triangular matrix
U ∈ Rn2×n2

with unit diagonal entries such that P̃1 = P1U .
Since U is invertible, P̃1 and P1 have the same rank.

Then, we further claim that P̃1 has full rank if and
only if the following matrix P̄1 has full rank P̄1 =[
ÂNS ÂNN ÂNS · · · Â

|N |−1
NN ÂNS

]
. Considering |S| >

0 and thus |N |−1 ≤ n−2, for any i > |N | − 1, ÂiNN ÂNS is
in the span of the matrices ÂjNN ÂNS , j = {0, 1, . . . , |N |−1}
by Cayley-Hamilton theorem. Hence, P̄1 has the same rank as
P̃1. This proves the claim.

In summary, P has full rank if and only if P̄1 has full
rank. By the definition of P̄1, P̄1 being full rank is equivalent
to controllability of (ÂNN , ÂNS). Hence, structural control-
lability of (A,B(S)) is equivalent to that of (ANN , ANS).

Now, define LK = {S | |S| = K and (ANN , ANS) is
structurally controllable} and conclude that LK = CK . The
set collection LK consists of all the K cardinality leader
sets achieving structural controllability. From [23, Thm 4],
we have that the pair (V, L̃K), where L̃K := {Ω | ∃ S ∈ LK
such that Ω ⊂ S}, is a matroid if the graph G is strongly
connected. Therefore, the pair (V, C̃K) is also a matroid. �

E. Proof of Theorem 1

The idea of the proof extends the work in [24], which
derives a performance guarantee for matroid optimization
featuring a submodular objective. To assess the suboptimality
of the actuator set Sf , we need to find an upper bound for
f(S∗)− f(Sf). We denote S∗ = {v∗1 , . . . , v∗K} and notice

f(S∗)− f(Sf) ≤ f(S∗ ∪ Sf)− f(Sf)

=

K∑
k=1

ρv∗k({v∗1 , . . . , v∗k−1} ∪ Sf) ≤ γ−1
∑

j∈S∗\Sf

ρj(S
f), (29)

where the first inequality is due to the monotonicity of f and
the equality follows from a telescoping sum. The last inequal-
ity is from Definition 2. To further bound

∑
j∈S∗\Sf ρj(S

f),
we have the following lemmas. For these lemmas, define
U−1 = ∅, UK = V , and st = |S∗ ∩ (U t+1 \ U t)|.

Lemma 5:
∑
j∈S∗\Sf ρj(S

f) ≤ γ−1
∑K
t=1 ρt−1st−1.

Proof: From Definition 2, we have

ρj(S
f) ≤ γ−1ρj(S

t−1), ∀t ≤ K, ∀j ∈ V. (30)

Since U t1 ⊂ U t2 for any t1 < t2, notice that V = UK =⋃K
t=0(U t \ U t−1). Considering U t1 \ U t1−1 and U t2 \ U t2−1

are disjoint, we know that these sets constitute a partition of
V . Since there is no subset of U0 belonging to F , we have
S∗ ∩ U0 = ∅. Using the partition of V , we can partition S∗

as: S∗ =
⋃K
t=1(S∗ ∩ (U t \U t−1)). Combining this with (30),∑

j∈S∗\Sf

ρj(S
f)≤

∑
j∈S∗

ρj(S
f)=

K∑
t=1

∑
j∈S∗∩(Ut\Ut−1)

1

γ
ρj(S

t−1).

(31)
Notice that all the nodes in U t−1 have been considered
by the feasibility check before vft. Since the greedy algo-
rithm first checks the elements in V \ U t−1 with larger
marginal gains when added to U t−1, we have that ρt−1 =
maxj∈V \Ut−1 ρj(S

t−1). Considering V \ U t−1 = ∪Ki=t(U i \
U i−1), for any t′ ≥ t,

ρt−1 ≥ ρj(St−1),∀j ∈ U t
′
\ U t

′−1. (32)

Thus, for any j ∈ S∗∩(U t\U t−1), we have ρj(St−1) ≤ ρt−1

and ∑
j∈S∗∩(Ut\Ut−1)

ρj(S
t−1) ≤ ρt−1st−1. (33)

Now combining (31) and (33), it is straightforward that∑
j∈S∗\Sf ρj(S

f) ≤
∑K
t=1 γ

−1ρt−1st−1.

Lemma 6: For any t ∈ {1, . . . ,K}, we have
∑t
i=1 si−1 ≤ t.

The above lemma is proven by [24] for γ = 1, and it holds
also when γ 6= 1 since its proof exploits only the matroid
structure. Hence, the proof is omitted.

We use Lemma 6 to obtain an upper bound to the right-hand
side of Lemma 5 and consequently to derive an upper bound
of f(S∗)− f(Sf). The following explains these steps.

Proof of Theorem 1: First, we consider the case in which
ρi, i = 0, . . . ,K−1, are distinct. We define t1 such that ρt1−1

is the largest among ρ0, ρ1, . . . , ρK−1 and t2 such that ρt2−1

is the largest among ρt1 , ρt1+1, . . . , ρK−1. Following the same
pattern we have t1, t2, . . . , tp, where tp = K. Since si ≥ 0 is
bounded by Lemma 6, to give an upper bound to the right-hand
side of Lemma 5, we construct a linear program as follows,

max
s0,...,sK−1≥0

K∑
i=1

ρi−1si−1 s.t.

t∑
i=1

si−1≤t, t=1,...,K. (34)

Let s∗i−1, i = 1, 2, . . . ,K, denote the optimal solution.
We claim s∗t1−1 = t1. Otherwise, s∗t1−1 < t1 and due to
Lemma 6 two situations might happen, a)

∑t1
i=1 s

∗
i−1 = t1

or b)
∑t1
i=1 s

∗
i−1 < t1.

For case a), we obtain
∑t1−1
i=1 s∗i−1 > 0. It follows that

there exists l < t1 such that s∗l−1 > 0. Then, we decrease
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s∗l−1 by δ > 0 and increase s∗t1−1 also by δ. The value of δ
is small enough so that s∗l−1 > 0. This operation decreases∑t
i=1 s

∗
i−1 for l ≤ t ≤ t1 − 1 and keeps the sum unchanged

for any other t, so the constraints of (34) are not violated.
Also considering that ρ∗t1−1 > ρ∗l−1, after these changes, the
objective function is strictly greater than the value obtained at
the original optimum. Thus, case a) is impossible. For case b),
we collect all the integers l > t1 satisfying s∗l−1 > 0. Assume
lq > · · · > l1 > t1. We have q ≥ 1. Otherwise, s∗l−1 = 0
for any l > t1 and we can increase s∗t1−1 by a small amount
to obtain a greater value of the objective without violating
constraints. Knowing that s∗l1−1 > 0 and following the same
reasoning provided for the case a), we increase s∗t1−1 and
decrease s∗l1−1 with the same amount. This way, an objective
value is obtained larger than that evaluated at the original
optimum. Thus, case b) is impossible.

In conclusion, s∗t1−1 = t1 and (34) is equivalent to

max
st1 ,...,sK−1≥0

K∑
i=t1+1

ρi−1si−1

s.t.

t∑
i=t1+1

si−1≤t−t1, t=t1+1,...,K.

(35)

We determine s∗t2−1 in the same way as we determine s∗t1−1 in
(34). By repeating the above procedure we obtain the solution

s∗i−1=

t1, if i=t1,
tj−tj−1, if i=tj and j 6=1,
0, otherwise.

(36)

If ρi, i = 0, . . . ,K − 1 are not distinct and there exist i1 <
i2 < · · · < iq with ρi1 = ρi2 = · · · = ρiq . We let s∗i1 = · · · =
s∗iq−1

= 0 and obtain the same solution as (36). Next, notice

ρi2=f(Si2+1)−f(Si2)≤γ−1(f(Si1∪vfi2+1)−f(Si1))≤ρi1
γ
,

(37)
where the first inequality comes from the definition of submod-
ularity ratio, while the second is due to (32). Substituting the
optimal solution into the objective, considering (37), we have

K∑
i=1

ρi−1s
∗
i−1=t1ρt1−1+···+(tp−tp−1)ρtp−1

≤γ−1

p∑
k=1

tk∑
i=tk−1+1

ρi−1=γ−1
K∑
i=1

ρi−1=γ−1(f(Sf)−f(∅)).

(38)
Combining (29), Lemma 5 and (38), we have f(S∗)−f(Sf) ≤
γ−1

∑
j∈S∗\Sf ρj(S

f) ≤ γ−2
∑K
i=1 ρi−1s

∗
i−1 ≤ γ−3(f(Sf) −

f(∅)). By rewriting this, we have f(Sf)−f(∅)
f(S∗)−f(∅) ≥

γ3

γ3+1 .

F. Proof of Proposition 2

Let ρi(S) = −Fε(S ∪ {i}) − (−Fε(S)). Given S and U ,
we denote Y = U \ S and R = V \ (S ∪ U). Notice that if
i /∈ S∪U, ρi(S)

ρi(S∪U) =
F r
ε(R∪Y )−F r

ε(R∪Y \{i})
F r
ε(R)−F r

ε(R\{i})
. From Definitions

2 and 3 we know that for all possible combinations of S and
U , the left-hand side has the least upper bound 1/(1− αf

ε) and
the greatest lower bound γfε while the right-hand side has the
least upper bound 1/γrε and the greatest lower bound 1− αr

ε.
Consequently, we obtain γrε = 1− αf

ε and αr
ε = 1− γfε. �

G. Formulation of the maximum flow problem

Given a directed graph D with nodes s (the source) and t
(the sink), denote the node set as V (D) and the edge set as
E(D). Suppose no edge is directed into s or out of t. Let
c : E(D)→ R+ assign to any edge (u, v) in E(D) c(u, v) ∈
R+ called the capacity. Any g : E(D) → R+ is called a
flow in (D, c, s, t) if it satisfies: a)

∑
u g(u,w) =

∑
v g(w, v)

for any w ∈ V (D) \ {s, t} and b) g(u, v) ≤ c(u, v) for all
(u, v) ∈ E(D). The first is the balance, whereas the second is
the capacity limits.

∑
w g(s, w) is called the value of g denoted

as val(g). The problem is to find the flow with the maximum
value. For the undirected bipartite graph Hb(S), we direct all
the edges from V to V ′ and place nodes s and t. Directed
edges are built from s to all the nodes in V ∪V ′′ and from all
the nodes in V ′ to t. Based on this D, we construct a capacity
function such that c(u, v) = 1 for any (u, v) ∈ E(D). The
maximum value of a flow in (D, c, s, t) is equivalent to the
cardinality of the maximum matching in Hb(S) [47].
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He is currently a Ph.D. candidate at the Automatic
Control Laboratory at ETH Zürich. His research
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